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Abstract We present a novel parallel algorithm for mesh
simplification that can reduce an input triangle mesh with
highly improved performance. To take full advantage of the
GPU comprising many computing cores, we enable col-
lapsing of connected edges to be processed at one time
by breaking data dependency in the update of the mesh
data structure. Our solution is a lazy update method, which
temporarily stores edge update information in a table and
then updates the mesh data with it in the next step. Thanks
to the lazy update method, we can more freely choose a
large number of edges in the form of small trees for col-
lapsing. The constructed trees are split to satisfy an error
constraint, prevent normal flipping, and preserve the mesh
topology. In experiments performed on several test models
of various scales, we found that our algorithm consistently
outperformed the prior GPU algorithm of Papageorgiou and
Platis (Vis Comput 31(2):235–244, 2015) by a factor of 10
or higher.

Keywords Mesh simplification · Edge collapsing ·
Parallel algorithm · GPU

1 Introduction

Mesh simplification has been intensively studied since the
1990s, and robust implementations of several efficient algo-
rithms are available in free and commercial 3D software.
Their typical performance can potentially reduce ameshwith
1 million triangles to a target size in a few seconds; this is
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fast enough for most graphics applications, which usually
perform mesh reduction in a preprocessing step.

However, demand for a faster mesh simplification algo-
rithm still exists in engineering applications in which sub-
stantial amounts of 3D scene data must be processed for
visualization purposes; one example is the manufacturing
industry, which is rapidly adopting smart factory environ-
ments. A typical 3D factory model consists of many parts
and devices modeled with several million triangles. In such
massive factory models, configurations change frequently;
thus, engineers require 3D systems that can rapidly transi-
tion between tasks.

Graphics processing units (GPUs), which act as off-the-
shelf parallel computers as well as 3D rendering devices, are
now widely used to accelerate numerous large-scale prob-
lems at a low cost on an ordinary PC. However, to utilize
the full power of a GPU, we must divide a problem into
a large number of small independent and identical tasks,
so that all GPU computing cores are saturated for most of
the computation time. Mesh simplification is solved by a
sequence of identical decimation operations, not all of which
are independent. Thus, we must rearrange the sequence so
that a large group of independent operations can be solved at
each parallel step. Papageorgiou and Platis [15] developed an
edge-collapsing algorithm based on independent vertex sets.
A set of collapsing edges is constructed from an independent
set, which is usually a sparse set covering only 8–9% of the
input mesh. Thus, their algorithm required many iterations to
reach a target size; as a result, it ran only three to four times
faster than an equivalent serial algorithm.

In this paper, we present a novel parallel algorithm for
mesh simplification that can simultaneously collapse a large
number of edges not restricted by a minimum distance
requirement. Our technical contributions are twofold: a lazy
update method for eliminating the data dependency of adja-
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(a) (b)

Fig. 1 Tree collapsing example. Edges e0, e1, e2, and e3 form a tree
rooted at r . Collapsing all these edges, vertices v0, v1, v2, v3 are merged
to r , while eight triangles are removed. a Collapsing tree. b After col-
lapsing

cent edges being collapsed, and a new decimation scheme
called tree collapsing. To break the data dependency among
adjacent edges, we separate mesh updating from collapsing
operations by storing necessary information for updating in a
temporary table. Thanks to the lazy mesh updating, we have
no restriction on distances between collapsing edges, allow-
ing even connected edges. The only required condition for
the edges is that they must be acyclic, because an articula-
tion point could be made when a cycle of edges is collapsed.
The acyclic condition naturally leads us to construct a forest
of tiny trees for collapsing, which will be reduced to their
root vertices as illustrated in Fig. 1. Although tree collapsing
looks similar to clustering-based vertex decimation, it does
not necessitate a complex triangulation step to fill a loop of
edges surrounding a decimated cluster; moreover, it enables
us to elaborately control the quality of reduced meshes, as
will be explained later.

The paper is organized as follows. We summarize related
work in Sect. 2 and discuss the data structure used in our
algorithm in Sect. 3. Section 4 describes the details of the
presented algorithm, and Sect. 5 discusses the test results for
the four examples of different sizes. Finally, we conclude
the paper with a summary and discussion of future work in
Sect. 6.

