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Abstract Geometry completion is an important operation
for generating a complete model. In this paper, we present a
novel geometry completion algorithm for point cloud mod-
els, which is capable of filling holes on either smooth models
or surfaces with sharp features. Our method is built on the
physical diffusion pattern. We first decompose each pass
hole-boundary contraction into two steps, namely normal
propagation and position sampling. Then the normal dissim-
ilarity constraint is incorporated into these two steps to fill
holes with sharp features. Our algorithm implements these
two steps alternately and terminates until generating no new
hole boundary. Experimental results demonstrate its feasibil-
ity and validity of recovering the potential geometry shapes.

Keywords Point cloud model · Geometry completion ·
Sharp features · Normal propagation · Position sampling

1 Introduction

Benefiting from its simple representation, point cloud model
has been widely used in the last two decades [5,13,21].
Although capture devices have been improved substantially,
the scanned data still contain deficient holes in certain sit-
uations. Moreover, we often confront abraded surfaces and
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damaged models with different deficiencies. All these holes
need to be completed appropriately.

Many techniques have been proposed to deal with this ill-
posed problem.The existingmethods, such as [3,9,15,23,24,
28,33], are designed to fill holes for polygonal mesh models.
Most of these methods define geometry completion oper-
ators by utilizing connection topology and generate robust
hole-filling results. For more details about mesh completion,
please refer to the surveys of Ju [18], Campen et al. [6] and
Attene et al. [2].

Filling holes directly onpoint cloudmodels currently turns
out to be an essential requirement for many practical applica-
tions. Earlywork [8] presents an overall pipeline of geometry
completion for point cloud models. Although many tech-
niques [7,19,20,25,29,30,32] work on point cloud models,
most of them only generate smooth hole-filling results.

In contrast to smooth hole filling, sometimes it makes
special sense to complete a hole by preserving sharp fea-
tures (i.e., edge/corner/apex) or using the least materials; see
Fig. 1b, e. Since general smooth hole-filling methods cannot
complete the protruding features plausibly, it is still a diffi-
cult task to recover the potential sharp features on a deficient
point cloud surface.

Our work is inspired by the observation that geome-
try completion should reasonably provide potential shape
options for deficient regions. Therefore, in this paper, we
propose a novel hole-filling approach for point cloudmodels.

Our algorithm simulates the energy diffusion process and
progressively contracts a hole boundary until the hole is
closed.Unlike the existingboundarypropagatingmethod [10],
it could control the propagating process effectively. Themain
contributions of this paper are as follows:

– Presenting a unified geometry completion algorithm that
recovers both smooth and feature-preserved holes for
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Fig. 1 Our shape-controllable geometry completion algorithm recov-
ers a large deficient sphere (a) with different neighborhood radiuses r .
b, d and e use a constant size of r,while (c) employs a set of decreasing
values of r . All these results use the identical elastic force parameter

σr = 0.22 BBL (the bounding box diagonal length of the input model)
and are generated without the normal dissimilarity constraint. a A defi-
cient sphere, b r = 0.4 BBL, c r = 0.25BBL, r = r/1.1, d r = 0.11
BBL, e r = 0.05 BBL

point cloud models. Sharp features are reproduced by
controlling the hole-boundary contracting process.

– Developing a new position sampling operator based on
elastic force to generate the filling points. It avoids local
and global reconstructions so that points on non-hole
regions keep unchanged.

Before elaborating our algorithm, we briefly review the
related techniques of geometry completion and feature recon-
struction for point cloud models in the next section.

2 Related work

Many surface reconstruction methods, whether global or
local fitting of the scattered point cloud data, could fill holes
to a certain extent. Carr et al. [7] employ radial basis func-
tion (RBF) to construct a global signed distance field (SDF)
for the original point set. It could fill the deficient holes and
generate a smooth surface. TheMPUmethod [25] uses piece-
wise quadratic fittings to construct the feature preservedSDF.
Kazhdan et al. [20] present a Poisson reconstructionmethod
which uses piecewise constant indicator gradients to con-
struct a potential surface for the input point cloud. A new
enhanced version is screened Poisson reconstruction [19].
It could reconstruct the feature preserved surface faithfully
even if the input model contains small deficiencies.

The Volfill method [10] simulates the heat diffusion
process to propagate SDF from known parts to the adjacent
hole region. Once the diffusion was completed, a hole is
filled. This method could fill holes with complex shapes due
to its local shape propagation in a progressive way. However,
simply propagated SDF cannot describe the sharp turn of a
surface exactly. It also needs the support of local space subdi-
vision.Weyrich et al. [30] employmoving least square (MLS)

projection to replace the distance field estimation in [10].
Since lacking effective constraints for the diffusion process,
it still cannot faithfully recover the holes with large defi-
ciency or holes with extreme feature, especially for the sharp
(edge/corner) regions.

Another type of hole-filling technique, example-based
geometry completion, recovers deficient regions by finding
similar patches from either the input model [14,27,29,31] or
other models belonging to the same category [22]. Example-
based hole-filling method suits the hole whose boundary
region has a similar shape on the known model. Hence, it
does not effectively handle a hole whose shape cannot be
learned from non-hole regions.

