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Abstract Numerous depth image-based rendering algo-
rithms have been proposed to synthesize the virtual view for
the free viewpoint television. However, inaccuracies in the
depth map cause visual artifacts in the virtual view. In this
paper, we propose a novel virtual view synthesis framework
to create the virtual view of the scene. Here, we incorporate
a trilateral depth filter with local texture information, spatial
proximity, and color similarity to remove the ghost contours
by rectifying the misalignment between the depth map and
its associated color image. To further enhance the quality
of the synthesized virtual views, we partition the scene into
different 3D object segments based on the color image and
depth map. Each 3D object segment is warped and blended
independently to avoid mixing the pixels belonging to differ-
ent parts of the scene. The evaluation results indicate that the
proposed method significantly improves the quality of the
synthesized virtual view compared with other methods and
are qualitatively very similar to the ground truth. In addition,
it also performs well in real-world scenes.
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1 Introduction

Recently, the free viewpoint television (FTV) [1] has attracted
considerable attention because of its wide applications, like
virtual reality and immersive telecommunication. The virtual
view synthesis with multi-view plus depth is one of the most
active research areas in FTV. Because of greatly reducing
the number of reference views and saving storage space and
transmission bandwidth, the depth-based image rendering
(DIBR) [2], which renders arbitrary views using neighboring
color images and their associated depth maps, has become
one of the most efficient methods. However, DIBR suffers
from the accuracy of depth map, which usually causes visual
artifacts in the synthesized virtual view. Furthermore, the
occluded areas in the reference images become visible in the
virtual view owing to the change of viewpoint. Additionally,
another problem facing DIBR is the how to remove ghost
contours caused by the boundary misalignment between the
depthmapand its corresponding color image. Sohigh-quality
virtual view synthesis technique remains an open research
topic. The virtual synthesis reference software (VSRS) [3]
has been released which is based on bi-directional DIBR.
Müller et al. [4] proposed the layered method with image
regions marked as reliable and unreliable areas to address
the depth discontinuities. Solh and AlRegib [5] proposed the
adaptive hierarchical hole-filling approaches to solve the dis-
occlusion problem in the virtual view. Although the existing
algorithms have made significant progress, ghost contours
and error pixels caused by combining the pixels belonging
to different parts of the scene still exist.

Here, we propose a novel virtual view synthesis frame-
work that views the scene as a set of 3D objects. We partition
the reference color images and depth maps into different 3D
object segments where each segment can be viewed as the
projection of a 3D object. Our method uses 3D object seg-
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mentation as themajor step. Eachpixel is assigned to a unique
3D object segment according to its image coordinates and
depth value. The major contributions are as follows:

– I: A trilateral depth filter (TDF) is used to significantly
remove ghost contours by rectifying the boundary mis-
alignment between the depth map and color image. TDF
ensures that the boundaries of the depth map are adjusted
to align with the color edges in the edge-transitional
regions of the color image. It reassigned the depth val-
ues around the boundaries of the depth map based on the
similarity measurement. We incorporate the local tex-
ture information, spatial proximity, and color similarity
into the TDF as constraints to obtain a reliable similarity
matching result. The texture variance and gradient is con-
sidered as a 24-dimensional feature vector to represent
the difference in local texture structure between match-
ing pixels and enhance the robustness to the noise. Spatial
proximity and color similarity information enhances the
self-similar assumption that neighboring pixels should
have similar color and depth values.

– II: A 3D object segmentation-based asynchronous blend-
ing strategy is used to avoid the visual ambiguities caused
by the inaccuracies in the depth map. The segmentation
algorithm [6] is first used to divide the captured scene into
approximately regions. Then we regularize each gener-
ated region as a 3D object, and partition the reference
color images and depth maps into different segments to
regard each segment as the projection of a 3D object.
The process of 3D object segmentation is advantageous
to our asynchronous blending strategy is several ways.
We separately warp each 3D object segment from the
farthest to the nearest pixels to prevent the background
pixels from covering the foreground. Furthermore, we
blend each 3D object segment with its corresponding 3D
object segment in other reference images to avoid mixing
pixels from different physical parts of the scene.

