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Abstract In this paper, we propose a novel target con-
tour tracking method under sophisticated background using
the multiple cues-based active contour model. To locate
the target position, a contour-based mean-shift tracker is
designedwhich combines both color and texture information.
To reduce the adverse impact of sophisticated background
and also accelerate the curve motion, we propose a two-
layer-based target appearance model that combines both
discriminative pre-learned-based global layer and voting-
based local layer. The proposed appearance model is able
to extract rough target region from the complex background,
which provides important target region information for our
active contour model. We subsequently introduce a dynam-
ical shape model to provide prior target shape information
for more stable segmentation. To obtain accurate target
boundaries, we design a newmultiple cues-based active con-
tour model which integrates with target edge, discriminative
region, and shape information. The experimental results on
30 video sequences demonstrate that the proposed method
outperforms other competitive contour tracking methods
under various tracking environment.
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1 Introduction

Target tracking is an important and challenging task in
computer vision, such as robotics [36], video surveillance
[19], and human–computer interaction [30]. Tracking tar-
get in real-world is typically difficult due to many factors,
including illumination variation, appearance variation, pose
changes, occlusion, and camera noise, etc. To overcome
above-mentioned challenges and achieve robust target track-
ing, a large body of methods have been published in the
literature during last two decades. For a survey of early track-
ing methods, we refer the readers to [39].

Typically, in conventional generative-based tracking
method, a group of target templates are built and updated
online based on previous target observations during tracking.
Because the target appearance often changes and the back-
ground is sometimes sophisticated in the real-world tracking
condition, generative-based tracking methods are hard to
measure the target state correctly. Recently, discriminative-
based tracking framework [2] drawsmore andmore attention
owing to its robust performance in complex scenarios. In the
framework, discriminative technique plays an important role
in building target appearance model.

However, these traditional tracking methods (both gener-
ative based and discriminative based) use rectangle or other
rigid shape to represent the target, which lose detailed shape
and boundary information of the target. Furthermore, these
rigid shapes contain a large number of background pixels
outside the target regions, which may reduce the tracking
accuracy. A better manner to cope with this problem is to
use contours or silhouettes to represent the deformable tar-
gets. Recently, many contour-based tracking methods [1,4–
6,13,16,26,31,34] have been proposed to catch the detailed
target shape information dynamically during tracking. Early
work tends to use the parametric-based contour model [17]
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to track a set of marked points around the target. Parametric-
based contour model is not able to perform well when the
target undergoes sophisticated background. Recently, level
set-based active contour model [5,6,10,25,26] is widely
applied because it could flexibly represent the target’s topo-
logical changes, such as splitting and merging. Nevertheless,
conventional level set methods mainly have two drawbacks:
(a) they need to be reinitialized after several iterations to
ensure the accuracy of segmentation results, which costs lots
of extra computing time. (b) They only use edge, region, or
shape information to guide curve motion during evolution,
which may lead to false segmentation. Therefore, it is dif-
ficult for these methods to obtain stable and robust tracking
performance in real-world tracking condition.

In this paper, we aim to track and segment the target
under sophisticated background. we propose a novel and sta-
ble level sets-based framework for tracking non-rigid target
boundaries using edge, region, and shape information. The
key contributions that different from the other contour track-
ing methods are listed as follows:

1. To fast predict the target position accurately and pre-learn
the target appearance changes, we propose a contour-
based mean-shift target locating algorithm which inte-
grates joint color and texture cues.

2. To extract discriminative rough region information for
our active contour model, we propose a novel superpixel-
based dynamic appearance model using both global and
local layers to extract the discriminative rough target
region. In the appearancemodel, anAdaBoost-based pre-
learned model and a voting algorithm are embedded into
the global and local layers, respectively.

3. To obtain more stable and accurate segmentation result
under sophisticated background, we design a new mul-
tiple cues-based active contour model which combines
edge, discriminative region and shape information to seg-
ment the target.

2 Related work

Mean-shift-based tracking methods As a fundamental task
in the field of computer vision, object tracking has attracted
much attention. In recent years, mean-shift methods have
gained wide popularity in object tracking and video seg-
mentation. Comaniciu et al. [11] propose mean-shift-based
optimization framework to find the target location. To solve
the limitation that the target scale and orientation could not be
estimated efficiently, Yilmaz [38] uses an asymmetric kernel-
based tracker to improve the tracking performance. However,
these methods, which use fixed shape to represent the target,
may result in inaccurate tracking performance when target
shape changes during tracking. That is because the fixed

shape may contain some background regions which might
confuse the tracker. To obtain accurate target position, our
method uses contour-based mean-shift tracker to locate the
target that integrated with color and texture features.

Video segmentation methods Recently, video segmen-
tation has received significant interest due to its critical
importance in multimedia applications. Video segmentation
aims to extract accurate target region from video sequence
mainly using offline approaches. Generally, graph-based
approaches [15] are among the top-performing methods for
the task of segmentation. In [23], authors transform the prob-
lem of video target segmentation into the task to find a
maximum weight clique in a weighted region graph. Lee
et al. [20] introduce a method to estimate a pixel-level target
segmentation based on a series of binary partitions among
some key segments. To improve the segmentation perfor-
mance, Ramakanth et al. [29] present an energy function
based on patch seams across frames to solve the video seg-
mentation task. However, these methods need to process the
whole video together, which limits their effectiveness for
applications that entail online processing, such as surveil-
lance and action recognition. Another kind of approach for
video target segmentation is video matting [3,37,41], which
needs some human–computer interactions to obtain good
segmentation performance. Nevertheless, in our work, we
aim to automatically achieve online segmenting the moving
target.