2 Related work

Numerous researchers have investigated various methods to
efficiently simplify 3D meshes since the early 1990s. Prior
algorithms are classified into two general categories, accord-
ing to basic operations used to reduce mesh complexity:
vertex decimation and edge collapsing. Vertex decimation
algorithms repeatedly remove vertices chosen on the basis of
decimation criteria and incident triangles, and fill the holes
by re-triangulating the loop of the bounding vertices [19].
To improve the mesh reduction rate, Rossignac and Bor-
rel [16] proposed an algorithm that decimates a cluster
of vertices based on geometric proximity. Lindstrom [13]
simplified large polygonal model in an out-of-core man-
ner using Rossignac and Borrel’s vertex clustering. Schaefer
and Warren [18] used octrees for adaptive vertex clustering

on massive out-of-core meshes. Edge collapsing algorithms
iteratively contract edges to a single vertex, eliminating
the need for re-triangulation. Guéziec [8], Hoppe [10], and
many other researchers proposed simplification algorithms
based on edge-collapsing operations with various edge selec-
tion strategies. Garland and Heckbert [6] created a simple
quadric error metric effectively measuring surface distor-
tion incurred by a vertex change and proposed an efficient
simplification algorithm based on the metric. For additional
surveys of early prior works, we recommend the article
written by Luebke [14]. Recently, Salina et. al. [17] pro-
posed a structure-aware mesh decimation method preserving
global structures in extreme simplification ofmassive surface
meshes. Some researchers [1,21] attempted to simplify large
mesh data in a distributed environment by partitioning them
into sub-meshes. Their approaches are not appropriate for
the GPU acceleration requiring fine-grained parallelism.

Early attempts to accelerate mesh simplification with a
GPU formatted the input and output of mesh data properly
for the standard graphics pipeline, and performed simplifica-
tion on shader units running small shader programs. DeCoro
and Tatarchuk [4] clustered mesh vertices by subdividing
them in a 3D grid or an octree for decimation on the GPU.
Although their algorithm was impressively fast, the running
time increased cubically according to the grid or octree reso-
lution; this determined the granularity of the reducedmeshes.
Hjelmervik and Léon [9] encoded vertex position and edge
connection data in OpenGL textures and accelerated half-
edge collapses on the GPU.

Shontz andNistor [20] proposed a hybridmethod that split
the mesh simplification workload into a CPU portion and
a GPU portion. They used a soft-grained blocking method
based on test-and-set to lock triangles affected by a collaps-
ing edge. Papageorgiou and Platis [15] and Cellier et. al. [2]
constructed a set of super-independent vertices to define inde-
pendent areas, in each of which an edge can be collapsed
without interfering with other areas. These methods showed
only moderately higher performance than prior serial algo-
rithms, because a super-independent vertex set, constructed
coarsely, produces only a small number of collapsing edges;
thus, the reduction rate per execution is hard to improve.
Grund et. al. [7] presented a fast parallel mesh simplifica-
tion algorithm using an array similar to our edge updating
table. However, their mesh data structure seems to be hard to
handle topology change and triangle normal flipping.

3 Data structure

We take an input mesh M in a vertex position array V and a
triangle vertex index array F and construct a standard half-
edge data structure. The connection data for a half-edge e
is stored in four fields: next, twin, inface, and head. next
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contains the next half-edge ID in counterclockwise order on
the incident triangle, twin contains the mated half-edge ID in
the opposite direction, inface contains the incident triangle
ID, and head contains the start vertex ID. Half-edge data are
stored in a 4D integer array indexed by edge IDs, denoted by
H. ArrayH, allocatedwith size 3n for n = |F|, is constructed
on theGPU for the input arraysV andF. To set the twinfields,
we use a radix sort library implemented on the GPU.

4 Parallel half-edge collapsing

In this section, we will discuss how to process edge-
collapsing operations in parallel without incurring depen-
dency problems. Because we must manage simultaneous
inter-dependent collapsing operations, we cannot adjust a
vertex position optimally for each operation; however, we
can simply move a tail to a head vertex for each collapsed
half-edge. This is often called half-edge collapsing to dis-
tinguish it from ordinary edge collapsing [12]. To minimize
the quality loss of half-edge collapsing, we will add a step
to refine vertex positions after completion of all operations.
Let Ecol be a set of half-edges selected for collapsing, and let
Vcol be an array indexed by a vertex ID whose entries have
a collapsed half-edge leaving from a corresponding vertex.