The remainder of this paper is organized as follows: The
details of our method are discussed in Sect. 2.While the eval-
uation results are presented in Sect. 3. Section 4 gives some
conclusions for the futurework. Note that for notation clarity,
in this paper, we focus only on synthesizing the virtual view
form stereoscopic views with their associated depth maps.
However, our method can easily be generalized to handle
virtual view synthesis from multi-view video plus depth.

2 Proposed method

Our method consists of three phases. The pre-processing is
the first part, boundary misalignment rectification and 3D
object segmentation-based asynchronous blending are the

second and third parts. The input is the depth maps (DL

and DR) and texture images (IL and IR) of the left and right
views, and the output is the synthesized virtual view. In the
pre-processing, because initial depth maps usually contain
noises, we improve the quality of DL and DR using the
median filter. The boundary misalignment rectification and
3Dobject segmentation-based asynchronous blending are the
main contributions and will be discussed later.

2.1 Boundary misalignment rectification

The depthmap and color image have complementary charac-
teristics. The depth map boundary is usually very sharp [7],
but the color image usually has an edge-transitional region
where the foreground and background colors are mixed.
Thus, color intensities smoothly change over the edge tran-
sitional region while the depth variations is sharp at the
object boundary. The misalignment can be denoted as that
the boundary between foreground and background of depth
map is not aligned with the edge between foreground and
background in the color transitional region that mixed color
of foreground and background (see Fig. 1). As a result, the
depth map usually assigns incorrect depth values to pixels
located in the color edge-transitional regions. Ghost con-
tours in the synthesized virtual view are highly affected by
the boundary misalignment. There are two reasons for this.
First, foreground color pixels located in the edge-transitional
region may be mistakenly assigned to background depth val-
ues and then deemed to be background pixels during the 3D
warping and hole filling. Second, the background informa-
tion from neighboring views is used to fill the holes that are
typically considered as part of the background of the scene.
The same artifacts can occurwhen background pixels located
in the edge-transitional region are mistakenly assigned fore-
ground depth values (Fig. 2a–c).

Fig. 1 Basic characteristics of depth map and color image. a, c are
the close-up image of the first color image frame and its associated
depth image of view 4 of the Breakdancers video sequence [2]. c The
color intensities and depth values along the horizontal yellow line in
a, b, which spans between the coordinates (460, 380) and (460, 450).
The depth map boundary is located in the middle of the color edge-
transitional region. It is clear that the depth map boundary is not aligned
with color image edge correctly
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Fig. 2 The conceptual flow algorithm of the boundary misalignment
rectification. a Pixel in the color map mistakenly assigned to a back-
ground depth value. b Hole in depth map after 3D image warping,
which is assumed to be background. c Example of ghost contour. The
foreground pixel ismistakenly assigned the background depth value and
regarded as the background pixel.When the hole is filled using the back-
ground information from neighboring views, the ghost contours appear.

dUnstable pixels. eUnstable region. f Searching p’s most similar pixel
alone the direction of n p and n̄ p . g The winner-take-all optimization
strategy is used to searches for the best matching pixel (qI ) of p. And
the corresponding depth value (qD) of qI is assigned as p’s depth value
(pD). h Repeating the optimization iteration until the depth values of
all unstable pixels are assigned. It is clear that the misalignment has
been removed

To address this problem, we propose a trilateral depth fil-
ter (TDF) to rectify the depth boundary to align with the
color edge in the edge-transitional region. We take the color
image (IL ) and depth map (DL ) of the left reference view as
an example to illustrate the boundary misalignment rectifi-
cation process. First, we determine the boundaries between
the foreground and background using the method described
in [8]. We classify the depth pixels along sharp boundaries
as unstable depth pixels (i.e., they are likely to correspond
to erroneous depth values). Unstable pixels may not com-
pletely cover the entire misalignment regions because they
are located within the color edge-transitional region (where
the color changes smoothly). In that case, foreground (back-
ground) color pixels located in the edge-transitional region
are mistakenly assigned to background (foreground) depth
values and may be regarded as background (foreground) pix-
els causing annoying ghost contours. To enhance the quality
of the synthesized virtual view, we use the dilation filter to
extend the width of the unstable regions by five pixels. Let
S̄LD be the regions composed of unstable pixels in DL , and the
stable regions consisting of pixels with known depth values
be SLD = DL − S̄LD . Then, the boundaries between stable and
unstable regions are defined as δ S̄LD (see Figs. 2d, e, 3).