Contour-based online tracking methods Paragios et al.
[27] firstly use geodesic active contour model [8] to drive
the curve to target boundaries during evolution. However,
edge-based contour model might not be able to drive the
curve to target boundaries under sophisticated background
in real-world tracking. Zhang et al. [40] introduce a back-
ground mismatching-based method to segment the moving
target. Bibbly et al. [5] propose a pixel-based contour track-
ing method that uses a generative model; however, without
the edge information, the tracker may lose precise target
boundary information. These region-based contour tracking
methods also have the limitation that the contour is sensitive
to similar regions in foreground and background. In addi-
tion to the edge and region clues, Cremers [12] introduces
a statistical shape knowledge into level set-based tracking
method. Mahmoodi [24] also proposes a shape-based active
contour model for video segmentation. Because that only
shape information is used, themethodsmight be hard to track
the target in complex tracking environment. Afterwards, Cai
et al. [6] propose a contour tracking framework by combing
both region and edge information. However, when a target
undergoes variations caused by camera noise, shape varia-
tion, or self-shadowing, the tracker may generate inaccurate
segmentation result. To obtain precise target boundary infor-
mation, segmentation technique is also applied to contour
tracking process. Fan et al. [13] introduce an image matting
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model for tracking the target region on a scribble trimap.
Godec et al. [14] present a hough-transform-based contour
tracking method that integrates voting-based detection and
back-projection into object segmentation process. However,
these methods might generate over- or under-segmentation
results under sophisticated background, which caused by
the lack of discriminative target appearance information.
Unlike traditional contour tracking methods, we build an
target discriminative appearance model combining global
and local layers to generate important discriminative region
information, and then integrate the edge, region, and shape
information into multi-cues-based active contour model to
segment the target from sophisticated background.

The rest of the paper is organized as follows: Sect. 3
describes our target contour tracking framework. Section 4
introduces the evaluation metrics and also analyses the para-
meters in ourmodel.We show the qualitative and quantitative
results in Sect. 5. Section 6 summarizes the paper.

3 Proposed method

3.1 System overview

The framework of our method is shown in Fig. 1. After man-
ual initializing the target contour, the new target position
is located by the mean-shift tracker which combines color
and texture clues. To capture the appearance changes and
extract the rough target region, we propose a discrimina-
tive appearance model by combing both global and local
target information. In the global layer, an AdaBoost-based
pre-learnedmodel is trained to extract the rough target region,
while, in the local layer, voting-based algorithm is applied
to retain the target local information. In addition, we also
trained a shapemodel basedon theprior segmentation results,
which is helpful for guiding the curve motion in the curve
evolution. Integrating with the discriminative region, edge
and shape information, a new active contour model is pro-
posed to accurately segment the target. During tracking, we

update the appearance model using the segmenting result in
each frame.

3.2 Contour-based mean-shift target locating

To reduce the impact of complex background and the time
cost of the target segmenting, we firstly locate the target
region before extracting its boundaries. Moreover, we also
pre-learn the target appearance changes after locating the
target, which would be benefit to extracting the rough tar-
get region in our appearance model. A natural approach to
track and locate the target positionwould simply applying the
mean-shift tracker which uses the rigid or elliptical region to
represent the target. However, this approach has two draw-
backs: (a) important target contour information may be lost
during tracking; and (b) the tracker may be interfered by the
background in target bounding-box. To cope with these two
problems, we use non-rigid region to represent the target in
our mean-shift tracker.

As shown in Fig. 2, at frame t + 1, we use the non-rigid
target region IC(t) in frame I (t) as the target template, which
provides precise target information. To enable our tracker to
achieve more robust tracking under various environment, we
extract both color and texture information from the target
region. We use a color histogram and LBP feature [32] to
represent the colore and texture information, respectively:

⎧
⎪⎨

⎪⎩

fR = {fcolor, ftexture}
fcolor = fRGB&HSV

ftexture = LBP(IC(t)).

(1)

To measure the similarity between template region and
candidates, we use the following distance:

d(fR, f) = √
1 − ρ[fR, f], (2)

where f is the feature of template region, ρ[·] is the Bhat-
tacharyya distance between two discrete distributions, which

Fig. 1 Framework of the proposed contour tracking method
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Fig. 2 Illustration of our
contour-based mean-shift
tracker

defined as:

ρ[fR, f] =
N∑

i=1

√
fi,R · fi . (3)

Then, we use mean-shift algorithm to find the target position
y′
R in frame t + 1 as follows:

y′
R = �n

i=1yi,Rwi g(·)
�n
i=1wi g(·) , (4)

where wi is the candidates weights, n is the number of
samples, and g(·) is the kernel, respectively. After several
iterations, a new non-rigid target position can be obtained in
frame I (t + 1), as shown in Fig. 2. In our method, this non-
rigid target region provides important information for our
appearance model, which will be described more detailedly
in the next section.

3.3 Appearance model combing global and local layers

Since the sophisticated background may affect the curve
motion in segmentation procedure, we propose an appear-
ance model to extract rough target region from the upcoming
frame I (t + 1). Some prior works tend to use pixel-based or
sparse-based models to represent the target; however, these
models are hard to effectively represent the detailed tar-
get boundary information. In our method, we build a target
appearance model based on superpixels to retain both target
region and boundary information simultaneously. Besides,
traditional contour tracking methods usually use single-
layer-based appearance model, and thereby lose global or
local region information. That may lead to unstable segmen-
tation result. Rather than the single-layer appearance model,
we combine both global and local layers to extract the rough
target region. In our model, the global layer is able to pro-
vide primary region information when the target undergoes
complex shape deformation. The local layer,meanwhile, pro-

vides important local region information when the global
layer generates false classification results under sophisticated
background. Such two layers provide important region infor-
mation for our active contour model.
Discriminative pre-learning-based global layer In the
global layer, we use a discriminative method to extract
the global rough target region. Let spi,t stands for the
i-th superpixel in frame I (t). For every superpixel spi,t , a
histogram-based feature descriptor si,t is extracted in RGB
and HSV color space. The feature descriptor si,t is labeled
by li = {+1,−1} according to the following criteria:

li =

⎧
⎪⎨

⎪⎩

+1, if
spi,t∩Target

spi,t
� η;

−1, if
spi,t∩Target

spi,t
< η,

(5)

where spi,t ∩Targetmeans the intersection of superpixel spi,t
and target region.

However, the target appearance may change during track-
ing, which may lead to false classification. To avoid this
problem, we pre-learned the target appearance from the
upcoming frame I (t + 1) before classifying superpixels. As
discussed in Sect. 3.2, the mean-shift tracker locates the non-
rigid target region in frame I (t + 1), which enables us to use
this information to update the AdaBoost classifier. In the
pre-learned procedure, we randomly select some unlabeled
superpixels from the region IC(t+1) in the next frame as the
positive examples to update the classifier. What is more, the
internal superpixels have higher probability to be selected
than ones closed to the periphery. After pre-learning the
target appearance, our model could capture changes of the
target and extract the rough target region Rglobal

t+1 , as shown
in Fig. 3d.

