
Vis Comput (2016) 32:801–811
DOI 10.1007/s00371-016-1251-y

ORIGINAL ARTICLE

Adaptive undersampling for efficient mobile ray tracing

Youngwook Kim1 · Woong Seo1 · Yongho Kim2 · Yeongkyu Lim3 · Jae-Ho Nah3 ·
Insung Ihm1

Published online: 13 May 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Aiming to develop an efficient ray tracer for
a mobile platform, we present an adaptive undersampling
method that enhances the rendering speed by effectively
replacing expensive ray-tracing operations with cheap inter-
polation whenever possible. Our method explores both
object- and image-space information gathered during ray
tracing to detect possibly problematic pixels. Rays are fired
only for these pixels. We also present a postcorrection algo-
rithm that minimizes annoying artifacts inevitably caused
by undersampling. Our implementation on a mobile GPU
demonstrates that this method can speed up the rendering
computation significantly, while retaining almost the same
visual quality of the rendering.

Keywords Ray tracing · Mobile platform · Adaptive
undersampling · Postcorrection · GPU algorithm

1 Introduction

Despite recent successes in building efficient ray tracers, opti-
mizing the rendering computation remains desirable and even
essential when the computing load for a required rendering
task is beyond the processing power of available processors.
For instance, the QHD resolution (2560 × 1440) has nowa-
days become common for mobile phones whose processors
are often not powerful enough for full ray tracing in real

B Insung Ihm
ihm@sogang.ac.kr

1 Department of Computer Science and Engineering, Sogang
University, Seoul, Republic of Korea

2 NCSOFT, Seongnam, Republic of Korea

3 LG Electronics, Seoul, Republic of Korea

time. An effective way of accelerating the ray-tracing com-
putation is adaptive undersampling, which aims to fire fewer
than one ray per pixel, thereby minimizing the total number
of ray shootings that incur costly ray–object intersections,
while introducing only a small reduction in ray-tracing qual-
ity. In fact, the idea of adaptive pixel sampling has long been
explored in the ray-tracing community, usually in the context
of adaptive supersampling, which aims at reducing alias-
ing artifacts caused by insufficient point sampling. Whether
undersampling or supersampling, the major concern is iden-
tical in that the goal is to efficiently detect image-space pixels
and/or object-space surface regions that may create aliasing,
then adaptively dispatching rays only where necessary, and
applying cheaper interpolation whenever possible.

In this paper, we present an adaptive undersampling tech-
nique that is well suited for effective implementation of a
mobile GPU ray tracer. Our method collects various pixel
attributes on the fly during rendering, which are then used to
decide, through similarity checks, whether the expensive ray-
tracing operations may be replaced by much cheaper linear
interpolation for computing geometric attributes at the first
hit points (see Fig. 1). Compared to previous adaptive sam-
pling techniques that exploit both image- and object-space
information [1,4,5,13], our method is more “geometric” in
that it also examines the higher-order local geometry of object
surfaces, such as convexity. This reduces the likelihood of
subtle visual artifacts that are hard to eliminate using previous
methods. In addition, we propose a low-cost postcorrection
method that effectively reduces the occurrence of aliases such
as the “missing objects” caused by incomplete ray sampling
in undersampled images.

The proposed method is simple in structure and eas-
ily mapped to the mobile GPU architecture, offering an
efficient parallel undersampling computation. In particular,
while most of the existing adaptive methods recursively sub-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-016-1251-y&domain=pdf
http://orcid.org/0000-0002-5611-925X

802 Y. Kim et al.

Fig. 1 Problematic adaptive pixels found by our adaptive undersam-
pling method. To render the images (a), our mobile GPU ray tracer
performed costly ray-tracing operations only for those problematic pix-
els that were detected through the seven similarity checks defined in
Table 1, as respectively depicted in (b–h). Only 34.5 % of the image

pixels, including both base and adaptive pixels, were ray traced to create
the 1024 × 1024 image, which were very difficult to distinguish visu-
ally from the fully ray-traced image. In general, the ratios of adaptive
pixels that fail the respective similarity checks vary in a complicated
manner, depending on the scene complexity and rendering parameters

divide pixels for further sampling based on the attributes
of four reference corner pixels, our adaptive undersampling
algorithm shades a pixel, through ray shooting or interpo-
lation, with reference to only two neighboring pixels. This
simple, two-level pixel sampling technique is computation-
ally simpler and requires less memory bandwidth. Therefore,
compared with recent adaptive sampling methods such as [8]
that are optimized for high performance GPUs, our method
will allow more efficient implementation on mobile GPUs,
which are more vulnerable to control-path complexity and
heavy memory accesses than PC-based GPUs.

2 Previous work on adaptive ray sampling

Adaptive sampling in spatial and temporal spaces has been
an important research topic in the ray-tracing community.
In his seminal paper, Whitted proposed using hierarchical
adaptive supersampling to reduce aliases resulting from the
undersampling of high-frequency signals, where pixels were
recursively subdivided for further sampling only if colors
sampled at their four corners vary significantly [20]. For
optimal supersampling in multidimensional space, Lee et
al. derived a relationship between the number of ray samples
and the quality of the rendering image [10]. Also, for optimal
stochastic sampling, Dippé and Wold adaptively determined
the sampling rate and filter width based on their error esti-
mates [3]. As a variance reduction technique for solving the
rendering equation, Kajiya proposed applying an adaptive
hierarchical sampling method so that samples were concen-
trated in interesting parts of the rendering domain [9].