During the process of the boundary misalignment rec-
tification, the depth values within unstable regions are

Fig. 3 Unstable regions. a Unstable region map. All unstable pixels
are marked in white. b Is the close-up image of red rectangles in a. p
is a pixel that locates at δ S̄LD . n p is the unit vector orthogonal to δ S̄LD at
p. n̄ p is the reverse vector of n p , which points to the opposite direction
of n p

reassigned. As shown in Fig. 2f, For each unstable pixel pD
(pD ∈ δ S̄LD) in depth map DL (pD ∈ DL ), we define pI as
the corresponding pixel of pD in the color reference image
IL (pI ∈ IL ) (i.e., pI and pD share the same pixel coordi-
nates). To reassign the depth value of pD , we use the TDF
to search pI ’s most similar pixel qI along the direction of
n p and n̄ p in the color image (IL ) according to the texture
similarity. This is a simple but very effective way to yield
more reliable similarity measurements between two pixels.
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(a) (b)

Fig. 4 Surrounding neighborhood patch, Np , for: a pixel p; and b its
corresponding sub-regions

For clarity, only stable pixels in SLD are considered as match-
ing candidates. The TDF-based similar measure function is
denoted as

C(p, pi ) = 3 − e
−I (p,pi )

γI − e
−ξ(p,pi )

γξ − e
−ρ(p,pi )

γρ (1)

I (p, pi ) measures the color similarity of p and pi . It is
denoted as the color difference in the RGB color spaces. We
use the texture variance and gradient as cues to represent the
similarity of the local texture structure of matching pixels in
the color image. It also enhances the robustness to the noise.
We define a neighborhood patch Np (with a radius of 15)
centered at p (see Fig. 4). We evenly divide Np into three
annular subregions because the annular spatial histogram is
translation and rotation invariant. We compute the normal-
ized intensity eight-bin gray histogram Ψ i

p = {ψ(i, j)
p , i =

0, 1, 2, j = 0 · · · 7} of each subregion Ni
p (i = 0, 1, 2) to

represent the annular distribution density of Np as a 24-
dimensional feature vector.

ξ(p, pi ) =
2∑

i=0

7∑

j=0

Ψ (ψ
(i, j)
p , ψ

(i, j)
pi ) (2)

Ψ (ψ
(i, j)
p , ψ

(i, j)
pi ) =

{
1 |ψ(i, j)

p − ψ
(i, j)
pi | ≥ TΨ

0 otherwise
(3)

ξ(p, pi ) signifies the local texture similarity between p and
pi (Eq. 2) using the Hamming distance (Eq. 3) between the
annular distribution densities of p and pi . ξ(p, pi ) will be
a small value when p and pi are located at the similar tex-
ture regions. ρ(p, pi ) signifies the image coordinate distance
between p and pi . It ensures that two spatially near pixels
have a larger support weight. The winner-take-all optimiza-
tion strategy is used to search for the best matching pixel that
gives the minimum matching cost:

qI = min
pi∈Φp

C(p, pi ) (4)

Φp is a 1× N patch centered at p and comprises pixels with
stable depth values along the direction of n p and n̄ p in IL .

The corresponding depth value DL(qD) of qI is assigned as
p’s depth value (DL(pD)) (see Fig. 2g). Notice that in our
method, each unstable pixel p is viewed as the stable one if
it is reassigned a valid depth value. We repeat the process to
extend every boundary pixel belonging to the foreground to
background unstable regions until they cover all of the similar
color pixels in the color edge-transitional region. Similarly,
we extend every boundary pixel belonging to the background
to foreground unstable regions until they cover all of the
similar color pixels in the color edge-transitional region. The
iterations continue until all the unstable pixels are assigned
their final corrected depth values (Fig. 2h).

