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Abstract Automatic to locate the salient regions in the
images are useful for many computer vision and computer
graphics tasks. However, the previous techniques prefer to
give noisy and fuzzy saliency maps, which will be a cru-
cial limitation for the performance of subsequent image
processing. In this paper, we present a novel framework
by aggregating various bottom-up cues and bias to enhance
visual saliency detection. It can produce high-resolution,
full-field saliency map which can be close to binary one
and more effective in real-world applications. First, the pro-
posed method concentrates on multiple saliency cues in a
global context, such as regional contrast, spatial relation-
ship and color histogram smoothing to produce a coarse
saliency map. Second, combining complementary bound-
ary prior with smoothing, we iteratively refine the coarse
saliency map to improve the contrast between salient and
non-salient regions until a close to binary saliency map is
reached. Finally, we evaluate our salient region detection on

B Taihong Wang
hnuwth@163.com

Ruihui Li
larch18@hnu.edu.cn

Jianrui Cai
csjcai@comp.polyu.edu.uk

Hanling Zhang
jt_hlzhang@hnu.edu.cn

1 College of Information Science and Engineering,
Hunan University, Changsha 410000, China

2 Department of Computing, The Hong Kong Polytechnic
University, Kowloon, Hong Kong

3 Key Laboratory for Micro-Nano Optoelectronic Devices of
Ministry of Education, and State Key Laboratory for
Chemo/Biosensing and Chemometrics, Hunan University,
Changsha 410000, China

two publicly available datasets with pixel accurate anno-
tations. The experimental results show that the proposed
method performs equally or better than the 12 alternative
methods and retains comparable detection accuracy, even in
extreme cases. Furthermore,we demonstrate that the saliency
map produced by our approach can serve as a good initial-
ization for automatic alpha matting and image retargeting.

Keywords Regional contrast ·Boundary prior · Smoothing ·
Iterative framework · Salient object detection

1 Introduction

Visual saliency is the ability of a vision system (human or
machine) to select a certain subset of visual information for
further processing [14,18]. As a powerful tool for automatic
detection of the most visually noticeable objects in images or
videos, known as salient objects, substantial research efforts
have recently been devoted to the development of visual
attention by multiple disciplines. In practice, salient object
detection is an important stream, which can be used as a pre-
processing of many computer vision applications including
image collection [8], object tracking [37], object cutout [45],
image retargeting [34], image manipulation [24], etc.

In recent decades, numerous pre-attentive bottom-up
saliency detection models [6,7] have been proposed for
explaining visual attention. These methods [1,9,13,16,19–
21,42,46] usually utilize low-level visual information such
as contrast, compactness, spatial distance and structure fea-
tures [35] to form saliency maps [32]. The most fundamental
measure for visual saliency is the contrast computation to
their surroundings. By computing pixel/region contrast with
respect to local neighborhoods or the entire image, respec-
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tively, previous image salient object detection methods can
be broadly divided into local and global categories.

The local contrast-based methods investigate the unique-
ness of image regions in a small local neighborhoods. As a
pioneer, Itti et al. [16] define image saliency using center-
surround contrast across a difference of Gaussians (DoG)
approach. Ma and Zhang [20] introduce an alternative local
contrast measure using a fuzzy growth model for saliency
estimation. Harel et al. [13] propose a graph-based visual
saliency model to non-linearly combine the local contrast
maps from different feature channels to highlight conspicu-
ity. These methods prefer to predict human fixations on
natural images and fail when the background is cluttered.
In the frequency domain, Hou and Zhang [15] raise a spec-
tral residual approach to detect saliency with the average
fourier envelope and the differential spectral components, but
it is insufficient to detect larger objects since the algorithm
regards the large salient object as part of the scene. Frin-
trop et al. [11] present a method inspired by Itti’s model, but
they compute center-surround differences with square filters
and use integral images to speed up the calculations. These
methods using local computation tend to only highlight a
few edges that scatter in the image, instead of highlighting
uniformly the whole salient objects.