In his distributed ray-tracing paper, Cook gave an exam-
ple of using two levels of sampling densities in which a
higher-density pattern was applied for troublesome areas
[2]. Mitchell also presented a two-level sampling method by
subdividing pixels into small squares and finding those that
need high-density sampling [12]. Painter and Sloan applied
hierarchical adaptive stochastic sampling that worked in
a progressive manner [15]. Levoy proposed an adaptive

sampling method for volume rendering that also determined
the sample rate progressively [11]. Rigau et al. exploited a
family of discrimination measures, called the f-divergences,
to determine the adaptive sampling rate [16]. Hachisuka et al.
proposed a kd-tree-based adaptive refinement and anisotropic
integration algorithm for multidimensional sampling in ray
tracing [6].

In addition to the color measure, object space informa-
tion has also been exploited by Thomas et al. [18] and Ohta
andMaekawa [14].Whitted’s adaptive sampling scheme [20]
was also extended byGenetti et al. so that decisions regarding
extra samplingweremade based on object-space information
obtained during the ray–object intersection computation [5].
Akimoto et al. proposed a four-level undersampling tech-
nique, called pixel-selected ray tracing, to speed up the
rendering computation [1], in which both image-space and
object-space measures were utilized for adaptive ray tracing.
Their idea was then extended by Murakami and Hirota [13]
and Formella et al. [4]. Jin et al. also presented a selective
and adaptive supersampling method, optimized for today’s
many-core processors [8].

In the context of the rasterization-based renderingpipeline,
He et al. [7] and Vaidyanathan et al. [19] independently
proposed rendering architectures supporting varying shading
rates, where different levels of pixel sampling were adopted
to reduce the fragment shading cost. These multi-rate shad-
ing methods are similar to ours, in that GPU-oriented, simple
structured mechanisms are employed to perform expensive
shading operations, ray tracing in our case, only where
needed, eventually leading to effective undersampling. How-
ever, the rasterization-based approaches are not extendable
for developing a GPU ray tracer.

3 Adaptive undersampling algorithm

3.1 Partition of image pixels

Figure 2 shows an example of pixel partitioning, where a set
of regularly distributed pixels, marked as B, forms a group of

123

Adaptive undersampling for efficient mobile ray tracing 803

Fig. 2 Image pixel partitioning
through 2 × 2 base blocks. The
pixels marked as B, A1, and A2
represent base pixels, and
vertical and horizontal adaptive
pixels, respectively

base pixels. The other pixels, called adaptive pixels, are clas-
sified as either A1 orA2 depending onwhether they are in the
same row as the base pixels or not. Previous related methods
[1] often traverse pixels in a recursive, multilevel fashion
for adaptive sampling. To produce a simpler control struc-
ture and permit efficient implementation on a mobile GPU
platform, however, our adaptive undersampling algorithm
adopts a simple traversal mechanism, whereby the pixels are
processed in a fixed order: base pixels, type-A1 adaptive pix-
els, and type-A2 adaptive pixels. In this paper, we describe
our algorithm in terms of the 2 × 2 pixel partitioning shown
in Fig. 2. It requires only a simple modification to handle a
base block of larger size.

3.2 Stage I: regular sampling of base pixels

In the first stage of our algorithm, a ray is traced recursively
through each of theB pixels.Whereas the eventual goal of fir-
ing a primary ray for each pixel is to compute the final shaded
color (COL), our method collects various ray attributes at the
first hit of the ray, which are exploited later to enable efficient
rendering computations. These include a set of geometry
attributes of the surface at the first hit, comprising an object
identification number (OID), a position vector (POS), a nor-
mal vector (NORM), shadow bits (SHDBIT), and texture
coordinates (TCOORD), where the SHDBIT attribute stores
a set of shadow bits such that a bit is set if and only if a
shadow is cast at the surface point with respect to the cor-
responding light source. In addition, a global shaded color
(GCOL) attribute is collected. In our current implementation,
this stores the radiance from specular reflection and refrac-
tion, although any other radiance caused by a different kind
of global illumination may be associated with GCOL. In this
work, the vector (OID, POS, NORM, SHDBIT, TCOORD,
GCOL) is called the ray-attribute vector (or simply attribute
vector) for a pixel.

3.3 Stages II and III: adaptive sampling of adaptive
pixels

The actual adaptive ray-sampling computation proceeds in
two separate steps using the ray-attribute vectors of the B
pixels as the initial data. Each elementary sampling oper-
ation in stages II and III takes the attribute vectors of two
reference pixels as inputs and computes an attribute vector
for an adaptive pixel, called the current pixel that exists hor-

Table 1 Similarity checks

Test conditions

G1 OID0 = OID1

G2 ||POS0 − POS1|| ≤ Tpos

G3 NORM0 ◦ NORM1 ≥ Tnorm

G4 {(POS1 − POS0) ◦ NORM0} ·
{(POS0 − POS1) ◦ NORM1} ≥ 0

TX TCOORDα.β ≥ Ttex or

TCOORD1−α.β ≤ 1.0 − Ttex

SH SHDBIT0 = SHDBIT1

GC ||GCOL0 − GCOL1 || ≤ Tgcol

The subscripts 0 and 1, respectively, denote two reference pixels. Here,
◦ denotes the inner product of two vectors, α can be either 0 or 1, and
β refers to either the s or t texture coordinate

izontally (in stage II) or vertically (in stage III) between the
reference pixels. In stage II, an attribute vector of each A1
pixel (the current adaptive pixel) is calculated via interpola-
tion or ray tracing based on the attribute vectors of the two
neighboring B pixels (the reference pixels) in the same row.
In stage III, the same computation is then repeated vertically,
taking each A2 pixel as the current pixel and then calculating
its attribute vector using those of the corresponding B or A1
pixels in the same column as the reference pixels. Note that
when the attribute vector of a pixel is ready, the final color
can easily be produced from it.