2.2 3D object segmentation-based asynchronous
blending

We use the 3D object segmentation-based asynchronous
blending to avoid warping the background to the foreground
region and mixing the pixels belonging to different physical
parts of the scene.We regard the captured scene as a set of 3D
objects and assign every pixel to a unique 3D object accord-
ing to its image coordinates and corresponding depth value.
Here, the method described in [6] is used to divide the scene
into approximately regions by combining color and depth
maps. We regularize each region as a 3D object pertaining to
a unique physical part of the scene.

By applying the segmentation algorithm [6] to the depth
map of the left view, we can divide the depth map (DL ) and
color image (IL ) into different segments. Each segment of
DL(IL) signifies the 3D object segment that is the unique
projection of the 3D object Oi in DL(IL) (see Fig. 5g).
Meanwhile, we must match the 3D object segments from
the left and the right views to each other. Thus, we project
each pixel p ∈ DL from DL to DR using the 3D warping
function (Eqs. 5, 6):

Pw = R−1
L ·

⎛

⎝ ZL · F−1
L ·

⎛

⎝
uL
vL
1

⎞

⎠ − TL

⎞

⎠ (5)

ZR ·
⎛

⎝
uR

vR
1

⎞

⎠ = FR · (RR · Pw + TR), (6)

where Pw is the 3D space coordinate in the world coordinate
system, F is the camera intrinsic parameter matrix, R and T
are the rotation and translation vectors, respectively. (u, v)

is the image pixel coordinate in the depth map, and Z is the
depth value of the pixel located at (u, v). The subscripts L
and R denote the left and right views, respectively. The 3D
warping is not a one-to-one mapping function. In the case
where multiple pixels map to the same location, we choose
the candidate pixel that is closer to the camera with the Z-
buffer principle. As shown in Fig. 5e, f, after the 3Dwarping,
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Fig. 5 The results of 3D object segmentation. a The left color image
(IL ). b The right color image (IR). c, d are the corresponding depth
maps (DL and DR) of IL and IR , respectively. e, f are the initial depth
map and the initial 3D object segments map which are projected from
left to right using the 3D warping function. Unreliable pixels without
matching pixels from the left view are marked in black. g, h are the 3D

object segmentation results of the left and right views. Each color region
represents a 3D object segment that is viewed as the unique projection
from a 3D object to the left and right views. The same color regions in
(g) and (h) means that they are the matching segments projected from
the same 3D object to different views

we assign the 3D object segment label of pixel p in the left
view to its matching pixel q in the right view, meaning that
they belong to the same physical part of the scene.

However, because we capture the image from different
viewpoints, some pixels in the right view are not observed in
the left view. Thus, there exist some pixels without matching
pixels from the left view (Fig. 5f). Let the pixels in the right
view without 3D object segment label be unreliable pixels
(R̄) and the others be the reliable pixels (R). We formulate
the 3D object segment labelling of unreliable pixels as an
optimization problem through the energy function:

E(R̄) = Ed(R̄) + Es(R̄) (7)

Equation 7 is a function of the 3D object segment labels. It
is minimized using the α-expansion algorithm [9] to obtain
the optimal 3D object segment label assignment. The data
term Ed measures the likelihood of a particular label hypoth-
esis based on a matching score. It is denoted as the difference
between the depth value of pixel p ∈ R̄ and the average depth
value Di of the 3D object segment (Oi ) containing p:

Ed =
∑

Oi∈O

∑

p∈R̄

λd · min{|DR(p) − Di |, λdT }, (8)

where λd and λdT are constant positive values. DR(p) is
the depth value of p in the depth map. Ed can encourage
the assignment of most likely 3D object segment label and
ensure that the depth values of each 3D object segment have a

compact distribution that strengthens coherent depth assign-
ments. The smoothness term penalizes neighboring pixels
belonging to different 3D object segments:

Es =
∑

p∈R̄

∑

pi∈Ns
p

λs · T [O(p), O(pi )], (9)

where O(p) and O(pi ) are the label values of the 3D object
segments containing p and pi , respectively. λs is a constant
penalty value. Ns

p is a 4 neighborhood system of p in image
coordinate. T [O(p), O(pi )] is the Potts model function that
is equal to 0 (O(p) = O(pi )) and 1 (O(p) �= O(pi )). The
aim of the smoothness term is to smooth the depth variation
within each 3D object segment. It encourages the self-similar
assumption that neighboring pixels should come from the
samephysical part of the scene.Weoptimize the energymini-
mization by the standard α-expansion algorithm using pixels
as nodes. The label set is composed of 3D object segment
labels. During the optimization, we only focus on unreliable
pixels. After the optimization, the 3D object segments of all
unreliable pixels in the right reference view are obtained, we
divide the depth map (DR) and color image (IR) into dif-
ferent 3D object segments. Each segment can be viewed as
the unique projection of the 3D object in DR(IR). We thus
match the segments between the left and right views to each
other (see Fig. 5h).

Based on the result of the 3D object segmentation, the
asynchronous blending strategy applies 3D warping and
blending to each 3D object segment independently. It avoids
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mixing the pixels belonging to different physical parts of the
scene. During the warping, small holes appear in the warped
image because of the change in the viewpoint. We fill these
holes using a median filter. Given the segmented and warped
color and depth images of the left and right reference views,
we take the i-th 3D object segment as an example to per-
form the blending method proposed. Let Di

V (p) and I iV (p)
be the depth and color values located at pixel p in the synthe-
sized virtual view, respectively. Di

vL(p) (I ivL(p)) and I ivL(p)
(I ivR(p)) are the depth and color values, respectively, of pixel
p belonging to the i-th 3D object segment in the synthesized
virtual view projected from the left (right) reference to the
virtual view. There are four cases for blending each 3D object
segment:

– Case I: The projection from the right reference view to
the virtual view is invalid (Di

vR(p) = 0) while the pro-
jection from the left reference view to the virtual view is
valid (Di

vL(p) �= 0) (green points in Fig. 6). Di
vL(p) and

I ivL(p) determine the depth and color values of p in the
synthesized virtual view.

– Case II: The projection from the left reference view to the
virtual view is invalid (Di

vL(p) = 0) while the projec-
tion from the right reference view to the virtual view is
valid (Di

vR(p) �= 0) (red points in Fig. 6). Di
vR(p) and

I ivR(p) determine the depth and color values of p in the
synthesized virtual view.

– Case III: The projections from both reference views to the
virtual view are valid (Di

vL(p) �= 0, Di
vR(p) �= 0), but

the difference between Di
vL(p) and Di

vR(p) is larger than

Fig. 6 Four cases for blending each 3D object segment. a, c are depth
and color images projected from the right reference view.b,dAre depth
and color images projected from the left reference view. Black is the
regions without valid values. The brighter value in a and b means the
closer distance

a threshold (|Di
vL(p) − Di

vR(p)| > TB). Based on the Z-
buffer principle, if DvL(p) ≤ DvR(p), DvL and I ivL(p)
determine the depth and color values of p in the synthe-
sized virtual view (pink points in Fig. 6). On the contrary,
Di

vR(p) and I ivR(p) determine the depth and color values.
– Case IV: The projections from both reference views to
virtual view are valid (Di

vL(p) �= 0, Di
vR(p) �= 0) and

the difference between Di
vL(p) and Di

vR(p) is less than
a threshold (|Di

vL(p) − Di
vR(p)| ≤ TB) (blue points in

Fig. 6). By using this blending function, we can con-
sider the baseline spacing of the reference views. The
information from the closer camera plays more impor-
tant role for us and we thus allocate a higher weight
to the warped pixel that is closer to the virtual view.
ζ ·Di

vL(p)+(1−ζ )·Di
vR(p) and ζ ·I ivL(p)+(1−ζ )·I ivR(p)

determine the depth and color values of p in the syn-
thesized virtual view. TV , TL , and TR are the translation
vectors of the left reference view, the right reference view,
and the virtual view, respectively.