To allowourmodel to adapt to various tracking conditions,
the classifier is dynamically updated. Assuming that we have
got the tracking result at frame I (t), we randomly select
some superpixels from the foreground and background as the
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Fig. 3 Illustration of our global- and local-based appearance model:
a the located position by our mean-shift tracker; b superpixel segmenta-
tion; c the target edge information; d discriminative region of the global

layer; e result of voting in local layer; f the final rough target region;
g final segmentation result on target region

positive and negative samples, respectively. These samples
are used to update the AdaBoost classifier.

Voting-based local layer Under various tracking con-
ditions, we find that the global layer may miss some local
regions, and thereby leads to false segmentation. To reduce
the adverse impact of noises caused by global layer, we pro-
pose a local voting algorithm to extract the target region.

In our model, to retain the local features of the target, each
unlabeled superpixel in the upcoming frame I (t+1) is voted
by the surrounded labeled superpixels in the prior frame. We
use the following distance to measure the similarity between
two superpixels:

dsp(si , s j ) = exp

{

−χ2(si , s j )2

σ

}

, (6)

where χ2 is the Chi-square distance [18]. For every super-
pixel in I (t + 1), the score which voted by the surrounded
superpixels in I (t) is computed by the following formula:

Score(spi,t+1) =
∑sp j,t∈�r

j li · �(dsp(si , s j ))

‖�(dsp(si , s j ))‖0 , (7)

where�r is the region of radius r surrounding the superpixel
spi,t+1 in frame I (t). Besides, the kernel function �(·) is
given by

�(dsp(si , s j )) =
{
dsp(si , s j ), if dsp(si , s j ) � ζ ;
0, if dsp(si , s j ) < ζ.

(8)

This kernel function indicates that we only use credible
pairwise superpixel for voting, which ensures our appearance
model more stable. After the voting procedure, the local tar-
get region Rlocal

t+1 is obtained, as shown in Fig. 3f.
To obtainmore stable target region, we combine the global

and local layers as follows: Rt+1 = Rglobal
t+1 ∪ Rlocal

t+1 . This
rough target region provides important region information
for our active contour model, which will be discussed more
detail in Sect. 3.5. Moreover, to reduce the noises caused by
these two layers, opening operator is applied to the expanded
rough target region:

R′
t = (Rt � B1) ⊕ B2, (9)

where B1 and B2 denote the erosion and dilation structuring
element, respectively. Figure 3f, g shows that after integrating
both global and local information into the appearance model,
target can be extracted accurately.

3.4 Dynamic shape model

During the curve evolution in segmentation process, various
noises such as illumination and target appearance changes
may affect the curve evolution,whichwould result in the false
segmentation. What is more, some false-negative regions
generated by our appearance model may also cause under- or
over-segmentation. In this section, we build a dynamic shape
model to guide curve motion during evolution.

In our shape model, we use a gray image which fuses a
series of target segmentation results to represent the target
shape template. For a target shape St at time t , a gaussian
kernel is applied to the target region: St = G(Ct ), where Ct
is the target region mask which is labeled by 1s and 0s. To
enable the shape model to adapt to target deformation, we
update the model as follows:

St = pCt + (1 − p)St−1

= pCt + p(1 − p)Ct−1 + (1 − p)2St−2

= pCt + p(1− p)Ct−1 + p(1− p)2Ct−2 + (1− p)3St−3

= pCt + p(1 − p)Ct−1 + · · ·
+p(1 − p)t−1C1 + (1 − p)tS0

=
t∑

k=1

p(1 − p)t−kCk + (1 − p)tS0, (10)

where p is the update ratio and S0 is the initialized target
region. Our shape model St is able to give assistance to guide
the curve evolution in our active contourmodel, whichwould
be discussed more detail in the next section.
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3.5 Multi-cues active contours and curve evolution

Although we have obtained the rough target region by our
appearance model, the false positive and negative regions
may affect the segmentation performance. To get accurate
target boundaries, this section introduces our multi-cues
active contour model which combines edge, discriminative
region, and shape information. Because the conventional
active contour models [8,9,21,40] only consider edge or
region information, the curve is vulnerable to be interfered
by the complicated background or obvious boundaries, and
thereby stops at the false position after evolution.On the other
hand, the active contours combined with shape model, to
some extent, perform well under sophisticated background;
nevertheless, it may not be adapted to complex deformation.
To accurately segment the target under various conditions,
such as sophisticated background and large deformation, we
embed our dynamic appearance model and shape model into
the proposed active contour model.

Edge term As many works [8,9] refer, an edge-detector
is defined for extracting the image boundaries: g(|∇ I |) =
1/(1 + |∇ Î |2). Note that the rough expanded target region
R′
t , which is obtained in our appearance model as described

in Sect. 3.3, could reduce the negative effect of the back-
ground. Therefore, to accelerate the curve evolution, we
just let the curve move on the extended rough target region
I ′
R(t), where I ′

R(t) = R′
t · I (t). Then, the edge infor-

mation of the rough target region can be represented as
follows:

gedge = 1

1 + |∇ ̂R′
t · I (t)|2

= R′
t · g(|∇ I (t)|) − R′

t + 1.

(11)

Motivated by [21], we define an edge term in our active
contour model based on the edge information gedge:

F1 �
∫

�

gedge · δ(ϕ)|∇ϕ|dx

�
∫

�

(R′
t · g(|∇ I (t)|) − R′

t + 1) · δ(ϕ)|∇ϕ|dx . (12)

Region term In many situations, it is hard to extract
target boundaries due to the blurred edge or sophisticated
background, which would affect the curve motion during
evolution. To enable the curve to correctly stop at the tar-
get boundaries, target region information is embedded into
our active contour model.

Recall that in Sect. 3.3, the rough target region Rt pro-
vides important information of target region for the active
contour model. However, this region information cannot be
straightly embedded into the edge-based geodesic active con-
tour model. To address this constraint and embed the region

information into our model, we transform the region Rt into
homologous edge information beforehand:

gregion = g(|∇Rt · I (t)|) + g(|∇Rt |) − 1

= Rt · g(|∇ I (t)|) + g(|∇Rt |) − Rt . (13)

Then, we define the following region term in our active
contour model:

F2 �
∫

�

gregion · δ(ϕ)|∇ϕ|dx

�
∫

�

(Rt · g(|∇ I (t)|) + g(|∇Rt |) − Rt ) · δ(ϕ)|∇ϕ|dx .
(14)

Shape term During the tracking, our appearance model
may generate some false-negative regions. Due to the false-
negative regions information, the curve may move across the
target boundaries. To cope with this problem, we add the
target shape information to the active contour model:

{
g′
edge = St · gedge;
g′
region = St · gregion,

(15)

where St is the target shape model. Then, we use Eq. (15) to
update Eqs. (12) and (14), respectively. There are two advan-
tages to embed the shape term into our active contour model:
(a) the shape term is able to allow the curve to move toward
the target boundary outside the target region; (b) and also
ensures that the curve would not continue to converge inside
the target region,which effectively improve the segmentation
performance. After integrating with shape information, the
proposed active contour model could produce more stable
results.