To manifest the problem of inter-dependent collapsing
operations, suppose that two connected half-edges are col-
lapsed (e0 and e7 in Fig. 2a). If e0 is first collapsed, the twin
of e9(e8) is changed from e1(e2) to e8(e9) as e1(e2) is merged
to e8(e9), as shown in Fig.2b. Collapsing e7 then changes the
twin of e9(e12) from e8(e6) to e12(e9) (Fig. 2c). The other
collapsing order also gives the same result. However, if these
operations asynchronously update the mesh structure simul-
taneously, the twins of e9 and e12 incorrectly point to the
discarded e8 and e2, because each parallel task is performed
without knowing the result of the other.

Atomic processing of collapsing operations would be a
possible solution, but is difficult to implement efficiently on
a GPU. Shontz et al. [20] attempted a test-and-set method
to lock edges, which required many iterative launches of a
GPU kernel to finish one task. A locking mechanism could
be internally implemented by looping an atomic operation
supported by theGPU. It is alsowasteful, because computing
cores held by waiting tasks are not allocated for other active
tasks, but idling until all adjacent edges are unlocked.

Instead of inefficient edge locking, we propose a simple
and efficient solution: a lazy update method in which edge
collapsing is decomposed into two sub-steps: (1) recording
merged edges in a table and (2) updating the mesh struc-
ture using information from the table. Collapsing a half-edge
e ∈ Ecol drags its tail vertex t to the head vertex h so that
the adjacent edges of t are discarded by merging to the adja-
cent edges of h. Here, the required update in the mesh data is
simply to reconnect the remaining half-edges to new twins,
which are actually thosemerged from theold discarded twins.
Thus, for collapsed edges, we first record the merging desti-
nations of discarded half-edges in a table (denoted by Meg)
and then update the mesh data simply by looking it up.

Meg is initially created with the entries set to their indices
to represent unchanged half-edges. Each GPU thread for e ∈
Ecol updates the entries corresponding to the merged half-
edges as

Meg[e1] ← H[e2].twin, Meg[e2] ← H[e1].twin,

Meg[e3] ← H[e4].twin, Meg[e4] ← H[e3].twin,

where e1, e2, e3, and e4 are the adjacent half-edges of e:

e1 ← H[e].next, e3 ← H[H[H[e].twin].next],
e2 ← H[H[e].next], e4 ← H[H[e].twin].next.

(a) (b) (c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Meg - 8 9 11 10 - 2 - 12 9 10 11 12 13 - 17 12 17

(d)

Fig. 2 Before and after collapsing half-edges e0 and e7, and the Meg
table for the collapsing process. e0, . . . , e5 and the triangles incident to
them are deleted. Deletion of e1 and e2 transforms e8 and e9 into twins,

and deletion of e3 and e4 transforms e10 and e11 into twins. a Before
collapsing. b After collapsing e0. c Ater collapsing e7. d Table Meg
constructed for collapsing e0 and e7
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Figure 2d is a table constructed for the case shown in Fig. 2a.
The entries with dashes represent the collapsed half-edges
and their twins; these are ignored in the subsequent mesh
update step.

There may be an entry asynchronously updated more than
once, which occurs only when the half-edge corresponding
to the entry is in a triangle with the other two half-edges
collapsed. A race condition here is not critical, because the
half-edge will be eventually deleted as its triangle is con-
tracted to a single vertex.

Next, the twin field of half-edges is updated to realize
mesh reduction.Asmentioned above, if a twin is discarded by
merging, its merging destination becomes a new twin replac-
ing the old one. A merging destination is retrieved fromMeg

by a single lookup, or multiple lookups if the half-edge from
the first lookup is also a discarded one.We also need to update
the head field, because a tail vertex of a collapsed half-edge
is discarded after being dragged to a head vertex. For each
half-edge, we find a new vertex for the head field by follow-
ing the path defined by a connected sequence of collapsed
half-edges starting from its old head vertex. We use the array
Vcol to follow the path and update the head field with the
last vertex of the path. Both updating tasks are performed
on the GPU in parallel, simply by assigning a GPU thread
to process each half-edge update. They do not suffer from
memory access conflicts, because reading and writing are
performed on different arrays (Meg andVcol for reading, and
H for writing).