3.4 Similarity checks

The key aim of our method is to seek to compute the attribute
vectors of adaptive pixels through cheap interpolation, in
which the linear interpolation for each ray attribute is clearly
defined, as much as possible, instead of through expensive
ray tracing. To check if simple linear interpolationmay safely
be applicable, a series of seven elementary tests called simi-
larity checks are performed (refer to Table 1 for a summary
of these tests). In our method, the interpolation is applied
only if all the tests succeed.
Four local geometry tests The aim of these four tests is to
examine if the four geometry attributes, OID, POS, NORM,
and TCOORD, can be interpolated from those of the refer-
ence pixels. First, different objects between two pixels are
often the most serious source of annoying aliases. Therefore,
the first test compares the OIDs of two reference pixels and is
considered to fail if the objects are different from each other
(G1 in Table 1). Second, the next test checks if the distance
between the first hits of the reference pixels is less than a
given distance threshold (G2). Third, the normal direction
at the first hit is particularly useful for detecting an edge
formed by polygons of an object that meet at an acute angle.
Therefore, this third test investigates if the dot product of the

123

804 Y. Kim et al.

Fig. 3 Convexity check. The local concave geometry around the cur-
rent ray’s first hitmay result in annoying alias artifactwhen the geometry
data interpolated from those of the two adjacent reference rays are used
for ray tracing

normal directions of the reference pixels is less than a preset
threshold (G3).

Although these three similarity tests have often been used
in previous methods, they can introduce aliasing when the
real intersection point exists on a complex surface. Figure 3
shows a common adverse situation in which the local surface
fluctuates between the first hits POS0 and POS1 of the ref-
erence pixels. In this case, a linear interpolation of the two
normal vectors may give an inaccurate normal at the current
ray’s position POS, even though the previous three tests may
have succeeded. An incorrect normal can result in a severe
error when the surface point is locally shaded or the reflec-
tion/refraction direction is generated.

To minimize these problems with normals, we perform a
fourth elementary test, called the convexity check, in which
the signs of the first hit point in 3D space with respect to
the tangent plane defined by the position and normal at the
second first hit, and vice versa, are examined (G4 in Table 1).
If the two signs are different, the local surface between POS0
and POS1 is not smooth, possibly causing a troublesome
fluctuation.Although the success of the convexity check does
not guarantee surface convexity, because the surface can have
multiple inflections, we have found the convexity check to
be quite effective for removing normal-related aliasing.

A shadow test Next, our method performs a shadow test that
succeeds only if all the corresponding shadow bits in SHD-
BITs of the two reference pixels are identical (SH in Table 1).
If the test succeeds, the current pixel simply inherits the light
visibility from the reference pixels without shooting shadow
rays. Otherwise, if at least one bit field disagrees, the shadow
rays are fired toward each light. This all-or-nothing strategy
may appear excessive, because the light visibility could be
checked only for lights with different visibility. However,
this strategy produces a simple control structure that results
eventually in more efficient SIMD processing on the mobile
GPU platform, particularly for scenes with few lights.

A texture test Often, the same texture image is repeatedly
applied to surfaces during texture mapping. If the image is
not continuous along its boundaries, a careless linear inter-
polation of texture coordinates from the two reference pixels
could cause annoying aliases. To avoid such problematic sit-
uations, we perform a texture test that checks whether, for
each component of the texture-coordinate vector, at least
one of the corresponding coordinates exists in the interval
[Ttex, 1.0−Ttex] for some small Ttex > 0 (TX in Table 1). See
Fig. 1f to notice how a single texture image was repeatedly
mapped onto the floor surface, where simple interpolation
of texture coordinates around the boundaries would easily
cause wrong texture fetches.

A global color test The last, but not least, element of clas-
sic ray tracing is the effect of indirect illumination caused
by specular reflection and refraction, for which costly sec-
ondary rays must be traced recursively. In the same way
as for primary rays, we may investigate the geometry of
these secondary rays via similarity checks, at both the origins
and the destinations. However, our preliminary implementa-
tion revealed that such a detailed adaptive technique often
worsened the runtime performance markedly, at least on the
current mobile GPU platform. Therefore, we conduct a sim-
ple global color test in which the reflection/refraction colors
of the reference pixels are compared with each other (GC in
Table 1).

4 Postcorrection of undersampled images

Due to insufficient sampling, our method may introduce the
problem that objects, or parts of objects, can fall between
ray-traced samples and be missed. Figure 4a, b illustrates a
typical situation where the vanishing part in Fig. 4b falls
between pixels that are classified, through either ray tracing
or interpolation, as being outside the thin object. If those
pixels have similar geometry attributes, an incorrect OID is
interpolated into the intervening adaptive pixels, making the
middle part disappear.