Methods modeling global properties have become pop-
ular recently as they enable the assignment of comparable
saliency values across similar image regions and thus can
uniformly highlight the entire object regions. Zhai and Shah
[42] compute the pixel-level saliency against all other pix-
els in the whole image region. However, for efficiency
they use only luminance information, thus ignoring distinc-
tive clues in other channels. Achanta et al. [1] propose a
frequency-tuned method that directly defines pixel saliency
using the color differences from the average image color in
Lab color space. The elegant method, however, when the
salient objects are relatively small, is insufficient for dis-
tinguishing the salient object. Furthermore, these methods
ignore spatial relationships across image parts, which will
be critical for reliable and coherent saliency detection. More
recently, several saliency detection approaches tend to uti-
lize boundary connectivity or smoothing to generate the final
saliency maps and demonstrate impressive results on gener-
ating high-quality saliency maps. Cheng et al. [9] present
the histogram-based contrast (HC), which exploits the pixel-
wise color separation to produce saliency maps, and the
region-based contrast (RC), which combines the color con-
trast and spatial coherence. Both themethods have significant
improvement by means of the color histogram smoothing,
which can uniformly highlight the salient object. By exploit-
ing image boundary as the background seeds, Wei et al.
[36] define the saliency of an image region as its shortest
path towards the virtual boundary nodes. Yang et al. [41]
extract salient objects according to their relevance to bound-

ary patches based graph-based manifold ranking. Owing to
the boundary connectivity, these methods successfully sup-
press the background to a certain degree.

Saliency detection hasmade great progress in recent years,
but there are still some issues that remain unresolved. Typi-
cally, these existing methods cannot suppress efficiently the
background or just suppress background by thresholding [9]
and then prefer to simultaneously highlight the salient objects
and non-salient regions. Second, salient object detection iso-
lates the object from potentially confusing background and
preferentially allocates finite computational resources for
subsequent image processing. Therefore, the resolution of
saliencymapswill be a crucial limitation of subsequent appli-
cations.As shown inFig. 4, previous techniques prefer to give
fuzzy saliency maps which are less effective in real-world
applications.

Inspired by the insights and lessons from a number of
previous work as well as several priors supported by psy-
chological evidences and observations of natural images, we
address the aforementioned problems in amore integralman-
ner. In particular, we propose a coarse-to-fine measure by
aggregating various bottom-up cues andbias to produce high-
resolution, full-field saliency maps. First, we compute an
initial priormap combinedwith the regional contrast and spa-
tial relationships. The proposed method works in superpixel
space instead of pixel space which can give high boundary
fidelity and characterizes superpixels by the dominant color
instead of mean color, which improves robustness towards
variations within superpixels. Then we employ a color his-
togram smoothing technique to account for global context.
This generates a coarse saliency map, which can be spatially
coherent with discontinuities well aligned to image edges.
Finally, aggregating complementary boundary contrast [36]
with smoothing [9], we iteratively refine the coarse saliency
map to improve the contrast between salient and non-salient
regions until a close to binary saliency map is reached.

Extensively experimental results on two public datasets
[1,9] show that the proposed method can produce high-
resolution saliency maps and perform equally or better than
the state-of-the-art methods. Some visual saliency effects of
the proposed method are shown in Fig. 1. Furthermore, we
assess the performances of the proposed method in two real-
world applications, image retargeting and alpha matting.

Compared with the region contrast framework in [9],
the proposed approach has made some modifications and
improvements. First, the proposed method replaces graph-
based segmentation to SLIC segmentation algorithm [2],
which can give high boundary fidelity. Second, instead of cal-
culating the mean color for each superpixel, we directly use
the most frequently occurring color as the dominant color of
the corresponding superpixel in contrast calculation, which
can effectively reduce the artifact introduced by segmenta-
tion. Third, in color space smoothing, we quantize image by
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Fig. 1 Visual examples: the input original images (top). The high-
quality saliency map computed by our proposed approach (middle).
The ground truth at the bottom

a more representative color palette, which directly use the
most frequency occurring color of the corresponding super-
pixel. Finally, in improvement of saliency map, suppressing
boundary is achieved by a soft boundary score other than
thresholding in [9].