Energy functional and curve evolution By combining the
edge, region, and shape information,we propose amulti-cues
active contour model (MCAC):

E(ϕ) = αF1(ϕ) + βF2(ϕ) + μR(ϕ) + τA(ϕ), (16)

where A(ϕ) and R(ϕ) are area accelerate term and non-
reinitialization term to speed up the curve evolution proce-
dure, respectively. These two terms are given by

A(ϕ) �
∫

�

g(|∇ I (t)|)H(−ϕ)dx, (17)

R(ϕ) �
∫

�

p(|∇ϕ|)dx, (18)

where H(·) is the Heaviside function and p(·) is a potential
function defined in [21].
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Then, the Eq. (16) could be minimized by solving the
following gradient flow:

∂ϕ

∂t
= δε(ϕ)

[
αdiv

(St · gedge · F) + βdiv
(St · gregion · F)]

+μdiv(dp(|∇ϕ|)∇ϕ) + τg(|∇ I |)δε(ϕ), (19)

where F = ∇ϕ/|∇ϕ|. By applying the finite difference cal-
culation framework, the energy E(ϕ) will slow down the
shrinking or expanding the zero level contour when the curve
arrives at target boundaries.

4 Evaluation criteria and parameter analysis

4.1 Evaluation metrics

To quantitatively and effectively evaluate the performance of
the implemented tracking methods compared to the manual
segmentation groundtruth, we report the following contour-
based criteria in our experiments: Intersection-over-Union
(IoU), Dice coefficient (Dice), Mean Absolute Distance
(MAD), and the Hausdorff Distance (HD). Let C′

1 and C′
2

denote the contours of regions C1 and C2, and the contour-
based criteria can be defined as follows:

IoU(C′
1, C′

2) = |C1 ∩ �2|
|C1| ∪ |C2| , (20)

Dice(C′
1, C′

2) = 2|C1 ∩ C2|
|C1| + |C2| , (21)

MAD(C′
1, C′

2) =
∫ 1
0 d(C1(s), C2)|C′

1(s)|ds
2|C1|

+
∫ 1
0 d(C2(s), C1)|C′

2(s)|ds
2|C2| , (22)

HD(C′
1, C′

2) = max
{
sup
s1

inf
s2

d(C1(s1), C2(s2)),

sup
s2

inf
s1

d(C1(s1), C2(s2))
}
, (23)

where d(C1(s), C2) denotes the minimum distance
between point C1(s) and contour C2, |C1| and |C1| represent
the contour length and the area of region C1, respectively.
The IoU and Dice metrics are used to intuitively evaluate the
trackingperformanceby computingoverlap rate between two
regions,which is commonly used in target tracking and image
segmentation. To reasonably evaluate the segmentation per-
formance, we adopt MAD and HD metrics to, respectively,
indicate the mean and peak errors of the experiment results
compared with the groundtruth.

4.2 Parameter analysis

Size of superpixel Choosing an appropriate size for superpix-
els is very important. When the superpixel size is too small,
the feature descriptor would have low discriminative ability,
which may result in bad classification in our discriminative
appearance model. In contrast, if the superpixel size is too
large, the false-positive and false-negative superpixels would
significantly interfere the curve motion in our active contour
model. What is more, large superpixel may lose detailed tar-
get region information. To find an appropriate value for the
superpixel size, we test different superpixel sizes on 30 video
sequences and subsequently report the tracking results under
four metrics (IoU, Dice, MAD, and HD) in Fig. 4. It is shown
that good results (high overlap rate and low pixel error) can
be obtain when we set the size of superpixel between 10 and
15.

TheRatio ofα toβ In the experiment,wefind that the ratio
ν between α and β in Eq. (16) has great relevance to the seg-
mentation performance. When ν is too large, the curve tends
to stop at the boundaries of the sophisticated background.
Conversely, when ν is too small, the curve motion might be
seriously influenced by the false negative and positive regions
and would, therefore, result in inaccurate segmentation. To
obtain stable performance, we test different values for para-
meter ν. Figure 5 reports the tracking results under different
metrics using different values for ν, where we can see that the
tracking performance is more stable when we set ν ∈ [2, 5].

Parameters μ and τ As discussed in [21], the active con-
tour model is not sensitive to the choice of μ, thus in our
experiment, we set μ = 1. Traditionally, the parameter τ

needs to be tuned according to the boundaries of the target
in different tracking conditions. For target with weak bound-
aries, the value of τ should be chosen relatively small to
avoid boundary leakage.However, in ourmethod, the appear-

Fig. 4 Comparison of the tracking results under four metrics with dif-
ferent superpixel sizes. IoU and Dice are based on left Y axis, while
MAD and HD are based on right Y axis
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Fig. 5 Comparison of the tracking results under four metrics with dif-
ferent ratios of α to β. IoU and Dice are based on left Y axis, while
MAD and HD are based on right Y axis

Fig. 6 Comparison of the tracking results under four metrics with dif-
ferent values of τ . IoU and Dice are based on left Y axis, while MAD
and HD are based on right Y axis

ance model and shape model could provide additional target
boundary information. So the impact of the value τ variation
is not significant. Figure 6 reports the tracking performance
using different values for τ , where we can see that the pro-
posed method generates stable results when τ ∈ [1, 5].

5 Experimental results

5.1 Experimental setup

The proposed method is implemented in MATLAB R2010b
under Red Hat Enterprise Linux platform on a Intel (R) Core
(TM) i7 3.4GHz processor with 3GB memory. In addition,
the tracking results of the proposed method are available on
the website: https://github.com/plvmail/MultiCuesActiveCo
ntour.