An important observation is that the missing object prob-
lem always occurs in the interpolated adaptive pixels that can
be traced from ray-traced adaptive pixels. Such troublesome
adaptive pixels are marked with an asterisk in Fig. 4b. An
effective way of removing such aliasing is to revisit the ray-
traced adaptive pixels, marked in thicker lines in Fig. 4b,
propagating their correct ray–object intersection informa-
tion into their interpolated neighbors. Given a ray-traced
adaptive pixel x, consider a neighboring pixel y of x, whose
geometry attributes have been interpolated. If the OIDs of x
and y are different, y becomes a candidate for the problem-
atic pixel, marked with white dots in Fig. 4c. To investigate
whether it actually is a candidate, a primary ray is additionally

123

Adaptive undersampling for efficient mobile ray tracing 805

Fig. 4 Correction ofmissing parts.Here, the black dots and the squares
indicate pixelswhose geometry attributeswere obtained through regular
ray tracing and interpolation, respectively. The base pixels are marked
with B. a Thin object. bWithout correction. c Corrected

shot through y, thereby performing the regular ray-tracing
operation. If the new OID differs from the old one, then a
missing part of the object has been found and can be recon-
structed. The adaptive pixel y then becomes classified as ray
traced, and its interpolated neighbors are repeatedly investi-
gated, as illustrated in Fig. 4c. In this propagation process, an
eight-neighbor examination would give a more robust result.
However, we find that a more efficient four-neighbor exam-
ination produces sufficiently good rendering results for the
2 × 2 base block.

Notice that our correction algorithm involves postprocess-
ing after the entire pass of adaptive rendering is complete. It
differs from a previous approach to pixel-selected ray trac-
ing [1], which aims to detect pixels of vanishing objects
by referring to the color attributes of pixels during adap-
tive ray tracing. By separating the adaptive-sampling and
error-correction stages, we can achieve a simpler, GPU-
friendly algorithm.Note also that our antialiasingmechanism
is selective in that other aliases, such as “missing shadow,”
can selectively be reduced by checking the corresponding
attribute (e.g., SHDBIT for shadow antialiasing).

5 Efficient implementation on mobile GPUs

Because runtime performance is usually more vulnerable to
careless GPU implementation on a current mobile platform
than on a PC platform, the GPU program must be carefully
tuned for maximum efficiency. First, consider the similarity
checks in our seven elementary tests. If all the local geometry
tests succeed but the shadow test fails, for instance, we may
interpolate the local geometry but shoot shadow rays for light
visibility. However, to avoid the branch divergences that have
a significant negative impact on the GPU performance, our

Table 2 Seven-kernel implementation of adaptive undersampling

Kernel Operations

Step-I – Trace a ray for each B pixel and shade it

– Store the ray attribute vectors of the B pixels in global
memory

Step-II-a – Perform the similarity checks for each A1 pixel

– If they pass, interpolate the attribute vector and shade
the pixel

– If not, store the address of the current pixel in global
memory

Step-II-b – Pack the A1 pixels to be ray traced through parallel
scans

Step-II-c Same as step-I except that the packed A1 pixels are
processed

Step-III-a Same as step-II-a except that the A2 pixels are
processed

Step-III-b Same as step-II-b except that the A2 pixels are
processed

Step-III-c – Trace a ray for each packed A2 pixel and shade it

implementation adopts the strategy of full ray tracing for the
current pixel if there is any failure in the similarity checks.

Second, as a result of the similarity checks in stage I
and stage II, a set of usually sparse problematic pixels are
detected, for which expensive ray tracing is to be carried
out in the next stage. Again, to minimize the branch diver-
gence between concurrent threads, our implementation runs
a separate kernel for packing those pixels into a contiguous
region before initiating the ray-tracing computation. Despite
this extra kernel requiring a series of parallel scan opera-
tions [17] on the GPU, our test results exhibit a significant
enhancement in the rendering performance, because the pack
operation also reduces global memory bandwidth signifi-
cantly. Table 2 summarizes our seven-kernel implementation
of the proposed algorithm,which shows the highest rendering
performance. Note that splitting the GPU program into ker-
nels of smaller granularitymight improve theGPU efficiency
further. However, we observe that the increasing numbers
of global memory accesses cancels out the benefit from the
reduced divergence, ultimately reducing the GPU efficiency.

Third, while the optional postcorrection technique in
Sect. 4 can easily be implemented using a stack on a CPU,
a different implementation scheme is needed for effective
many-core processing. In our method, a concurrent thread,
associatedwith each rowof the image, first scans its row from
left to right, detecting and correcting problematic pixels pro-
gressively. The same operation is then carried out repeatedly
from right to left, from top to bottom, and finally from bot-
tom to top. This requires four applications of the scanning
process, but our experiments have also shown that scanning
in just two orthogonal directions, e.g., from left to right and
from top to bottom, usually produces sufficiently good cor-
rection outcomes.

123

806 Y. Kim et al.

Fig. 5 Example scenes and the camera views tested. To achieve fair
evaluation of our method on a mobile phone, we selected six scenes
with low to high geometric and rendering complexity, whose triangle
numbers ranged from29,359 to 588,402.Because of the limitedmemory
space of the tested mobile phone, some part of the original dataset for
San Miguel was omitted. Note that, because the distance threshold Tpos
for the local geometry test G2 is dependent on the dimension of the
scene, each scene was normalized such that the longest side of the
axis aligned bounding box has length 1. a Café. b Ben. c Kitchen. d
Conference. e Bathroom. f San Miguel

6 Experimental results

To test our method, we first implemented a kd-tree-based
full ray tracer using the OpenCL 1.2 API on an LG G3
Cat.6 mobile phone that uses the Qualcomm Snapdragon
805 chipset equipped with an Adreno 420 GPU. The pro-
posed adaptive undersampling technique was then applied to
optimize the rendering computation on the mobile platform.
All the timings were measured using OpenCL workgroups
of 8 × 8 work items and default thresholds Tpos = 0.03,
Tnorm = 0.9, Ttex = 0.3, and Tgcol = 0.15, which generally
produced good results.