The major contributions of this paper are twofold: (1) to
optimize the result, we propose a novel iterative framework
incorporating complementary boundary prior with smooth-
ing, which can uniformly highlight the salient regions and
simultaneously suppress the background effectively. (2) The
saliency map, produced by the proposed method, has a dis-
tinct contrast between non-salient background and salient
object and can be close to binary one which is more effective
in real-world applications.

The rest of the paper is organized as follows: The proposed
method of generating saliency map candidates is described
in Sect. 2. In Sect. 3, we show the experimental results on
two public datasets and analyse the performance of the pro-
posed method qualitatively and quantitatively. In Sect. 4, we
demonstrate the applicability of our saliency maps and con-
clude this paper with further discussion in Sect. 5.

2 Saliency model

Pixels in the same region usually have homogenous color
component. Computing region-based contrast instead of
pixel-wise operation enormously pulls down the computation
complexity. Thus, our approach considers the super-pixel
as the element of saliency estimation. Instead of using a
graph-based image segmentation method [10] in Cheng et
al. [9], we first over-segment the image into N super-pixels
by the simple linear iterative clustering (SLIC) algorithm
[2]. The measure can fit well to the boundaries between the
salient objects and background regions and is more mean-

ingful than block-level and pixel-level features. In addition,
the superpixel representation facilitates preserving the better-
defined object boundaries than the fixed size segmentation.
Let R = r1, . . . , rN denote the set of superpixels.

2.1 The initial saliency map

Spatially weighted contrast measure has been shown to be
effective in saliency detection [9,23]. For any superpixel ri ,
we compute its saliency value bymeasuring its color contrast
to all other superpixels in the image,

Sin(ri ) = ω (ri ) · ‖ci − c j‖ · exp
(

−‖pi − p j‖2
2σ 2

p

)
, (1)

where pi and p j are the average position whose values are
normalized to [0, 1], and σp controls the strength of spatially
weighting, ci and c j are the dominant color of the corre-
sponding superpixels in the CIE Lab color space. Instead
of calculating the mean color for each superpixel [40,43],
we find the most frequently occurring color as the domi-
nant element to reduce the impact of artifacts introduced by
segmentation. If this color corresponds to less thanfiveoccur-
rences, we select an arbitrary color from the corresponding
superpixel. Psychophysical studies show that human atten-
tion favors central regions of natural image [5,29] we use
ω(ri ) = exp(−9d2i ) as a simple center bias, where di is the
distance between the average distance in superpixel ri and
the center of the image, with pixel coordinates normalized
to [0, 1]. Thus, ω(ri ) gives a high value if superpixel ri is
close to the center of the image and it gives a low value if the
region is a border region away from the center.

2.2 The coarse saliency map with smoothing

As shown in Fig. 2b, although we can efficiently compute
region contrast-based superpixel, this procedure may just
highlight some parts of an object, leading to the whole
object being indistinct. As a solution, we introduce a color
space smoothing [9] to render pixels with similar colors
the closer saliency values. First, we quantize the image-
based histogram in RGB color space. Instead of regularly
spliting the color pace [9], we generate a more representa-
tive color palette based the most frequently occurring color
of the corresponding superpixel in the RGB color space,
referred to Sect. 2.1, which reduces the number of colors
to N (N � 123). As shown in Fig. 3, we can observe that a
representative palette gives a better result than the original
scheme by [9], which regularly splits the R,G and B axes
(leaving many bins empty, as the RGB color space is not
a cube). Typically, the tomato quantized by our method is
more exquisite. Second, we choose more frequently occur-
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Fig. 2 Saliency computation: a input image, b the initial saliencymap,
c the coarse saliencymapwith smoothing, d and f refining saliencymap
with background prior in the first or second iteration, e and g refining

saliency map with smoothing, h the final saliency with gaussian blur, i
the ground truth. We get a high-quality saliency map that is comparable
to human labeled ground truth

Input Quantized by Ours Quantized by [9]