To reduce the frequency of multiple lookups of Meg, we
update all the visited entries for each query to the final lookup
result, similar to the path compression method of union-
find algorithms. Merged vertices and half-edges are marked
deleted and cleaned later after a target size is reached.

5 Tree-based collapsing algorithm

Although a constraint on edge dependency in Ecol was
resolved in the previous section, there is another constraint
on half-edges in Ecol, that is, an acyclic constraint. If some
collapsed half-edges make a cycle, the vertex to which the
cycle is contracted will not be clearly determined in half-
edge collapsing, and more seriously the contraction vertex
will become an articulation or a non-manifold point. Thus,
the set Ecol should be acyclic or form a set of trees. In this
section, we will discuss how to construct Ecol as a set of
trees embedded on the input mesh, controlled by a userspec-
ified error threshold τ . τ acts as a quality control parameter
by bounding the accumulated quadric error at a contraction
vertex.

The procedure of the proposed simplification algorithm is
summarized as:

Repeat 1–6 until a target size n′
t is reached.

1. Compute a quadric error matrix at every vertex.
2. Construct a set of trees with collapsible edges.
3. Split the trees to meet τ .
4. Cancel tree edges causing illegal mesh changes.
5. Collapse trees to their root vertices.
6. Refine root vertex positions.

Step 5 is actually a parallel collapsing step with Ecol con-
taining the tree edges. This was explained in the previous
section. The details of the other steps will be discussed in the
following sections.

5.1 Computation of quadric error matrix

The quadric error metric was first proposed by Garland and
Heckbert [6] to measure the surface distortion caused by col-
lapsing of an edge. Since then, it has been used as a common
error metric in many mesh simplification algorithms, owing
to its additive nature and effective measuring of visual qual-
ity loss. The quadric error that occurs when moving a vertex
v to a position p in homogeneous coordinates is defined as
cv(p) = pT Qv p, where Qv is a 4×4 symmetric matrix. Qv

is a coefficient matrix of a quadric equation that computes
the sum of squared distances from the planes containing v.
Because Qv is symmetric and the last entry is always 1, only
nine values must be stored.

For every vertex v ∈ V, Qv is precomputed and stored in
arrayQ for frequent use in the following steps. Construction
of Q on the GPU is straightforward. All the entries in Q are
initially set to a zero vector. We launch a thread per triangle
to build a plane equation containing a triangle and compute
the nine entries of the quadric matrix with its coefficients.
Then the thread accumulates the nine values toQ[v] for each
triangle vertex v.

5.2 Construction of embedded trees

Tree edges are independently selected over vertices in paral-
lel. From among the half-edges leaving from each vertex v, a
tree edge e = −→

vh must be selected. To ensure that e does not
make a cycle with other tree edges, we select the half-edge
with the smallest weight w = 1

2 (cv(h) + ch(v)), an average
of two twins’ collapsing errors. Half-edges selected in this
manner have decreasing w on any paths formed by them,
because an incoming half-edge to v in a path always has a
larger w than the next half-edge leaving from v. Thus, they
cannot make any cycles. Two twin edges may be exception-
ally selected together by two adjacent vertices, when their
weights (which are equal) are smallest at both end vertices.
We add a verification step to identify them after tree con-
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tree construction tree split tree collapsing

39,694 triangles 
(100%)

20,334 triangles 
(50%)

Fig. 3 Algorithm overview. The horse head (the black box in the left-
most figure) ismagnified in the threemiddle figures to illustrate the steps
of collapsing tree construction (blue), deleted edges (red) for splitting,

and tree collapsing, respectively. The rightmost figure is the output after
reduction

struction and take only the twin with the smaller collapsing
error when they are found. Finally, we test if cv(h) ≤ τ for
e and discard it if not.

In GPU implementation, the output of this step is stored
in array Vcol , initialized with null. A thread assigned to each
vertex v executes a kernel that scans outgoing half-edges
around v to find the one with the smallest weight; it writes
it to Vcol [v] if its collapsing error is less than τ . Afterward,
another kernel is launched to handle exceptions.

In Fig. 3, the second image shows a set of trees (red lines)
constructed on the horse model. The constructed set is nearly
maximal, as most of the vertices with any collapsible half-
edges are included in the trees. However, it is not yet ready
for collapsing, because of erroneous changes on the output
mesh such as prohibitively large collapsing errors, normal
flipping of triangles, and illegal topology changes. Because
these occur when a mesh region is excessively contracted
along a relatively large tree, they can be prevented by split-
ting such large trees before collapsing. We will discuss these
issues in the following three sections.