6.1 Computation time

Table 5 at the end of this article compares our method to
full ray tracing, which shoots one ray through every pixel
(see the sampling—1 × 1 rows). The timing results in the
Time and Speedup columns indicate that the proposed adap-
tive sampling method (Ours) compares quite favorably to the
nonadaptive method (Full RT), being 1.48–2.21 times faster
when the 2 × 2 base block was used to render 1024 × 1024
images for the six example scenes shown in Fig. 5. This effi-
ciency gain was achieved primarily by the decrease in the
costly ray-tracing computation despite the extra overhead
for the adaptive undersampling, where the figures in the RT
ratio column show that only 27.0–34.5 % of image pixels,
including both base and adaptive pixels, were actually ray

traced in our method. Figure 1 shows those adaptive pixels
that were found to be problematic in the respective similarity
checks.

Despite our efforts toward lowering the ray-tracing cost, it
still accounts for a major portion of the rendering computa-
tion, which paradoxically shows the importance of adaptive
undersampling on the mobile GPU. As implied by the timing
results in Table 3a, which reports the breakdown of runtimes
for the test scenes measured for 1024 × 1024 images, the
kernel step-I, step-II-c, and step-III-c spent 64.4 % (Con-
ference) to 78.3 % (Kitchen) of the rendering time to ray
trace around 30 % of 10242 pixels, whereas the other ker-
nels, including the optional postcorrection (step-IV) and the
overhead of initiating the GPU program and transferring data
(step-ETC), used the remaining time to shade the other pix-
els.

Note that the base pixels comprising one-quarter of the
entire image pixels are always ray traced when the 2×2 base
block is employed, implying that the lowest possible ray-
tracing ratio is 25 %. With increasing scene and rendering
complexity, the ratio will increase to maintain the render-
ing quality, in turn lowering the speedup number. Otherwise,
there would be an incorrect reliance on heavy interpolation.
When the complexity is beyond the capability of a given
ray-sampling density, spatial aliasing artifacts occur even for
full ray tracing (the case when the ratio is 100 %), to which
supersampling has been an inevitable solution. The statis-
tics in the sampling—2 × 2/4 × 4 rows in Table 5 show that
the ray-tracing pixel ratio decreases, thereby improving the
efficiency in the supersampling settings.

6.2 Image quality

Figure 6a–c depicts an example of how effectively the post-
correction algorithm reconstructs the vanishing parts of thin
objects and the shadow cast by them in the bathroom scene,
where our basic adaptive undersampling method suffered
from the “missing object” problem. At the extra cost of
postcorrection through the OID and SHDBIT attributes, our
method was able to reconstruct these missing parts, result-
ing in an image that appeared very similar to that produced
via full ray tracing. Note that, for the tested scenes, the cor-
rection stage required 7.7 % (Ben) to 17.1 % (Conference)
of the entire rendering time, resulting in a slight decrease
in the frame rate. Although the timings in Table 5 include
that for the postcorrection computation, this feature can often
be turned off for such scenes as café, Ben, and Conference
that do not contain very thin objects, which would produce
an additional performance enhancement without significant
harm to the rendering quality.

However, the postcorrection algorithm could not effec-
tively remove the other kind of aliasing artifact, such as
that appearing on the sink surface where the floor surface,

123

Adaptive undersampling for efficient mobile ray tracing 807

Table 3 Analysis of the timing performance of our adaptive undersampling method

I II-a II-b II-c III-a III-b III − c IV ETC

(a)

Café 284.3 25.9 10.4 53.7 38.5 11.1 94.6 60.8 11.8

Ben 329.8 25.4 11.5 40.2 36.8 10.7 66.7 44.3 9.8

Kitchen 341.7 26.3 10.2 99.4 37.5 10.7 207.1 81.9 13.2

Conference 206.4 23.8 10.0 38.7 37.3 11.6 81.8 86.7 11.6

Bathroom 300.7 27.0 10.0 84.9 37.1 11.1 185.2 66.5 11.0

San Miguel 362.7 24.0 10.7 126.0 34.3 11.0 198.1 130.0 8.7

(b)

Ratio of reflective pixels 19.9 % 41.1 % 60.9 % 82.0 % 99.9 %

Full ray tracing (ms) 813.3 870.2 992.8 1054.4 1077.3

Ours (ms) 454.0 (1.79×) 451.8 (1.92×) 495.1 (2.00×) 493.5 (2.13×) 437.0 (2.46×)

Camera view tested

(c)

Ratio of ray traced pixels 25.9 % 26.6 % 28.0 % 29.1 % 32.1 %

Full ray tracing (ms) 944.6 884.7 866.4 859.8 904.7

Ours (ms) 362.1 (2.60×) 414.4 (2.13×) 460.4 (1.88×) 521.7 (1.64×) 606.1 (1.49×)

Camera view tested

(a) The dissection of the kernel execution time (ms). The times for the kernels step-I, step-II-c, and step-III-c, involving the ray-tracing operation,
still account for a large proportion of the rendering time despite our efforts to reduce it, which paradoxically shows the importance of adaptive
undersampling. Here, the postcorrection is performed in the final kernel step-IV
(b) The speedups with respect to the ratio of image pixels for which reflection rays are fired (bathroom). Unlike full ray tracing, whose rendering
time increased rapidly as the reflection rays increased, our method was less sensitive to these extra rays because the ray-tracing computation was
suppressed effectively
(c) The speedups with respect to the ratio of image pixels for which the ray-tracing computation is performed (Conference). This ratio, which is
always larger than 25 % in the current scheme, is one of the most influential factors affecting the timing efficiency of our method, where it usually
fell within the given range
All test scenes were rendered at 1024 × 1024 pixels using single sampling

represented as a single object, is reflected (see Fig. 6d, e).
These artifacts are caused mainly by the small details
on the reflected floor surface being simply beyond the
capability of the applied sampling density of one sam-
ple per pixel (sampling—1 × 1). They also appear in
the full ray-traced image. Although the adaptive under-
sampling technique worsens the situation somewhat for
temporal efficiency reasons, the appropriate solution is
again supersampling, where the 16 ray samplings per pixel
(sampling—4 × 4) reduce the visual difference between the
results for our method and for full ray tracing (see Fig. 6f,
g).