Fig. 3 Visual comparison about the quantized results between our
method and [9]

ring colors in the quantized space and ensure these colors
cover the colors of more than 95 % of the image pixels. We
get saliency value for each color as the same color value
c grouped together. Third, we replace the saliency value of
each color by the weighted average of the saliency values of
similar colors (measured by CIE Lab distance). We choose
m = β1 ·N nearest colors to refine the saliency value of color
c by

Sco(c) = 1

(m − 1)T

m∑
i=1

(T − D(c, ci ))Sin(ci ), (2)

where T = ∑m
i=1 D(c, ci ) is the sum of Euclidean dis-

tances between color c and its m nearest neighbors ci , and

the normalization factor comes from
∑m

i=1(T − D(c, ci )) =
(m − 1)T . Finally, we reset the saliency of each superpixel
as the average saliency value of its corresponding pixels and
all regions will obtain the same saliency, achieving the most
extreme case.

2.3 Saliency map refining with iterative framework

BycomparingFig. 2bwith c, it can be found that the color his-
togram smoothing already achieves an evident improvement.
However, as with other methods, it also cannot suppress the
background effectively. In addition, since it is insufficient to
distinguish the non-salient and salient regions, the smoothing
procedure will highlight them both simultaneously.

To alleviate these issues, we introduce an iterative frame-
work to further uniformly highlight the salient region and
adequately suppress the background region, resulting in a
close to binary saliency map. The coarse saliency map will
be utilized as the Sinput in the first iteration.

Step 1: Suppress the background For most nature images,
the background always appears smoothly and homogenously.
From the one-third rule in professional photography, we fur-
ther observe that most photographers will not crop salient
object along the view frame [36]. Taking the effort we made
into consideration, we can directly define the boundary con-
trast of each region as its saliency value contrasts the image
boundary regions, which is an abbreviated version of [36],
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ωs(ri )=exp

⎛
⎝−1

n

n∑
j=1

exp

(
−|Sinput (ri ) − Sinput (r j )|

2σ 2
s

)⎞
⎠ ,

(3)

where n is the number of superpixels on the image boundaries
(n � N ), Sinput (ri ) and Sinput (r j ) are the salient value of
corresponding superpixels, whose values are normalized to
[0,1].We iterate the saliencymapwith boundary contrast and
ωs(ri ) is normalized to [0,1].

S1(ri ) = Sinput (ri ) · ωs(ri ) (4)

According toEq. 4, the salient regions receive highweighting
and the smooth background regions receive small weighting,
so this step effectively suppresses the background. With the
boundary contrast as weight, there is an obvious improve-
ment (as shown in Fig. 2d). The boundary contrast can
suppress the background to a certain degree, while it is
still bumpy and noisy. In the next step, we will introduce a
smoothingmethod-based region to further refine the saliency
map.

Step 2: Highlight the salient object According to visual
organization rules [17], the salient pixels are usually grouped
together and most salient pixels have similar colors. Then,
regions of similar color should be more likely to be assigned
similar saliency values. In order to reduce noisy saliency
results and uniformly highlight the salient object, referred
to Sect. 2.2, we adopt a smoothing method-based region.
Measured by color similarity in CIE Lab color space, we
render superpixels, with similar colors the closer saliency
values. We choose m = β2 · N nearest super-pixels to refine
the saliency value of super-pixel ri by

S2(ri ) =
m∑
j=1

S1(r j ) · (1 − ωi j ), (5)

where ωi j = 1
Z ‖ci − c j‖ is the weight between super-pixel

ri and its jth nearest neighbors r j , corresponding to color
differences in CIE Lab color space because of its perceptual
accuracy. Z = ∑m

j=1 ‖ci − c j‖ is its normalization term
that guarantees all weights summed to 1. In our experiments,
we find that linearly exponent function works better than
Gaussians weighting, which falls off too sharply. Through
computing step 2, the wholly salient object becomes more
uniform.

On account of the step 1, we have already suppressed
the background effectively with a simple boundary prior, the
step 2 is more superior to highlight the salient object and fur-
ther enlarges the contrast between the salient and non-salient
regions.Moreover, by theweighting average,we canwipe off
some noisy points to improve precision (as shown in Fig. 2e).