5.3 Splitting trees

Wewant to keep all collapsing errors accumulated at vertices
under τ , to control the quality of the reduced mesh. How-
ever, in the tree construction, only individual edge-collapsing
errors were considered; thus, accumulated errors along a tree
can be larger than τ . Here, we present a parallel algorithm
to test and split trees in a bottom-up manner, so that no trees
with an accumulated error larger than τ remain.

When a sub-tree T rooted at v is collapsed, all the tree
vertices are contracted to v. Thus, the tree collapsing error
c(v) is simply computedwith the accumulated quadricmatrix
Q′

v as

c(v) =
∑

p∈T
cp(v) = vT

(
Qv +

∑

u

Q′
u

)
v = vT Q′

vv,

Fig. 4 A tree rooted at r is split at vertex p. t0, …, t5 are GPU threads
traversing the tree from the leaves, and some of them survive at each
level to take care of parent vertices. The green dashed line shows that
the subtrees under p are split by thread tc

where us are children of v. For bottom-up computation of
c(v), we store Q′

v computed in the lower levels in an array
Q′ initially set with matrices in Q. That is, as in the above
equation, the matrixQ′[u] for a leaf vertex u is accumulated
to its parent matrixQ′[v]; further, whenQ′[v] is complete, it
is used to compute c(v) and then is accumulated to its parent
matrix, and so on.

When the test and split task is performed on the GPU, a
thread is created for each leaf vertex; the task follows along
the tree edges up to the root while repeating matrix accumu-
lation and error testing. Because a tree has smaller vertices
at higher levels, we do not need to keep all threads used in a
level for the next iteration. Thus, we let the last thread that
updated the parent matrix keep working on the parent vertex,
while the other threads terminate as illustrated in Fig. 4. For
example, thread ta is selected among t0, t1, and t2, which
are threads assigned to the child vertices. For a thread to
determine whether it survives or not, we use a lot-drawing
method. A thread performs an atomic decrement-and-read
operation on a storage initially set to the in-degree of a par-
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ent p, immediately after updatingQ′[p]. If the read value of
the atomic operation is non-zero, the thread decides to ter-
minate. Because the in-degree value is equal to the number
of children, only the last thread will read 0 and survive. We
create an array Din for storage of in-degree values of all the
vertices before starting the split task.

The surviving thread, which sets v ← p, compares c(v)

with τ . If it is less than τ , the thread continues accumulating
Q′[v] to the parent matrix. Otherwise, the sub-tree rooted at
v must be split at v’s children, as illustrated by the dashed
line in Fig. 4. To split the child sub-trees, the thread sets
all the entries of Vcol indexed by v’s children to null, and
resets Q′[v] to Q[v] as v becomes a leaf vertex. The test and
split task continues until a vertex p with Vcol [p] = null is
reached.

5.4 Prevention of triangle flipping

Although all tree collapsing errors are kept under τ , theremay
be a triangle whose normal is reversed, owing to an excessive
position change of a triangle vertex caused by tree collapsing.
Repairing such triangles after simplification would require a
constrained nonlinear problem to be solved, because repair-
ing one triangle could affect another triangle to be flipped.
Thus, we find such triangles beforehand and further discard
tree edges to prevent triangle vertices from moving too far.

For convenience sake, we define γ (v), a function that
maps v to the final vertex to which it merged after collapsing,
that is, the actual root of the tree v belongs to. Although it
could be evaluated each time by following connected half-
edges retrieved from Vcol , we instead create an array R to
store the function value for every vertex. We use a path com-
pression scheme for efficient construction of R.

For each triangle f = v0v1v2, we determine if the nor-
mal of f will be reversed after collapsing, by testing the
sign of the dot product of its original and new normal vectors
after simplification. The new normal vector is computed with
γ (v0), γ (v1), and γ (v2). If at least two of them are the same
vertex, f will be removed in the simplified mesh and is thus
ignored. If a flipped triangle is found, we follow the trian-
gle vertices step by step from their initial vertices along the
collapsing paths of v0, v1, and v2 to find the first moment of
triangle flipping. The triangle f in Fig. 5 changes to v0v3v5,
which has a consistent normal, and then to v0v4v5, which has
an opposite normal. Then, we cancel the tree edge v3v4 by
setting Vcol [v3] to null.