Overall, our experiments show that good image quality is
maintained despite the reduced numbers of ray shots, as given
in the PSNRcolumn inTable 5. Figure 6h, i also compares the
results from the full ray tracing (top) and our adaptive under-
sampling (middle) for two example scenes. Themost obvious
visual errors, as displayed in the difference image (bottom),
usually occur around corners or for highly curved objects,
which are often hard to detect using similarity checks. Fur-
thermore, when textures are applied, the shaded colors of
interpolated adaptive pixels differ slightly from those of the
ray-traced pixels. However, these visual differences are often
difficult to detect, particularly when rendered interactively.

123

808 Y. Kim et al.

Fig. 6 Comparison of rendering results. Parts of the images, which
were rendered at 1024 × 1024 pixels, are shown to aid analysis of the
rendering quality. See the text for detail. a Without postcorrection. b
With postcorrection. c Full ray tracing. dOurs (1×1). e Full RT (1×1).
f Ours (4 × 4). g Full RT (4 × 4). h Café. i Bathroom

6.3 Further analysis

Our method is usually more effective when more shadow
and/or reflection/refraction rays are to be traced. If full ray
tracing is employed, the extra rendering cost increases lin-
early with the additional number of these rays. As clearly
indicated in the experiment where the ratio of pixels for
which reflective objects are visible (i.e., reflection rays are
being fired), is varied (see Table 3b), the rendering cost for
handling the extra secondary rays increased slowly in our
method because the ray-tracing computation was suppressed
effectively.

In summary, the timing performance of our method was
primarily affected by the ratio of pixels, includingbase pixels,
for which ray tracing should be performed. This is clearly
confirmed in the experiment where the ratio was varied in
the interval that usually contains those observed in the tested
example scenes (refer to Table 3c). Note that our method is
selectively controllable in that the performance drop can be
suppressed by lowering this ratio through relaxed tolerances
in the relevant similarity checks.Developing an effectiveway
to find an optimal set of tolerance values for input scenes
remains an open problem.

7 Concluding remarks

As noted earlier, many-core processing driven with a parallel
programming tool such as the OpenCL API is more vul-
nerable to the complexity of parallel algorithms on mobile
GPUs than on PC-based GPUs. Therefore, it was critical to
design a mobile GPU algorithm with a simple control struc-
ture, which explains why we had to compromise between
simplicity and flexibility in developing our algorithm. As a
result, our adaptive sampling scheme is orthogonal to the
acceleration structures and traversal algorithms that are rou-
tinely used in ray tracing. We expect that it will be combined
effectively with a mobile ray-tracing hardware architecture
for even higher ray-tracing throughput in the future.

In the future, it will be worthwhile to investigate the possi-
bility of our method in a PC GPU ray tracer. Our preliminary
experiments show that the simple porting of the OpenCL-
based ray tracer also allows effective adaptive ray sampling
on a PC platform when high-quality, high-resolution images
are to be ray traced for complicated scenes. Table 4 summa-
rizes the statistics collected when a reflective Hairball model
made of 2,880,000 triangleswas rendered at the 4KUHD res-

Table 4 Preliminary performance test on a PC platform

Sampling FRT Ours (time: s, PSNR: dB)

Time Time Speedup RT ratio PSNR

1 × 1 5.2 2.6 2.00× 0.390 31.72

2 × 2 18.9 9.4 2.01× 0.378 37.73

4 × 4 66.6 32.6 2.04× 0.360 42.21

8 × 8 232.1 110.3 2.10× 0.343 45.62

16 × 16 803.8 369.6 2.17× 0.329 48.16

Tested view

Three lights were lit to ray trace the reflective Hairball model where the
floor and the right wall were also reflective

123

Adaptive undersampling for efficient mobile ray tracing 809

Table 5 Performance comparison with full ray tracing (2 × 2 base
block). Six scenes of low to high geometric complexity were tested,
with triangle numbers given in parentheses. The figures in the RT ratio
column indicate the ratios of the number of ray samples used by our

renderer (“ours”) to that for the full ray tracer (“full RT”). The PSNR
values were measured by comparing the respective rendering images
produced by the two methods

Scene Resolution Sampling Full RT Ours

Time (ms) Time (ms) Speedup RT ratio PSNR (dB)