Parameters setting In Sect. 3.3, the radius r of voting
region �r is set to 20. We set σ = 0.4 and ζ = 0.3. In
Eq. (9), the erosion and dilation structuring element are 5×5
and 12 × 12, respectively. The updating parameter p in our
dynamic shape model is set to 0.7. Besides, we set α = 1,
β = 3, μ = 1, and τ = 2 in the energy functional Eq. (16)
of the proposed active contour. During the evolution, we set
number of the inner and outer iteration steps as 8 and 40,
respectively.

Compared Algorithms To objectively evaluate the impro-
vement of the proposed method, five contour tracking
algorithms and three baseline methods are compared: (a)
background mismatch-based method (Mismatch) [40]; (b)
superpixel-based method (SPT) [35]; (c) dynamic graph-
basedmethod (DGT) [7]; (d) hough-basedmethod (HT) [14];
(e) Scribble tracker based on matting-based method (Scrib-
ble) [13]. Note that when we implement other algorithms,
the parameters are set to the default values suggested in the
original papers. Moreover, to better analyse the improve-
ment of the proposed active contour model, we also build
three baseline methods: (f) our method with edge-based dis-
tance regularized level set evolution (DRLSE) [21]; (g) our
method with region-based active contours (GACV) [9]; (h)
our method without shape information (w/o shape).

Dataset For a more comprehensive evaluation of the
tracking performance, we implement the proposed method
on SegTrack v2 dataset [22] and seven extra traditional video
sequences in our experiments. SegTrack v2 dataset is an
extension version of the SegTrack dataset [33] with more
annotated objects and video sequences, which is widely used
in video segmentation algorithms. SegTrack v2 dataset con-
sists of 14 sequences with 24 objects over 947 annotated
frames including different challenges, including appearance
variation (BirdofParadise andBirdfall), similar objects (Pen-
guin), complex deformation (Worm, Hummingbird, Soldier,
Monkey, Frog, and BMX), show-motion (Frog), and occlu-
sion (Cheetah and Penguin).

5.2 Quantitative comparison with segmentation-based
methods

We report the quantitative results of the proposed method
and state-of-the-art methods under IoU and Dice metrics in
Table 1. Table 2 summarises the mean and peak errors of the
results under MAD and HD metrics. It is shown that in both
SegTrack v2 dataset and traditional video sequences, the pro-
posed method outperforms other online target tracking and
segmentation methods. To clearly and immediately analyse
the improvement of our method against different challenges,
more detailed discussions are presented next.

Complex deformation It is really an important and chal-
lenging task to track and segment deformable targets in
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Table 1 Comparison of the proposed method with five state-of-the-art methods on 30 video sequences under Intersection-over-Union (IoU) and
Dice coefficient (Dice) metrics

Methods Mismatch [40] Scribble [13] HT [14] SPT [35] DGT [7] Proposed

Metrics (%) ↑ IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice

Girl 19.42 31.01 47.90 64.60 39.19 51.78 59.10 73.83 72.02 83.59 69.52 81.84

Frog 45.08 60.06 45.72 62.30 40.93 57.30 40.58 55.54 40.59 55.30 66.43 78.19

Birdfall 12.71 18.12 5.89 10.40 5.46 8.45 12.96 20.94 61.03 75.23 54.47 70.23

Monkey 38.68 55.04 33.16 49.44 42.92 56.93 59.00 73.84 67.11 80.16 75.53 85.91

Bird of Paradise 29.11 41.20 52.61 68.52 43.99 55.28 38.88 53.20 82.75 90.00 83.68 91.36

BMX-Person 28.51 43.57 37.29 54.22 1.86 2.31 42.15 59.04 60.39 75.18 73.59 84.51

BMX-Bike 6.39 9.89 4.31 7.29 0.89 1.53 4.17 7.65 5.09 9.15 15.32 21.27

Cheetah-Deer 21.55 34.21 46.25 62.79 38.65 53.24 28.91 43.93 33.62 47.54 58.22 73.06

Cheetah-Cheetah 6.47 11.46 19.28 27.88 15.06 19.77 10.72 17.43 – – 44.92 58.86

Drift-Green 25.97 37.92 58.11 72.98 48.36 63.96 22.54 34.03 58.03 73.16 56.53 71.49

Drift-Red 6.78 12.28 11.09 16.99 39.82 56.52 25.91 39.50 6.01 10.03 38.84 54.21

Hummingbird-Left 24.09 36.81 37.08 52.19 12.09 21.14 36.23 49.83 56.59 71.49 64.28 77.15

Hummingbird-Right 24.54 37.04 20.91 31.93 18.16 28.98 37.09 53.14 15.98 26.56 57.74 72.64

Monkeydog-Monkey 69.91 81.38 21.53 29.12 29.28 42.21 22.32 28.82 56.32 70.47 67.41 79.24

Monkeydog-Dog 10.76 14.86 72.32 79.22 5.91 9.87 12.44 14.35 1.95 3.56 25.11 32.37

Parachute 37.14 49.98 64.32 76.82 64.55 78.35 66.41 77.90 89.43 94.29 82.69 90.31

Penguin-#1 17.74 28.48 25.93 39.29 24.16 35.99 9.21 15.61 – – 74.63 85.42

Penguin-#2 56.82 70.78 17.99 28.16 78.66 88.03 7.71 13.49 3.27 6.29 75.06 85.65

Penguin-#3 35.35 47.46 38.39 54.42 6.22 10.70 3.03 5.54 1.49 2.93 55.49 70.64

Penguin-#4 46.49 62.06 45.48 62.20 49.37 66.00 2.50 4.67 14.88 25.72 61.50 75.88

Penguin-#5 13.74 22.75 23.54 36.79 26.55 41.82 5.93 10.60 1.26 2.43 43.64 60.20

Penguin-#6 22.88 35.32 39.56 55.72 13.15 22.38 29.05 44.73 – – 60.36 74.61

Soldier 29.34 42.98 40.03 55.80 57.83 71.96 59.91 73.81 70.77 82.63 81.15 89.55

Worm 16.58 28.11 37.65 54.19 42.63 55.20 37.34 53.09 67.69 80.41 74.25 84.83

Bird2 34.62 49.85 47.52 63.47 25.75 39.97 42.66 59.42 48.89 65.00 80.20 88.91

Panda 18.13 28.88 58.76 72.98 59.84 69.70 57.53 72.27 71.43 82.97 85.77 92.20

Pedxing1 50.15 66.53 52.68 68.87 59.70 74.39 54.71 70.47 61.70 76.11 83.90 91.21

Surfer 4.48 7.79 57.44 72.40 41.90 57.00 42.98 59.20 53.31 68.61 65.13 78.42

Seq_sb 12.79 22.20 19.88 31.27 61.21 74.80 20.69 27.12 78.10 87.17 79.70 88.03

Lemming 23.21 32.39 62.38 71.08 71.95 80.32 75.54 82.35 80.16 87.29 83.58 89.22

Mean per object 26.31 37.35 38.17 51.11 35.53 46.53 32.27 43.18 46.66 56.79 64.62 75.91