5.5 Preserving mesh topology

Edge collapsing may change the mesh topology; examples
include two adjacent triangles making a fin shape by folding,
a ring on a mesh contracting to a point, and so on. Edges
causing topological changes after collapsing can be identified

Fig. 5 The normal of a triangle f is flipped by vertex merging v1 →
v3 → v4 and v2 → v5

(b)(a)

(c)

Fig. 6 Topological change by simultaneous collapsing of two edges: a
Half-edges

−→
ab and

−→
cd satisfy the link condition, b

−→
ab not satisfying the

link condition after collapsing
−→
cd , and c a triangle fin Δxbd dangling

from bd made by collapsing
−→
ab

by testing the link condition: if Lk a∩Lk b = Lk ab, the edge
e = ab is safely collapsed without any topological change.
This was proven byDey et al. [5]. Here, Lk i represents a link
of geometric entity i . If i is a vertex, Lk i is the boundary of
an area formed by the incident triangles of i . Lk a in Fig. 6a
is a region bounded by the vertices c, h, g, y, b, and x . If i
is an edge, Lk i is a set of two vertices opposite to i in its
incident triangles. For example, Lk ab in the figure is {x, y}.

However, the link condition is not directly applicable for
parallel edge collapsing, because a test on one edge could be
invalidated by another edge close or adjacent to it. In Fig. 6a,
we have two tree edges

−→
ab and

−→
cd , both satisfying the link

123



Parallel mesh simplification using embedded tree collapsing 973

condition in the input mesh. However, collapsing both edges
results in a topology-changed mesh, as in Fig. 6c, because
collapsing

−→
cd prevents the other tree edge from satisfying

the condition any longer (Fig. 6b). Thus, to ensure topology
preservation in parallel edge collapsing, we reformulate the
link condition on corresponding output edges and vertices in
the simplified mesh.

In a 2-manifold triangle mesh, if the link condition is not
satisfied, there must be a common vertex v shared by the
two vertex links and not contained in the edge link. If v,
possibly reduced to the other vertex, is still found separately
from the contraction vertex of e in the simplified mesh, the
edges connecting them are made into a non-manifold edge.
This is because the edge has four incident triangles. Our new
condition is developed based on this observation. Let La be
a link boundary in a circular list containing link vertices of
Lk a in counterclockwise order, and define a reduced link
boundary

L ′
a = Compact (γ (v0)γ ((v1) . . . γ (vm−1)),

for La = v0v1 · · · vm−1, where compact is an operation that
removes repeated elements in a given list. In Fig. 6a, we
obtain L ′

a = ybxdhg for La = ybxchg and L ′
b = dxby f e

for Lb = dxay f e. Here, b is a vertex to which edge ab
contracts. Then, the new condition is defined as:

Post-link condition For a half-edge
−→
ab, L ′

a and L ′
b have no

common vertices except those next to b in L ′
a and L ′

b.

If
−→
abmeets the post-link condition, collapsing

−→
ab does not

produce a non-manifold edge or vertex. If there is a common
vertex v = γ (c) that is not adjacent to b, it implies that two
input edges (ca and cb) have both been transformed to the
same edge vb, hence non-manifold. In Fig 6c, d, a common
vertex in L ′

a and L ′
b, is incident to a non-manifold edge db,

that is, a merging of ac and bd . A more rigorous proof for a
single collapsing case can be found in [11].

The post-link condition is tested on all the tree edges to
filter out topologically unsafe ones before collapsing. Each
tree edge is assigned to a GPU thread, which constructs L ′

a
and L ′

b by looking up R, which was constructed in the pre-
vious step. Because La and Lb have various sizes, we first
count the vertices by tracing the link boundaries and then
dynamically allocate a local GPU array fit to |La | + |Lb|. In
addition, we store in the array the vertex IDs of L ′

a and L ′
b

obtained in the second tracing, skipping repeated vertices.
Further, every pair of vertices in the two lists are compared
to find common vertices. For a tree edge

−→
ab, if a common

vertex not adjacent to b is found, Vcol [a] is set to null.
After all topologically unsafe edges have been canceled,

we construct Ecol by applying a parallel scan algorithm on
Vcol . If |Ecol| > 2d, where d is the target number of deleted
triangles, we remove from Ecol the edges having the first d

largest errors by parallel radix sorting tomeet the target mesh
size. Subsequently, we carry out the parallel edge collapsing
on edges in Ecol, as explained in Sect. 4.