The proposed iterative framework is simple, efficient and sig-
nificantly improves the quality of the coarse saliency maps.
In our experiments, we choose to iterate twice for optimizing
and saving computation. The result of the step 2 will be uti-
lized as the input in second iteration. A visual saliency effect
of each step on the saliency map is shown in Fig. 2. Exper-
imental results show that the proposed method can produce
high-quality saliency maps compared with human labeled
ground truth.

3 Experiment results

To estimate the performance of the proposed method, we
compare the proposed method with 12 alternative methods
(IT [16], GB [13], SR [15], LC [42], HC [9], FT [1], CA
[12], ZHANG [43], RC [9], SF [23], GS_SP [36] and RBD
[46]). Most of these algorithm codes are available in the
authors’ homepage.Weuse the standardbenchmarkdatasets:
Achanta et al. [1] dataset and MSRA10k dataset [9]. The
former is widely used and relatively simple that contains
1000 images with the corresponding accurate human-labeled
binary masks for salient objects. The latter contains 10,000
images with pixel-level saliency labeling and is more chal-
lenging. Figure 4 shows a visual comparison of different
methods. The results indicate that our approach can achieve
better performance, owing to the effect of the iterative frame-
work.

3.1 Experiment setup

We set the number of superpixel nodes N = 200 in all the
experiments. There are four parameters in the proposed met-
hod : σp, σs, β1, β2. Since the proposed saliency model is
unsupervised, these four parameters are empirically chosen,
σ 2
p = 0.2, σ 2

s = 0.05, β1 = β2 = 0.15, for all test images
in the experiments. The sensitivity of the proposed model to
the parameter settings is discussed in Sect. 3.4.

3.2 Performance comparison

Here, we evaluate our salient object detection model in terms
of precision, recall, Fβ , precision–recall curve (PRcurve) and
mean absolute error (MAE). The PR curve is produced based
on the overlapping area between subjective annotation and
saliency prediction. The precision value is the ratio of salient
pixels correctly assigned to all the pixels of extracted regions,
which reflects the accuracy of the detection algorithm. The
recall value corresponds to the percentage of detected salient
pixels in relation to the ground-truth number, which repre-
sents the detection consistency. The precision and recall can
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   Input         IT[16] GB[13] SR[15]        LC[41]   HC[9]      FT[1]       CA[12]   ZHANG[42]  9 ]       SF[23]    GS_SP[35]   RBD[46]      Ours     GTRC[

Fig. 4 Visual comparison of previous approaches to our method and ground truth(GT). As also shown in the numerical evaluation, our method
consistently produces saliency maps closest to ground truth

be depicted by the PR curve on the datasets. The precision
and recall rates for each image are quantified as follows:

Precision = |M ⋂
G|

|M | , Recall = |M ⋂
G|

|G| , (6)

where M is the binary salient object mask generated by
thresholding saliency map andG is the corresponding binary
ground truth. W and H are the width and height of the
saliency map.

From this definition, we can see that the binarization is
the key step in the evaluation. In an ordinary way, giving a
saliencymapwhose values are normalized to [0, 255], a set of
binary images can be obtain by varying the threshold T f from
0 to 255. As a result, precision and recall scores are computed
on each fixed threshold, which are finally combined to form
a PR curve to describe the model performance at different
situations. The other solution to perform the binarization is
the image-dependent adaptive threshold, which is defined as
twice the mean value of the saliency map S,

Ta = 2

W × H

W∑
x=0

H∑
y=0

S(x, y), (7)

whereW and H are the width and height of the saliency map
in pixels, respectively, and S(x, y) is the saliency value of the
pixel at position (x, y). High recall rate can be achieved at
the expense of reducing the precision rate and vice-versa, so
it is important to evaluate both measures together. The Fβ is
a weighted harmonic mean between the precision and recall
rate, which is the overall performance measurement.