Mean per sequence 25.80 36.91 41.09 54.28 39.79 51.27 39.96 52.13 55.70 66.77 68.94 79.40

“–” Indicates that the result is not reported in the sequence. The best two results are labeled with bold and italic values, respectively

video sequence. In our experiments, we firstly implement
the methods on Girl, Frog, Monkey, BMX-Person, Hum-
mingbird,Worm, Soldier, and Surfer sequences, wherein the
targets undergo large deformations. The superpixel-based
trackers (DGT and SPT) perform better than the pixel-based
trackers (Mismatch, Scribble, and HT). It is because the
pixel-based trackers do not build effective appearancemodel,
which might lead to inaccurate segmentation when target
shape changes. However, as shown in Table 2, both SPT
and DGT have large peak errors (under HD metric) which
indicate that they could not generate stable segmentation
results. Mismatch performs well on sequence Frog, wherein

the background is clear and the target undergoes slowmotion.
Both of these two conditions are beneficial for Mismatch to
drive the curve toward the target boundary; however, in other
sequences, the tracker fails to segment the target. Notwith-
standing the cluttered background or slow motion in these
sequences, the proposed method performs better. That is
because our appearance model is able to extract the rough
target region by combing global and local region informa-
tion, which provides important target region information to
guide the curve motion.

Appearance variation To demonstrate the improvement of
the proposed method when target appearance changes, we
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Table 2 Comparison of the proposed method with five state-of-the-art methods on 30 video sequences under Mean Absolute Distance (MAD) and
Hausdorff Distance (HD) metrics

Methods Mismatch [40] Scribble [13] HT [14] SPT [35] DGT [7] Proposed

Metrics (in pixel) ↓ MAD HD MAD HD MAD HD MAD HD MAD HD MAD HD

Girl 21.40 163.2 13.08 70.11 14.45 72.10 16.66 140.6 4.29 61.12 3.64 33.73

Frog 36.56 121.2 23.64 96.40 38.64 123.6 38.49 100.7 23.13 149.9 9.29 70.70

Birdfall 27.75 126.3 38.55 104.4 45.99 64.36 27.00 60.37 2.13 13.13 1.70 7.87

Monkey 17.73 103.7 19.06 86.94 9.56 46.47 5.13 49.64 6.68 59.87 2.42 23.50

Bird of Paradise 11.90 117.3 14.79 97.78 21.30 104.7 13.36 105.4 8.06 95.40 6.98 69.57

BMX-Person 48.86 275.5 19.66 126.7 156.8 242.2 22.23 168.9 29.46 246.4 2.89 26.01

BMX-Bike 49.17 210.7 69.31 143.7 87.45 172.4 53.22 132.5 48.74 130.4 15.92 87.23

Cheetah-Deer 14.97 98.81 4.11 28.57 6.13 29.15 6.41 40.21 6.81 35.66 2.39 16.92

Cheetah-Cheetah 48.31 197.1 32.52 65.38 81.37 104.18 59.04 111.7 – – 6.32 26.96

Drift-Green 21.35 178.9 6.65 49.96 16.16 81.98 24.85 143.1 12.70 131.9 7.51 46.78

Drift-Red 57.95 380.8 81.50 218.7 14.81 92.64 19.50 92.68 60.56 189.2 12.51 76.78

Hummingbird-Left 36.56 190.9 23.64 118.6 38.64 174.6 38.49 151.6 23.13 170.6 9.29 82.23

Hummingbird-Right 18.35 118.7 25.56 95.81 21.92 109.7 12.54 102.7 38.51 191.7 6.68 57.66

Monkeydog-Monkey 3.94 62.11 31.95 68.78 9.17 36.33 55.63 94.60 10.35 66.09 1.77 14.75

Monkeydog-Dog 17.35 70.32 7.09 21.32 84.92 180.6 62.46 125.8 62.15 122.7 14.82 75.32

Parachute 32.83 162.2 4.62 28.23 3.73 21.59 2.46 24.60 2.42 29.25 1.41 12.98

Penguin-#1 55.19 236.2 18.99 66.12 17.93 75.97 21.49 86.91 – – 3.26 21.82

Penguin-#2 7.62 58.25 18.00 62.63 2.52 17.09 23.69 81.39 23.94 83.62 3.13 20.71

Penguin-#3 24.25 122.6 15.28 76.64 41.40 107.6 42.49 109.8 29.54 86.83 5.44 33.55

Penguin-#4 6.42 51.41 8.83 51.39 6.95 28.62 45.91 111.3 14.75 54.12 4.18 20.74

Penguin-#5 29.60 146.3 15.52 72.27 12.63 55.03 30.11 81.82 78.26 167.9 5.20 28.92

Penguin-#6 37.43 194.8 13.74 66.87 18.55 75.95 10.27 73.25 – – 4.24 24.35

Soldier 12.52 103.8 11.84 66.69 10.81 73.53 8.67 89.46 3.49 47.01 1.30 22.53

Worm 32.06 254.4 11.46 60.89 14.90 50.49 16.72 109.7 18.26 156.5 1.96 14.64

Bird2 8.41 59.73 4.45 32.08 7.59 35.06 6.70 52.58 7.24 52.81 0.81 15.75

Panda 32.85 175.8 3.75 22.71 4.26 18.30 6.17 48.53 5.52 45.32 1.01 8.49

Pedxing1 18.22 140.1 5.45 39.67 5.12 35.66 2.97 31.23 4.92 50.04 0.98 8.36

Surfer 72.22 305.9 3.09 19.74 6.75 35.18 4.36 31.07 5.16 36.31 2.01 15.42

Seq_sb 17.29 58.73 13.36 47.95 2.88 14.10 21.95 55.75 4.78 42.98 1.05 8.17

Lemming 26.12 69.94 15.98 31.84 8.28 29.83 18.87 49.82 3.82 12.83 2.99 9.81

Mean per object 28.17 151.86 19.18 71.29 27.05 76.97 23.93 88.59 19.96 93.69 4.77 32.74