ζ = |Tv − TL |
|Tv − TL | + |Tv − TR | (10)

At this stage, we combine all of the blended 3D object
segments to obtain the final blended virtual view with the
same resolution as the reference views. Because some points
are not observed from either the left or the right reference
views, some small holes appear in the final blended image.
We use the median filter technique to fill these small holes.

3 Experimental results

In this section, a series of quantitative and qualitative eval-
uations were performed to verify the effectiveness of the
proposed method. All experiments were conducted using
the Breakdancers and Ballet video sequences that are gen-
erated and distributed by the Interactive Visual Group at
Microsoft Research [2]. These video sequences were cap-
tured by arranging eight cameras along a one-dimensional
arc spanning about 20 degrees from one end to the other.
Each sequence contains 100 frames of 1024 × 768 images
captured at 15 fps. For the experimental results below, view
3 and view 5 were selected as the left and right views to gen-
erate view 4, where the raw data from the view 4 were used
as the ground truth. All parameters are presented in Table 1.

Table 1 Parameter settings for all experiments

γH γξ γρ TΨ λs λd λdT TB

45 27 35 0.1 100 17 5 3
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3.1 Quantitative evaluation with existing algorithms

First, we compare the performance of the proposed method
with those of the state-of-the-art view synthesis methods. In
order to confirm the accuracy of the proposed method, the
peak signal-to-noise ratio (PSNR) [10] and the structural sim-
ilarity (SSIM) [11] index are used as the evaluation metrics.
The PSNR is an evaluation function measuring the quality
of the synthesized virtual view; a higher value is better than
a lower one. The SSIM is used to measure the similarity
between two images, a value of 0 means no similarity, while
a value of 1 means exact similarity.

As shown in Fig. 7, we randomly selected the synthe-
sized result of the sixth frame of the ballet sequence as an
example of the improvement that our algorithm yields. First,
we used the virtual synthesis reference software (VSRS) [3]
with the traditional depth image-based rendering technique
to yield a suitable synthesized result. However, because of
the misalignment between the depth map and its associated
color image, significant ghost contours occur at boundaries
between the foreground and background, and somedark fore-
ground pixels are mistakenly added to lighter background
areas (see the green rectangle regions in Fig. 7a). Wolinski
et al. [12] used the inter-view consistency-based algorithm
to inpaint the disoccluded areas before projection. While it
enhances the inter-view consistency and effectively retains
object boundaries, it disregards the relationship between each
physical part of the scene. This often leads to the warping of

background pixels to foreground regions or the combination
of pixels belonging to different physical parts of the scene
(see the red rectangle regions in Fig. 7b). The segmentation-
based view synthesis algorithm proposed by Loghman and
Kim [8] overcomes some of the problems caused by blend-
ing pixels form different physical parts of the scene, but it
requires the user to specify the number of segmented images
and uses the average of thresholds obtained from the multi-
level thresholding algorithm to segment the left and right
reference views. Because it does not consider the 3D spatial
structure of the scene, if the scene is complex and contains
many physical parts located at different depth levels, the cor-
responding segments of the left and right reference views
may not suitably match. Thus, their results are degraded by
the boundary misalignment between the depth map and color
image, often leading to the corona-artificial or ghost con-
tours (see the yellow rectangle regions in Fig. 7c). Solh and
AlRegib [5] generated the synthesized view using hierarchi-
cal hole filling to enhance the efficiency. But their method
only works for a narrow baseline distance. Serious distor-
tions appear as the baseline distance between reference views
gradually increases (see the blue rectangle regions in Fig. 7d).
As shown in the pink rectangle regions in Fig. 7e, Fukushima
et al. [13] improved a blur transfer type of depth image-based
rendering. Theirmethod solves some visual artifact problems
by performing post-filtering at the virtual image plane assum-
ing that the depth value should vary smoothly inside a region
of similar color. However, this method suffers from ghost