Fβ = (1 + β2) · Precision · Recall
β2 · Precision + Recall

, (8)

where β2 = 0.3 stresses precision rate more than recall rate,
as suggested by many salient object detection works [1,9].
The resulting curves in Fig. 6a, b show that our method can
perform equally or better than the others on two benchmark
datasets. The performance closest to ours is the RBD [46],
which proposes a more robust boundary-based measure with
taking the spatial layout of image patches into consideration.

The overlap-based evaluation measures introduced above
do not consider the true negative saliency assignments,
i.e., the pixels correctly marked as non-salient. While the
PR curve analysis is useful, it is not the only arbiter of
performance and practical applications can better illustrate
improvements. Previous techniques give fuzzy saliencymaps
which might look similar on PR curves with ours, but are
less effective in real-world applications. Since the previous
methods [9,23,36,46] cannot enlarge enough the contrast
between the non-salient background and the salient object
and its close salient background, their saliency maps always
have a number of non-salient regions, which have similar
saliency values as the salient object, and the selection of a
uniform threshold will be unpractical. Therefore, it will be
insufficient to get a distinct saliency map by thresholding
or adaptive thresholding on previous methods. SaliencyCut
[9] uses the computed saliency map to assist in automatic
salient object segmentation. In this work, a loose threshold
is used to generate the initial binary mask. Then the method
iteratively uses the GrabCut segmentation method [26] to
gradually refine the binary mask. Integrating our saliency
maps with SaliencyCut, the salient objects can achieve a
major improvement in boundary sides and faces, shown in
Fig. 5. Although the RC [9] can correctly detect the salient
objects, the noisy background will limit the performance of
the subsequently heuristic method.

The mean absolute error (MAE) is a statistical measure
that represents the difference between estimated and actual
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Fig. 5 Visual comparison with SaliencyCut [9]. a Input image. b
Saliency map of RC [9]. c SaliencyCut on b. d Our Saliency map.
e SaliencyCut on d. f Ground truth

values. In this paper, the MAE is utilized to estimate the
dissimilarity between the saliencymap and ground truth. The
lower MAE value indicates better performance. The MAE is
the average of absolute error between the continuous saliency
map S and the binary ground truth G, which is defined as

MAE = 1

W × H

W∑
x=0

H∑
y=0

|S(x, y) − G(x, y)| (9)

Figure 6c shows that our method outperforms the other
approaches in terms of the MAE measure, which provides
a more balanced comparison between the saliency map and
ground truth.

In addition, we also further analyze the statistical results
on MSRA10K dataset. As shown in Fig. 6a, at maximum
recall where T f = 0, all pixels are considered to be salient,
so all the methods have the same precision 0.22 and recall
values 1.0 at this point. However, we further observe that
there is a great difference when the value of T f is smaller but
not zero or higher close to 256. We take two more persuasive
presentations (T f = 10 and T f = 240) into consideration.
As shown in Fig. 7a, although most methods have a high
recall rate, the precision rate is rather low. This is because
their saliency detection methods always have a number of
non-salient regions. In contrast, we perform better than the
others, since thatwe almost efficiently suppress the gray level
of background infinitely close to zero at the cost of reducing
a little recall rate in Fig. 4. On the other hand, even if the
threshold is close to 256 in Fig. 7b, our saliency maps also
have a higher recall rate(>0.5) than the others (<0.3)with the
same precision. The resulting curves show that our method
can obtain a more robust performance against the others in
precision and recall.

However, like most methods, our method also contains
some limitation. e.g., when there are complex background. If
some salient regions are pushed to the background by bound-

ary contrast, then the subsequent smoothing and the iterative
refinement will not be able to correct this error.

3.3 Human fixation dataset

While our algorithm targets salient object detection, it is also
interesting to test its performance on human fixation pre-
diction benchmarks. We use a large-scale human fixation
benchmark (CAT2000) [4] for such evaluation. Some visual
comparisons of the proposed method are shown in Fig. 8.
To conduct a comprehensive evaluation, we use a measure
of similarity to describe the spatial deviation of predicted
saliency map from the actual fixation map. The similarity
score (S) is a measure of how similar two distributions are.
After each distribution is scaled to sum to one, the similar-
ity is the sum of the minimum values at each point in the
distributions.