Mean per sequence 27.65 149.5 17.46 67.01 23.48 69.85 19.78 81.10 14.31 80.54 4.09 30.09

“–” Indicates that the result is not reported in the sequence. The best two results are labeled with bold and italic values, respectively

run the compared methods on sequences Parachute, Bird of
Paradise, Drift, and Seq_sb. Note that Drift sequence also
has sophisticated background. As shown in Table 1, appear-
ance variations on the targets bring a lot of difficulties to
the methods that do not have effective appearance models,
such as Mismatch, SPT, and Scribble. For this reason, these
three methods generate accumulated errors and have low
overlap rates. Although HT could capture the appearance
variation using hough voting mechanism, nevertheless, due
to lack of target shape information the method could not
accurately segment the target. DGT, which benefits from the
graph matching-based appearance model, performs well on

the tested sequences. However, DGT has larger mean and
peak errors compared to the proposed method, as shown in
Table 2. Overall, profiting from the pre-learned procedure,
our dynamic appearancemodel could capture the appearance
changes promptly,which enables the proposed active contour
model to accurately segment the target.

Similar objects In visual tracking, similar objects confuse
many methods to correctly track the target, and the same
problem also occurs in segmentation-based tracking meth-
ods. In the experiments, similar objects occur in sequences
Penguin. From Table 1, we can see that both superpixel-
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(a) (b) (c) (d)

Fig. 7 Precision comparison of the proposed method with five state-of-the-art methods under four metrics: a Intersection-over-Union (IoU);
b dice coefficient (Dice); cMean Absolute Distance (MAD); and d Hausdorff Distance (HD)

Fig. 8 Comparison of the proposed method with three baseline methods on 30 tested video sequences under IoU metric

(a) (b) (c) (d)

Fig. 9 Precision comparison of the proposed method with three baseline methods under four metrics: a Intersection-over-Union (IoU); b Dice
coefficient (Dice); cMean Absolute Distance (MAD); and d Hausdorff Distance (HD)

based methods (SPT and DGT) fail to segment the target.
That is because SPT and DGT consider neither the global
shape information nor local superpixel position information,
which makes the methods hard to distinguish similar objects.

BecauseMismatch, Scribble, andHTare based on pixel-level
and local search, therefore, they are more robust against sim-
ilar objects. However, these methods, especially HT, might
fail to generate accurate results due to the accumulated error.
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In the proposed method, both priori shape information and
local region information are considered, which helps the
active contour model to correctly segment the target. Tables
1 and 2 show that the proposed method outperforms other
methods.

Occlusion The targets are occluded in sequences Bird2,
Cheetah, and Penguin. By combining discriminative global
and local appearance information, the proposed method
could handle the occluded cases and generate good per-
formance, as presented in Table 1. Due to the lack of
precise region information, Mismatch, HT, and SPT could
not extract the target region correctly. Scribble and DGT per-
form slightly better on sequences Bird2 and Cheetah-Deer,
which benefit from their effective appearance model. How-
ever, DGT has low overlap rate on the sequence Penguin,
which includes similar objects. In contrast, relying on the
prior shape information and the multi-cues active contour
model, our method could finally obtain the accurate segmen-
tation results.

To better compare the tracking performance of the imple-
ment methods, we also show the precision curves under four
metrics (IoU, Dice, MAD, and HD) in Fig. 7. The precision
curves under IoU and Dice metrics are shown in Fig. 7a, b,
where we can see that Mismatch method could not correctly
segment the target in most cases ( about 70% of the results
have low overlap rate where IoU < 40% and Dice < 50%).
It is because the Mismatch is easily to be confused by the
complex background, occlusion, and appearance variation.
Compared with Mismatch, methods HT, Scribble, and SPT
perform better. It should be noted that Scribble presents
slightly more stable results than the other two methods (HT
and SPT), and it also can be reflected in Fig. 7c, d, where
Scribble results in low mean and peak errors. Method DGT
has higher overlap rate than Mismatch and HT under IoU
and Dice metrics, whereas its precision rapidly decreased
when IoU > 60% and Dice > 60%, which means that
DGT might not be able to generate accurate and stable seg-
mentation results. Benefitting from the discriminative global
and local region information, the proposed method performs
significant better than other methods. Besides that, the prior
target shape information allows our active contour model to
handle the noises originated from sophisticated background;
therefore, our method lowers mean and peak errors on test
video sequences, as shown in Fig. 7c, d.

5.3 Quantitative comparison with baseline methods

To demonstrate the improvement of the proposed active
contour model in our tracking framework, we compare
the proposed method with three baseline methods: base-
line framework with DRLSE [21], baseline framework with
GACV [9], and baseline framework without shape model.

Table 3 Comparison of the proposed method with four offline video
segmentation methods on SegTrack v2 dataset under Intersection-over-
Union (IoU) metric

Methods [20] [15] [22] [28] Proposed

Girl 87.7 31.9 89.1 83.4 69.5

Frog – 67.1 65.8 69.0 66.4

Birdfall 49.0 57.4 62.0 47.8 54.5

Monkey 79.0 61.9 84.1 70.9 75.5

Bird of Paradise 92.2 86.8 88.2 81.1 83.7

BMX-Person 87.4 39.2 75.1 74.5 73.6

BMX-Bike 38.6 32.5 24.6 30.9 15.3

Cheetah-Deer 44.5 18.8 17.4 18.3 58.2

Cheetah-Cheetah 11.7 24.4 41.3 22.2 44.9

Drift-Green 63.7 55.2 73.8 65.4 56.5

Drift-Red 30.1 27.2 58.4 59.8 38.8

Hummingbird-left 74.0 25.2 65.2 65.8 64.3

Hummingbird-right 46.3 13.7 45.4 35.0 57.7

Monkeydog-Monkey 74.3 68.3 58.8 24.1 67.4

Monkeydog-Dog 4.9 18.8 17.4 16.5 25.1

Parachute 96.3 69.1 93.2 91.3 82.7

Penguin-#1 12.6 72.0 51.4 59.3 74.6

Penguin-#2 11.3 80.7 73.2 79.1 75.1

Penguin-#3 11.3 75.2 69.6 75.6 55.5

Penguin-#4 7.7 80.6 57.6 47.1 61.5

Penguin-#5 4.2 62.7 63.4 45.8 43.6

Penguin-#6 8.5 75.5 48.6 56.7 60.4

Soldier 66.6 66.5 83.0 50.7 81.2

Worm 84.4 34.7 75.6 59.5 74.3

Mean per object 47.2 51.9 61.8 55.4 60.8

Mean per sequence 57.3 50.8 68.0 58.6 64.3

“–” Indicates that the result is not reported in the sequence. The best
two results are labeled with bold and italic values, respectively