Café (29,359) 5122 1 × 1 314.0 199.3 1.57× 0.327 43.44

2 × 2 1203.1 637.3 1.88× 0.294 41.72

4 × 4 4620.6 2130.1 2.16× 0.274 41.68

10242 1 × 1 1211.7 591.2 2.04× 0.294 43.99

2 × 2 4396.7 2079.5 2.11× 0.274 44.03

4 × 4 16, 663.8 7382.3 2.25× 0.263 44.26

20482 1 × 1 4332.0 1928.5 2.24× 0.274 44.58

2 × 2 16, 593.7 6991.6 2.37× 0.263 46.23

4 × 4 83, 840.8 25, 808.9 3.24× 0.257 46.58

Ben (78,039) 5122 1 × 1 345.2 191.7 1.79× 0.288 44.25

2 × 2 1314.3 619.3 2.12× 0.270 47.81

4 × 4 4802.3 2086.2 2.30× 0.260 50.92

10242 1 × 1 1275.8 575.2 2.21× 0.270 45.46

2 × 2 4586.9 1946.6 2.35× 0.260 49.55

4 × 4 18, 007.2 7230.0 2.49× 0.255 51.66

20482 1 × 1 4654.1 1927.7 2.41× 0.260 47.23

2 × 2 17, 789.7 6868.0 2.59× 0.255 51.00

4 × 4 78, 791.9 26, 620.5 2.95× 0.253 52.14

Kitchen (101,015) 5122 1 × 1 356.0 278.8 1.27× 0.394 37.89

2 × 2 1319.8 834.0 1.58× 0.345 43.99

4 × 4 4870.8 2866.7 1.69× 0.312 48.40

10242 1 × 1 1296.9 828.0 1.56× 0.345 39.14

2 × 2 4796.9 2656.5 1.80× 0.312 45.22

4 × 4 18, 244.1 8978.5 2.03× 0.291 48.83

20482 1 × 1 4777.8 2634.1 1.81× 0.312 39.79

2 × 2 17, 738.9 8620.8 2.05× 0.291 46.04

4 × 4 68, 734.2 29, 885.4 2.29× 0.276 49.14

Conference (190,947) 5122 1 × 1 230.6 173.1 1.33× 0.336 47.44

2 × 2 842.5 549.0 1.53× 0.300 50.56

4 × 4 3414.4 1958.2 1.74× 0.277 51.11

10242 1 × 1 841.6 508.1 1.65× 0.300 48.92

2 × 2 3284.0 1803.9 1.82× 0.277 50.35

4 × 4 12, 700.4 6729.4 1.88× 0.265 51.58

20482 1 × 1 3216.5 1666.2 1.93× 0.277 50.89

2 × 2 12, 640.0 6157.8 2.05× 0.265 51.41

4 × 4 49, 223.0 23200.3 2.12× 0.258 51.61

Bathroom (268,725) 5122 1 × 1 319.4 240.6 1.32× 0.355 36.63

2 × 2 1223.8 857.0 1.42× 0.318 44.31

4 × 4 4384.2 2805.8 1.56× 0.294 48.60

10242 1 × 1 1169.5 733.6 1.59× 0.318 40.54

2 × 2 4331.8 2561.0 1.69× 0.294 46.41

4 × 4 16, 759.8 8480.6 1.97× 0.280 49.12

20482 1 × 1 4293.7 2456.2 1.74× 0.294 41.85

123

810 Y. Kim et al.

Table 5 continued

Scene Resolution Sampling Full RT Ours

Time (ms) Time (ms) Speedup RT ratio PSNR (dB)

2 × 2 16, 555.3 8183.9 2.02× 0.280 47.25

4 × 4 64, 030.8 28, 831.4 2.22× 0.270 49.85

San Miguel (588,402) 5122 1 × 1 382.5 324.2 1.17× 0.395 36.87

2 × 2 1357.0 978.4 1.38× 0.340 43.10

4 × 4 4910.6 3375.9 1.45× 0.300 46.47

10242 1 × 1 1344.3 905.4 1.48× 0.340 39.16

2 × 2 4833.8 2923.6 1.65× 0.300 43.18

4 × 4 17, 917.2 9, 987.0 1.79× 0.278 48.08

20482 1 × 1 4814.2 2838.4 1.69× 0.300 38.06

2 × 2 17, 845.4 8774.0 2.03× 0.278 45.89

4 × 4 67, 949.8 31, 442.0 2.16× 0.265 49.51

olution of 3840×2160 pixels on a desktop PC with an AMD
Radeon R9 Fury X GPU. Here, because of the complexity of
the model, high rates of sampling was needed to ensure the
rendering quality. As in the mobile ray tracing, we observe
that our method achieves marked speedups while retaining
good image quality compared to the full ray tracing. Tailor-
ing our adaptive undersampling algorithm to best fit the PC
GPU remains a future research topic.

Acknowledgments The test scenes are courtesy of I. Wald (Ben), J.
Helenklaken (Kitchen), A. Grynberg and G. Ward (Conference), G.
M. Leal Llaguno (San Miguel), and S. Laine and T. Karras (Hair-
ball). This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP) (No.
NRF-2015R1A2A2A01006590).

References

1. Akimoto, T., Mase, K., Suenaga, Y.: Improved pixel selected ray
tracing. Syst. Comput. Jpn. 22(4), 57–67 (1991)

2. Cook, R.: Stochastic sampling in computer graphics. ACM Trans.
Graph. 5(1), 51–72 (1986)

3. Dippé, M., Wold, E.: Antialiasing through stochastic sampling. In:
Proceedings of SIGGRAPH 1985, pp. 69–78 (1985)

4. Formella, A., Gill, C., Hofmeyer, V.: Fast ray tracing of sequences
by ray history evaluation. In: Proceedings of computer animation
1994, pp. 184–191 (1994)

5. Genetti, J., Gordon, D., Williams, G.: Adaptive supersampling in
object space using pyramidal rays. Comput. Graph. Forum 17(1),
29–54 (1998)

6. Hachisuka, T., Jarosz,W.,Weistroffer, R., Dale, K., Humpheys, G.,
Zwicker, M., Jensen, H.: Multidimensional adaptive sampling and
reconstruction for ray tracing. ACM Trans. Graph. (Proc. ACM
SIGGRAPH) 27(3), Article No. 33 (2008)