Fig. 7 Visual artifacts in the synthesized virtual view using the
enlarged 41th color frame of view 4 of the Breakdancers video
sequence [2]. a VSRS [3], b Wolinski et al. [12], c Loghman and

Kim [8], d Solh and AlRegib [5], e Fukushima et al. [13], f Ahn and
Kim [14]. g Ours. h The ground truth. The raw data of 41 color frame
from the view 4
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contours. These artifacts are primarily caused by the bound-
ary misalignment between the sharp depth map boundaries
and their corresponding texture edges in the color images.
Ahn and Kim [14] filled the disocclusions using patch-based
texture synthesis by considering the robust structure ten-
sor and a new confidence term to enhance the robustness to
noise. They chose the best-matching patch in the background
regions according to the patch distance measure. Because
their method does not consider the connectivity and 3D spa-
tial construction of objects, it produces visual artifacts in
the hole area (see the white rectangle regions in Fig. 7f). In
the proposed method, we rectify the boundary misalignment
to eliminate the ghost contours. Furthermore, we separate
the scene into different 3D object segments according to
the depth maps and then apply an asynchronous blending
strategy to each 3D object segment for the 3D warping and
blending to synthesize the virtual view. The proposedmethod
avoids mixing pixels belonging to different physical parts of
the scene (Fig. 7g). The results indicate that the proposed
method significantly improves the quality of the synthesized
virtual viewcomparedwith othermethods and is qualitatively
very similar to the ground truth. Figure 8 shows the PSNR
and SSIM comparison of the proposed method with those of

other state-of-art algorithms over 100 synthesized datasets of
virtual view 4 for each Microsoft sequence. Meanwhile, we
compute the mean and variance of the PSNR and SSIM val-
ues in Table 2 over the 100 frames of the synthesized virtual
views for each sequence. Based on the above datasets, we can
confirm that the mean of our method is superior to that of the
other state-of-art methods [3,5,8,12–14], meaning that our
results are quantitatively closer to the ground truth, while the
lower variance means that our method is temporally stable
for a video input.

3.2 Quantitative evaluation with each component

In this section, we evaluate the performance of each part
of our proposed scheme. In each experiment, we omit one
part of our method and retain the remaining parts. We ana-
lyze the average PSNR and SSIM values over 100 frames
of synthesized virtual view 4 for Microsoft datasets. First,
we omit the boundary misalignment rectification, meaning
that the depth map obtained from stereo matching or depth
sensors may not correctly align with its corresponding color
image. This typically causes distracting ghost contours in
the synthesized view (red rectangles in Fig. 9a, b). The

(a) (b)

(c) (d)

Fig. 8 The PSNR and SSIM distributions obtained from our method with those of other state-of-art algorithms over 100 synthesized datasets of
virtual view 4 for the Ballet and Breakdancers video sequence
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Table 2 Comparison results on Microsoft datasets by selecting view 3 and view 5 as reference views to generate view 4

Breakdancers Ballet

PSNR SSIM PSNR SSIM

Mean Variance Mean Variance Mean variance Mean Variance

Solh and AlRegib [5] 30.82 0.8755 0.8801 0.0061 31.57 0.3752 0.8935 0.0048

Fukushima et al. [13] 30.53 0.5045 0.8652 0.0070 32.18 0.1995 0.9189 0.0018

Wolinski et al. [12] 31.16 0.6218 0.8906 0.0057 29.48 0.5078 0.8868 0.0069

Loghman and Kim [8] 31.64 0.2726 0.9135 0.0035 30.36 0.1412 0.9177 0.0016

Ahn and Kim [14] 27.38 0.6045 0.8924 0.0044 26.20 0.3323 0.7896 0.0068

VSRS [3] 31.17 0.2618 0.8929 0.0037 30.23 0.1567 0.8972 0.0020

Ours 33.33 0.2388 0.9235 0.0025 32.52 0.1374 0.9375 0.0012

Fig. 9 Taking the first synthesized view frame of view 4 of the
Ballet sequence as the example to illustrate the evaluations when turn-
ing off some term. a, b Results without the boundary misalignment
rectification. c, d Results without the 3D object segmentation-based
asynchronous blending strategy. For each column from up to down is
the result with one term turned off, our method with all terms turned on
and the ground truth