5.6 Vertex refinement

To improve mesh quality, we refine the positions of root
vertices after the collapsing stepbyminimizing their accumu-
lated quadric errors. As Garland and Heckbert [6] suggested,
we solve a linear system for v

Q3 · v = −l3, (1)

where Q3 and l3 are the upper left 3 × 3 sub-matrix and
the 3D vector of the fourth column of Qv , respectively.
Because Q3 is a symmetric positive definite matrix, we use
the conjugate-gradient method to solve Eq. 1. If |v − v| > δ

for a given δ, solution v is suspected to be overshot, owing
to numerical errors; thus, it is discarded.

6 Results

We tested our simplification algorithm on four examples hav-
ing different levels of complexity. The test was performed
on a PC with a 3.5GHz Intel i7 CPU and an Nvidia GTX
Titan with 6GB onboard memory. We implemented the algo-
rithm on the CUDA platform. The result statistics of the four
examples are summarized in Table 1. We simplified the four
models three times for 50, 10, and 1% target sizes. To reduce
an input model down to each target size, we manually select
an optimal τ to minimize quality loss. Because each input
model has a different optimal τ , we needed to identify it for
each case by conducting several trials. For real-time appli-
cations, we may tolerate a moderate loss of quality; thus,
we may set τ to a fairly large number such as 0.1 (as in the
horse example). If mesh reduction is performed off-line, try-
ing several different values of τ with our algorithm would
not be difficult. A trend in the results shows that the optimal
τ decreases as the input size increases, presumably affected
by the average triangle size as well as other shape character-
istics. Thus, we may be able to estimate an optimal value of
τ from sample data measured for different input and target
sizes.

We tested the simplification processwith τ = ∞, to obtain
an empirical upper bound of reduction rates regardless of
mesh quality. The results summarized in Table 2 show almost
identical reduction rates, in which the average is 70.5%. This
is far better than the results reported in [15], which showed
an 8–9% reduction rate at most. The higher reduction rate
of our algorithm requires fewer iterations, which reduces the
overhead of GPU kernel launches. Note that the true upper
bound is not actually 70%, but can be even higher. For exam-
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Table 1 Summary of the results
Triangles Vertices 50% 10% 1%

τ Iter. Time τ Iter. time τ Iter. Time

Horse 39,694 19,847 10-5 1 4 0.001 2 7 0.1 4 11

Gargoyle 1,035,698 517,852 10-6 1 28 10-4 2 45 0.01 4 65

Asian dragon 7,218,906 3,609,455 10-8 1 155 10-6 2 250 10-4 4 330

Thai statue 10,000,000 4,999,996 10-8 1 250 10-6 2 380 10-4 4 495

The table columns from left to right show the triangle and vertex counts of input meshes, τ , the number of
iterations, and running times for 50, 10, and 1% target sizes, respectively. Times are represented in ms

Table 2 Simplification results with τ = ∞
Model Simplified Reduction rate (%)

Horse 11,770 70.3

Gargoyle 310,350 70.0

Asian dragon 2,029,762 71.8

Thai statue 2,971,836 70.2

The four models are similarly reduced by approximately 70% with
the infinite τ , which implies that 70% is the practical upper bound of
simplification we can achieve in one execution of our algorithm

Table 3 Comparison with the algorithm of Papageorgiou

Model Papageorgiou Ours Speedup

Iter. Time Iter. Time

Horse 40 66 2 7 9.4

Gargoyle 35 605 2 45 13.4

Asian dragon 35 3690 2 250 14.8

Thai statue 35 5290 2 380 13.9

The running times to reduce the four models by 90% are measured in
ms with both algorithms, summarized in the third and fifth columns.
Our algorithm completes the task approximately 13 times faster

ple, if a collapsing tree is a Hamiltonian path, it reduces a
mesh of any size to a point.