The overlap rate (under IoU metric) of the baseline meth-
ods on tested video sequences is shown in Fig. 8. Because
the region-based traditional active contour method GACV
does not consider the target edge and shape information, it
is hard for this method to obtain good segmentation results
on the sequence wherein the target appearance is not obvi-
ous. Figure 8 shows that baseline method with GACV fails
to segment the target in most sequences. On the other hand,
edge-based baselinemethodwithDRLSEalsomeets the sim-
ilar problem. Lacking of the constraints of target region and
shape information, the method would be interfered when tar-
get boundary is blurred or the background is complex, such
as Birdfall, Cheetah-Deer, and Penguin. In our method, the
shape model is of great significance to reduce noise, and also
ensures the stability of the proposed active contour model.
Without the shape model, the baseline method fails to seg-
ment the target under complex scenes (Penguin, BMX, and
Drift). Compared with the other three baseline methods, the
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Fig. 10 Tracking and segmentation performance on sequences Frog (left three columns) and Worm (right three columns) of sex methods (from
top to bottom): Mismatch [40], Scribble [13], HT [14], SPT [35], DGT [7], and the proposed

Fig. 11 Tracking and segmentation performance on sequences Penguin-#1 (left three columns) and Penguin-#4 (right three columns) of sex
methods (from top to bottom): Mismatch [40], Scribble [13], HT [14], SPT [35], DGT [7], and the proposed
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Fig. 12 Tracking and segmentation performance on sequences Hummingbird-Right (left three columns) and Cheetah-Deer (right three columns)
of sex methods (from top to bottom): Mismatch [40], Scribble [13], HT [14], SPT [35], DGT [7], and the proposed

proposed method is able to obtain better and more stable
performance on most tested sequences.

In Fig. 9, we also present the precision curves under four
metrics. One can see that baseline methods with DRLSE and
w/o shape perform significantly better than baseline method
with GACV. However, without the shape information, these
two methods are prone to be slightly effected by the false
positive and negative regions generated from our appear-
ance model. Overall, as shown in Fig. 9, by integrating with
discriminative region, edge, and shape information, the pro-
posed method has higher overlap rate and lower mean errors.

5.4 Quantitative comparison with video segmentation
methods

To better demonstrate the effectiveness of the proposed
method, we also compare our method with four offline video
segmentation methods [15,20,22,28]. These four methods
aim to segment the moving target by analysing the informa-
tion of an entire video, such as motion and target appearance
changes information. Compared to online target segmen-
tation methods, video segmentation-based methods could
obtain more target and video information; therefore, better

segmentation performance is easier to be obtained. Although
the offline processing limits their application, in our exper-
iments, we still make some comparison with the proposed
method.

The tracking and segmentation results of five implemented
methods on SegTrack v2 dataset are presented in Table. 3.
Although the proposed method could not always obtain best
results, the proposed method is more stable than methods
[15,20,28]. Method [22] performs best on the dataset; nev-
ertheless, compared to [22], our method is able to generate
very competitive results, as shown in Table 3.

5.5 Qualitative comparison

To more intuitively measure the comparisons, we show the
tracking results on six video sequences including differ-
ent challenges. Figure 10 shows two video sequences, Frog
and Worm, which contain deformation and slow motion. In
method Mismatch, the pixel-based flow model is difficult
to capture the target deformation, which probably results in
false segmentation, as shown in Fig. 10. Scribble, HT, and
SPT perform better thanMismatch; nevertheless, thesemeth-
ods cannot accurately segment the specific detailed region
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Fig. 13 Some false segmentation results of the proposed method

of the target. The graph-based method DGT could segment
rough target region on sequenceWorm, however,when strong
deformation occurs (i.e. at frame 224 in Frog), DGT failed to
segment the target. It is shown that with the help of the dis-
criminative region and prior shape information, the proposed
method could capture the target deformation and performs
well on both sequences.

We show the comparative results of sequences Penguin-
#1 and Penguin-#4 in Fig. 11, where we can see that both
similar objects and occlusion occur in the sequences. When
similar objects occur, SPT is hard to distinguish the target
from background due to the shortage of local spatial infor-
mation makes it difficult for. The same problem occurs to
DGT, as shown in Fig. 11. Without the effective appearance
model, Mismatch and Scribble also fail to segment the target.
It is noteworthy that because the voting-based appearance
model in HT contains the local spatial information of the tar-
get, thus the method is able to deal with similar objects in
a way. However, without the shape information, HT could
not accurately segment the target in most cases, as shown
in frame #12 in Penguin-#1 and frame #3 in Penguin-#4. In
the proposedmethod, our appearance model and target shape
model are able to provide rough target region information for
the multi-cues-based active contour model, which makes our
method perform more stable than other methods.

Figure 12 shows the experiment results of sequencesHum-
mingbird Right and Cheetah-Deer. These two sequences
contain complexbackground and appearance variation. Since
Mismatch lacks of effective appearance model, the interfer-
ence of the sophisticated background leads to false segmen-
tation. SPT cannot obtain accurate segmentation results yet
on both sequences. Scribble, HT, and DGT perform better on
sequence Cheetah-Deer; however, without the shape restric-
tion, all these three methods are prone to be interfered by
the complex background in sequence Hummingbird-Right
and, thus, result in inaccurate segmentation, as shown in
Fig. 12. Overall, integrating with region, edge, and shape
information, the proposed method generates better segmen-
tation results on both sequences, which indicates that the
method is robust to appearance variation and complex back-
ground.

6 Conclusion

In this paper, we propose a novel level set-based target con-
tour tracking method based on multi-cues active contours

by combing edge, region, and dynamic shape information to
segment the target. Qualitative and quantitative results show
that our method performs better than other state-of-the-art
methods. Although the proposed method performs well on
the most sequences, sometimes our method would be inter-
fered by various conditions, as shown in Fig. 13. That is
because our appearance model might not always generate
good result, which would mislead the curve motion. Further
work will aim at developing a more powerful appearance
model to represent the target, which may improve the seg-
mentation performance.
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