7. He, Y., Gu, Y., Fatahalian, K.: Extending the graphics pipeline
with adaptive, multi-rate shading. ACMTrans. Graph. (Proc. ACM
SIGGRAPH) 33(4), Article No. 142 (2014)

8. Jin, B., Ihm, I., Chang, B., Park, C., Lee,W., Jung, S.: Selective and
adaptive supersampling for real-time ray tracing. In: Proceedings
of theACMconference on high performance graphics (HPG2009),
pp. 117–125 (2009)

9. Kajiya, J.: The rendering equation. In: Proceedings of SIGGRAPH
1986, pp. 143–150 (1986)

10. Lee, M., Redner, R., Uselton, S.: Statistically optimized sampling
for distributed ray tracing. In: Proceedings of SIGGRAPH 1985,
pp. 61–67 (1985)

11. Levoy,M.: Volume rendering by adaptive refinement. Vis. Comput.
6(1), 2–7 (1990)

12. Mitchell, D.: Generating antialiased images at low sampling den-
sities. In: Proceedings of SIGGRAPH 1987, pp. 65–72 (1987)

13. Murakami, K., Hirota, K.: Incremental ray tracing. In: Proceedings
of eurographics workshop on photosimulation, realism and physics
in computer graphics 1990, pp. 15–29 (1990)

14. Ohta,M.,Maekawa,M.:Ray-bound tracing for perfect and efficient
anti-aliasing. Vis. Comput. 6(3), 125–133 (1990)

15. Painter, J., Sloan, K.: Antialiased ray tracing by adaptive progres-
sive refinement. Comput. Graph. (ACM SIGGRAPH 1989) 23(3),
281–288 (1989)

16. Rigau, J., Feixas, M., Sbert, M.: Refinement criteria based on
f -divergences. In: Proceedings of eurographics symposiumon ren-
dering 2003, pp. 260–318 (2003)

17. Sengupta, S., Harris,M., Garland,M., Owens, J.D.: Efficient paral-
lel scan algorithms for many-core GPUs. In: Scientific Computing
with Multicore and Accelerators, chap. 19, pp. 413–442. Taylor &
Francis, Abingdon (2011)

18. Thomas, D., Netravali, A., Fox, D.: Antialiased ray tracing with
covers. Comput. Graph. Forum 8(4), 325–336 (1989)

19. Vaidyanathan,K., Salvi,M., Toth,R., Foley, T.,Akenine-Moller, T.,
Nilsson, J., Munkberg, J., Hasselgren, J., Sugihara, M., Clarberg,
P., Janczak, T., Lefohn,A.: Coarse pixel shading. In: Proceedings of
the ACM SIGGRAPH symposium on high performance graphics
2014, pp. 9–18 (2014)

20. Whitted, T.: An improved model for shaded display. Commun.
ACM 23(6), 343–349 (1980)

123

Adaptive undersampling for efficient mobile ray tracing 811

Youngwook Kim received his
BSE degree in computer engi-
neering from Hankuk Univer-
sity of Foreign Studies, Korea in
2012. He is currently a doctoral
student in computer science and
engineering at Sogang Univer-
sity, Korea. His research interests
include real-time rendering and
mobile computing.

Woong Seo received his BSE
degree in electrical engineering
from Hankuk University of For-
eign Studies, Korea in 2012. He
received hisMSE degree in com-
puter science and engineering
from Sogang University in 2014,
where he is currently pursuing a
Ph.D. degree. His research inter-
ests include real-time rendering
andmobile distributed rendering.

Yongho Kim received his
BSE and MSE degrees in com-
puter science and engineering
from Sogang University, Korea
in 2013 and 2015, respectively.
He is currently developing var-
ious games at NCSOFT. His
research interests include com-
puter graphics, 3D games, and
virtual reality.

Yeongkyu Lim received his
BS degree from Kyungpook
National University, Korea in
1997 and received hisMS degree
form Department of Computer
Science at Korea University in
1999. In 2013, he received his
Ph.D. degree fromDepartment of
Computer Science atYonseiUni-
versity, Korea. He has worked
on LG Electronics since 1999.
His research areas are embedded
systems, HCI and mobile GPU
architecture and computing.

Jae-Ho Nah received his BS,
MS, and Ph.D. degrees from the
Department of Computer Sci-
ence, Yonsei University, Korea
in 2005, 2007, and 2012, respec-
tively. Currently, he is a senior
research engineer at LG Elec-
tronics. His research interests
include ray tracing, rendering
algorithms, and graphics hard-
ware.

Insung Ihm received his BS
degree in computer science and
statistics from Seoul National
University, Korea in 1985 and
his MS degree in computer sci-
ence from Rutgers University,
USA in 1987. Then, he received
his Ph.D. degree in computer
science from Purdue University,
USA in 1991. He is currently
a professor in computer science
and engineering at Sogang Uni-
versity,Korea.His research inter-
ests include computer graphics,
scientific visualization, and high-
performance computing.

123

	Adaptive undersampling for efficient mobile ray tracing
	Abstract
	1 Introduction
	2 Previous work on adaptive ray sampling
	3 Adaptive undersampling algorithm
	3.1 Partition of image pixels
	3.2 Stage I: regular sampling of base pixels
	3.3 Stages II and III: adaptive sampling of adaptive pixels
	3.4 Similarity checks

	4 Postcorrection of undersampled images
	5 Efficient implementation on mobile GPUs
	6 Experimental results
	6.1 Computation time
	6.2 Image quality
	6.3 Further analysis

	7 Concluding remarks
	Acknowledgments
	References