We compared the performance of our algorithm with
the Papageorgiou algorithm [15], the most recently pub-
lished GPU algorithm for mesh simplification. For both
algorithms, we measured the numbers of iterations and run-
ning times when reducing the test models by up to 10% of
their original sizes and summarized the results in Table 3.
The Papageorgiou algorithm required 35–40 iterations and
ran approximately 11 times longer than ours. Our algorithm
gets to the target sizes in two iterations for all the test models.

Figure 7 is a graph showing how the gargoyle model is
differently reduced for a fixed τ . We iteratively simplified
the gargoyle model and measured the triangle count at each
iteration for different values of τ . Although the number of
iterations to reach a convergence point seems to be propor-
tional to the order of τ , it is bounded by five, which is the
case of τ = ∞. It shows that our GPU algorithm has a very

0
0 1 2 3 4 5

iterations

# of tris

1,125k

843k

562k

281k

τ = 0.001

τ = 0.01

τ = 0.1

τ = ∞

Fig. 7 Convergence of mesh reduction. The graph shows the triangle
count of the gargoyle model simplified with different values of τ . After
2–3 iterations, the count reaches a convergence point regardless of τ

Table 4 Comparison of root mean-square(RMS) errors and Hausdorff
distances (HD) for the gargoyle model betweenMeshLab and our algo-
rithm

Target size (%) MeshLab (×10−5) Our Algo. (×10−5)

RMS HD RMS HD

50 2.3 4.1 2.3 3.8

25 5.2 8 5.8 8.5

10 13.3 19.7 15.2 21.6

5 23.8 34.6 28.3 40.1

To reduce the input model to the target sizes with our algorithm, we
used τ = 10−6, 10−5, 10−4 and 10−3, respectively. All errors were
measured in MeshLab

high level of parallelism not achieved by any other previous
algorithms based on edge collapsing.

To compare the quality of the simplified meshes produced
by our algorithm, wemeasured the distance from the original
mesh to a simplified mesh at each vertex, and calculated
the root mean-square (RMS) errors and Hausdorff distances.
Table 4 summarizes the errors of output meshes produced
by MeshLab [3] and our algorithm for various target sizes.
Although our results have error rates 20–30% higher than
those simplified by MeshLab, the order of measured errors
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horse

gargoyle

dragon

thai statue

39k

1M

7M

10M

0.5M 0.1M 4.6k

20k 3.9k 388

3.5M 0.7M 6.4k

5M 1M 22k

Original 50% 10% 1%≤

Fig. 8 Reduced mesh images for the four test models

is very low; the difference does not appear to be noticeable
by visual inspection (Fig. 8).

7 Conclusion

We have proposed an efficient parallel edge-collapsing algo-
rithm for triangular mesh simplification, which solves the
problem of illegal mesh updates often arising from asyn-
chronous edge collapsing by delaying mesh updates through
an intermediate merging table. We first construct a set of col-
lapsing trees embedded on an input triangle mesh, some of
which are split into smaller trees if their collapsing costs are
higher than a given threshold. Tree edges that reverse trian-
gle normals and affect the topology type of the input mesh
are removed from collapsing trees. We then collapse the tree
edges by storing the merged edges information in a tempo-

rary table. Finally, themesh data are updated by replacing the
deleted edge IDs with the merging edges retrieved by table
lookups. Our algorithm reduced a mesh of 10,000,000 trian-
gles to 10% of its original size in 620 ms with acceptable
visual quality, which outperforms previous GPU algorithms
by a factor of 10.

We control the reduction rate of our algorithm using only
the error threshold τ , which constrains the sum of quadric
errors of internal vertices merged to a root. Because it does
not tell a reliable estimation on a reduced size, we need sev-
eral trials to obtain its optimal value, to reach the target size in
the smallest number of iterations without seriously reducing
the quality. We may use a table of τ constructed with pre-
defined triangle sizes and target sizes to estimate a suitable
value of τ for a given case.

The size of an input mesh for simplification is bounded
by the GPU memory. Because the current implementation
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of our algorithm used almost 3GB GPU memory to simplify
the Thai statue, we can handle up to 20 million triangles
on our GPU, even though the performance is sufficient to
simplify a mesh with 100 million triangles in less than 10
s. We note that large mesh models are not rare in real-world
applications such as smart factory simulators. Our next plan
is to extend the tree-collapsing algorithm to an out-of-core
algorithm by partitioning an input mesh to sub-meshes of
appropriate sizes.
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