average PSNR and SSIM values over 100 frames decreased
sharply to 30.90 dB and 0.8806 index, respectively, for the
Breakdancers sequence, and 29.49 dB and 0.8411 index,
respectively, for the Ballet sequence. Next, we omit the 3D
object segmentation-based asynchronous blending strategy.
In this case, we see that the conventional DIBR technique
is easily affected by noise and yields some regions contain-

ing a mixture of foreground and background pixels (green
rectangles in Fig. 9c, d). The average PSNR and SSIM val-
ues over 100 image frames decrease sharply to 32.94 dB and
0.9142 index, respectively, for the Breakdancers sequence,
and 31.60 dB and 0.9035 index, respectively, for the Ballet
sequence. It is thus clear that our method obtains the highest
average PSNR and SSIM values when all terms are applied.

3.3 Quantitative evaluation with various baseline
distances

To investigate the robustness of the proposed method, we
use it to synthesize the virtual view for varying baseline dis-
tances between the two reference views. We conduct three
evaluations with different baseline distances for comparison.
In case I, view 3 and view5 are taken as the reference views to
synthesize virtual view 4; the baseline distance between them
is 7.69. In Case II, view 2 and view 6 are taken as the refer-
ence views to synthesize virtual view 4; the baseline distance
between them is 15.20. InCase II, view0 and view7 are taken
as the reference views to synthesize virtual view 4; the base-
line distance between them is 23.13. We compute the PSNR
and SSIM values in Table 3 by averaging the results of the
proposed method compared with those of the existing state-
of-the-art methods [3,5,8,12–14] over 100 frames for each
baseline distance.Wecan see that ourmethod achieves higher
average PSNR and SSIM values, outperforming the next best
state-of-art method, which means that our method generates
higher quality results that are robust to various baseline dis-
tances.

4 Conclusion

In this paper, we proposed a view synthesis framework
to obtain a precise virtual view estimation of a scene.
This method was implemented on a PC with Core i5-2500
3.30 GHZ CPU and 4 GB RAM. It took approximately
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Table 3 Average values of 100 synthesized results under different baseline distances

Breakdancers Ballet

7.69 15.20 23.13 7.69 15.20 23.13

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Solh and AlRegib [5] 31.38 0.8864 28.48 0.8510 27.21 0.8146 31.48 0.8979 27.32 0.7842 26.26 0.7138

Fukushima et al. [13] 28.81 0.8674 30.52 0.8652 28.83 0.8674 32.17 0.9189 28.65 0.8439 22.73 0.6647

Wolinski et al. [12] 31.18 0.8916 29.98 0.8654 28.04 0.8270 29.48 0.8864 25.66 0.7550 24.67 0.6975

Loghman and Kim [8] 31.64 0.9135 31.31 0.8970 29.44 0.8595 30.36 0.9177 29.12 0.8629 23.14 0.6647

Ahn and Kim [14] 27.37 0.8924 28.37 0.8931 27.53 0.7967 26.19 0.7896 23.66 0.6467 19.72 0.5596

VSRS [3] 31.17 0.8929 29.88 0.8649 27.15 0.8213 30.27 0.8972 28.43 0.8235 23.24 0.6790

Ours 33.33 0.9235 32.62 0.9047 30.10 0.8691 32.52 0.9375 29.39 0.8816 27.49 0.8100

Maximum value in each column is bold

0.3 s to synthesize each virtual view on the Middlebury
data. Ourmajor contributions are the boundarymisalignment
rectification and 3D object segmentation-based asynchro-
nous blending strategy. The evaluation results show that our
method can obtain satisfy results. In the further, we intend to
transform our method to a parallel GPU implementation.
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