Mathematically, the similarity S between two maps P and
Q is

S =
∑
i, j

min(Pi, j , Qi, j ), where
∑
i, j

Pi, j =
∑
i, j

Qi, j = 1

(10)

Table 1 shows that ourmethod, although initially designed
for saliency region detection, has only slightly lower per-
formance to state-of-the-art methods [31,44] for predicting
human fixation points.

3.4 Validation of the proposed model

To estimate the performance of the iterative framework, we
compare the proposed approachwith the coarse saliencymap
(CSM) and the validation framework without step 2 (called
Ours_2) by a PR curve on MSRA10K dataset. As shown
in Fig. 9a, our refining method has a better effect on preci-
sion and recall rate. This is because the boundary contrast
effectively enlarges the difference between salient and non-
salient regions, and smoothing successfully highlights the
salient objects.

We also analyze the effects of the different parameter
settings. In this paper, the presented schedule utilizes super-
pixel method SLIC [2] to preprocess images and then detects
distinctive regions. In detail, Fig. 9b gives the PR curves
about the impact of different super-pixel number N on the
proposed method. Considering the computational complex-
ity and the performance of PR curves, we select superpixel
number N = 200 for all experiments. Meanwhile, the other
different quantitative results comparison has been made in
Fig. 9. Furthermore, we empirically find that the proposed
model is not sensitive to the choice of parameter settings.
For all the data set in this paper,we use the same parameters.
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Fig. 6 Statistical comparison results. a Precision and recall rates for all algorithms. b Precision, recall, and F-measure for adaptive thresholds. c
Mean absolute error of the different saliency methods to ground truth
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Fig. 7 Precision, recall and F-measure where T f = 10 and T f = 240

Input GT BMS[4] RBD[46] Ours

Fig. 8 Visual comparison on human fixation dataset (CAT2000) [4]

Table 1 Performance scores for models (Similarity)

Method GVBS [13] RBD [46] FES [31] BMS [44] Ours

Score 0.5 0.51 0.57 0.61 0.56

3.5 Average run time

The average run times of all the methods on the MSRA10K
dataset are presented in Table 2 based on a machine with an
Intel Quad-Core i3 2.53 GHz CPU with 2GB RAM.

4 Applications

Many applicants require saliency maps as input. In this sec-
tion we show via two applicants to demonstrate that our
method is helpful.

4.1 Image retargeting

Image retargeting aims to adapt images to display of tar-
get sizes and different aspect ratios. Effective retargeting
requires emphasizing the important content while retain-
ing surrounding context with minimal visual distortion.
Therefore, retargeting methods rely on the defining of the
importance of pixels. Since it effectively highlights themean-
ingful objects, we believe the proposed approach will be
beneficial to incorporate with image retargeting.

Seam carving [3] and image warping [27] are recent
techniques of content-aware retargeting. Seam carving itera-
tively removes or inserts a seam passing through unimportant
regions. This approach may generate jagged edges because
of the removal of discontinuous seams. In contrast, image
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Fig. 9 Precision-recall curves for validation of the proposed model on
the MSRA10K dataset. a Comparison of the proposed method with
CSM and Ours_2. b The effects of changes of super-pixel number N .

c Comparison of saliency maps smoothing with different β1 and β2. d
Comparison of initial saliency maps with different σp . e Comparison
of refined saliency maps with different σs
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Table 2 Averaging running time

Method HC ZHANG RC SF RBD Ours

Time (s) 0.02 0.39 0.3 0.41 0.36 0.35

Code C++ Matlab C++ C++ Matlab C++

Input AA[43] RC[9] SF[23] RBD[23] Ours

Fig. 10 Image retargeting results by enlarging 50 % height

warping offers a better possibility of producing a continuous
deformation for content-aware retargeting. We run the orig-
inal code of [22] based on axis-aligned (AA) deformations
and compare the results with those produced after replacing
their saliency map with four methods, including ours.

Figure 10 presents a representative result by retargeting
to 150 % of the original height. Our saliency map guaran-
tees that the salient object (the pager) is not distorted. The
improved results can be explained by comparing the saliency
maps. In the saliency maps of [9,23,46], the dominant object
is detected correctly, but some non-salient regions (the fin-
gers) exist in their saliencymaps, whichwill occupy the extra
space after retargeting. Meanwhile, the saliency values only
rely on the edge gradients in [22]. Consequently, the retar-

geting results of [9,22,23,46] have more or less distortions
against ours. On the other hand, our saliency maps differenti-
ate between the non-salient background and the salient object
and its close salient background. Both are maintained after
retargeting, resulting in visual images. Further comparisons
are provided in Fig. 11.

4.2 Automatic image matting

Although the results shown in Fig. 4 are visually compared
well, the details of their boundaries are not as good as that
of image matting techniques. This motivates us to employ
alpha matting techniques to further improve the boundary of
the extracted salient object.

Our running time is similar to that of RC and RBD (all
methods involve segmentation). Specifically, our method
spends 0.172, 0.152 and 0.026 s on initial map computa-
tion with super-pixel generation, coarse map smoothing and
saliency map refining, respectively. Note that we just com-
pare against several competitive accuracy methods or those
similar to ours.

Alpha matting aims at softly and accurately extracting
the foreground from an image and user-specified trimap,
which indicates the known foreground/background and the
unknown pixels are often required. With the salient object
extracted by our method, the trimap can be automatically
created with a uniform bandwidth (set by the user) through
eroding and dilating the binary mask of the extracted object.
Once the trimaps are obtained, any standardmattingmethods
can be adopted to estimate the matte, and a finer boundary of

Input AA[43] RC[9] SF[23] RBD[46] Ours 

(a)

(b)

(c)

(d)

Fig. 11 Image retargeting results. b and c reduce or enlarge 50 % height. a and d reduce or enlarge 50 % width
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Fig. 12 Matting results on MSRA10k dataset [9]. a Input image. b Our saliency map. c Trimap created from b. d Matting result tested on c by
the comprehensive sampling sets [28]. e Compositing result with a constant background using d

Fig. 13 Comparison with different trimaps. a Input image from [25].
b Finest trimap from [25]. c Matting result tested on b by the com-
prehensive sampling sets [28]. d Compositing result with a constant

background using c. e Our saliency map. f Trimap created from e. g
Matting result tested on f by the comprehensive sampling sets [28]. h
Compositing result with a constant background using g

the salient object can be obtained. Here we use the compre-
hensive sampling sets proposed by [28] as the alpha matting
system.

Figure 12 shows several matting results on images from
the MSRA10k dataset [9]. The results show that our method
can be seamlessly fitted into the automatic image matting
system [28] as an intelligent frontend. To further evaluate
effectiveness of the trimaps created by our method, we com-
pare final boundaries when the image matting system [28]
works with different trimaps from our method and from a
benchmark dataset [25]. Figure 13 presents some compari-
son results tested on images from [25]. It can be observed
that the matting results obtained using the trimaps created

by our method compare favorably with the results derived
using the finest trimaps, as the saliency object produced by
our method is close enough to the ground truth.

5 Conclusions

In this paper, we present a simple and efficient object-
level saliency detection model, which can produce high-
resolution, full-field saliency maps. The proposed method
aggregates multiple saliency cues and priors. The saliency
confidence is further jointly modeled with a unified itera-
tive framework combined boundary contrast and smoothing,
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which can be complementary to each other to provide more
informative evidences for extracting complete salient objects.
The iterative framework refines the coarse saliency map to
improve the contrast between salient and non-salient regions
until a close to binary saliency map is reached, which is more
practical in real-world applications. The experimental results
on public datasets demonstrate that the proposed approach
can obtain a more robust performance and consistently out-
performs the existing saliency detection methods in terms
of precision and recall rate, even in extreme cases. In addi-
tion, we evaluate the contribution of the proposed method on
image retargeting and automatic image matting.

In the future, we believe that incorporating more sophis-
ticated techniques, such as hierarchical structure [38] and
multi-scale analysis [32], will be helpful to improve our
saliency detection.
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