To produce sharp features, Fleishman et al. [12] segment
a point model into piecewise smooth regions based on robust
statistics. Öztireli et al. [26] present an RIMLS method. It
combines the robust local kernel regression with the implicit
MLS to describe sharp features. Recently, Huang et al. pre-
sented an edge-aware resampling (EAR) method [16] for
point cloud models. It generates sharp features by progres-
sively resampling a surface to approach its feature edges.
Although these methods could generate appealing sharp fea-
tures, they need sufficient samples near or on the feature
regions. Therefore, they cannot fill holes with large data defi-
ciency.

To recover the missed features, state-of-the-art tech-
niques [15,24,32] resort to interactive method. Harary
et al. [15] and Ngo and Lee [24] are designed for meshes and
adopt the strategywhich first recovers the feature curve under
user interactions, then fills the divided smooth sub-holes.
Morfit [32] can recover some complex surfaces by interac-
tively manipulating the curve skeleton and profile curve of
the input point cloud model. Through feature editing, it can
reconstruct sharp edges. Morfit requires an initial skeleton
and applies to the generalized cylinder objects whose topol-
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ogy can be described by the curve skeleton. Differing from
these techniques, our method recovers sharp features in an
automatic hole-filling process.

3 Formulation of our geometry completion
algorithm

Our geometry completion algorithm takes advantage of the
local propagation properties [10]. To repair sharp features,
it goes a step further to decompose the boundary contract-
ing process into two primary steps: normal propagation and
position sampling. The former controls orientations of filled
points as well as the shape of recovered surface, while the
latter practically generates a new boundary for one-pass
hole-boundary contraction. These two steps are implemented
alternately during the hole-filling process so that they could
benefit from each other.

This decomposition gives shape-controlling chance to our
algorithm.We incorporate the normal dissimilarity constraint
into both steps of normal propagation and position sampling
for recovering sharp features in hole regions.

3.1 Algorithm overview

Given the oriented point cloud, our geometry completion
algorithm first implements a preprocessing to denoise the
input point cloud surface. After determining a hole bound-
ary, it contracts the hole region by propagating its boundary
iteratively until no new boundary is generated. The main
procedure of our method can be concisely interpreted as
Algorithm 1.

Algorithm 1 Shape controllable geometry completion for
point cloud models.
Input: a point cloud model with normals;
Output: the completed point cloud model.

1. input a model P (has a hole Ω ′) with normals N;
2. preprocessing: N = f1(N) and P = f2(P) (§3.2);
3. determine the hole-boundary ∂Ω

′
(§3.3);

4. Do /∗ iteratively hole-boundary contraction. ∗/

5. propagate the normals of points near ∂Ω
′
(§3.4);

6. If generated new boundary ∂Ω (§4.1)
7. generate B by sampling new boundary ∂Ω (§4.2);
8. ∂Ω

′ ←− B;
9. EndIf

10. Until no new boundary ∂Ω is generated
11. End

3.2 Preprocessing

Our algorithm takes as input a set of points P ⊂ R3 and
their normals N ⊂ R3. To find a faithful hole boundary, it
first implements a two-stage filtering preprocessing for the
input point cloud model. Specifically, we enforce bilateral
filtering [11] on both orientations and positions of the input
points, respectively. For a certain point pi with its normal ni
(i = 1, . . . ,mp and mp is the number of input points), the
filtered normal and position can be expressed as ni = f1(ni )
and pi = f2(pi ) correspondingly. We denote the filtered
normals and point cloud as N and P, respectively.

3.3 Determining the hole boundary

Although there are some hole-boundary detecting opera-
tors [1,4,8] for point cloudmodel, they are not robust enough
for the hole near a sharp region. In this paper, for a holeΩ

′
on

the filtered point set P ⊂ R3, we present a divide and con-
quer approach to determine its boundary ∂Ω

′
effectively.

It first selects a small number of feature points f
′
i (i =

1, . . . ,m f and m f is the number of the selected feature
points) sequentially along the boundary of a specified hole
so that each boundary segment between f

′
i and f

′
i+1 approx-

imates a local linearity. We insert these feature points into a
boundary sequence B

′
.

For a specified segment f
′
i f

′
i+1, the point b

′
m on the hole

boundary corresponding to the middle point M of f
′
i f

′
i+1

is determined by choosing the nearest neighbor from input
point cloud to M . If the chosen b

′
m is a new boundary point

(has not entered B
′
), we insert it into B

′
between f

′
i and f

′
i+1.

With the chosen b
′
m , our algorithm recursively implements

the same operation on segments f
′
i b

′
m and b

′
m f

′
i+1, respec-

tively. This process terminates when no new boundary point
corresponding to the middle point of each new segment is
found.

We iteratively implement the above recursive operations
for all segments. Finally, the constructedpoint sequence B

′ ⊂
P composes the discrete representation of the initial hole
boundary ∂Ω

′
(see an example in the accompanying video).

3.4 Normal propagation

To compute the contracted boundary ∂Ω , our algorithm
needs to construct a normal field for those sampling points
on the new boundary in advance.

We assign a new point sequence B as the discrete repre-
sentation of ∂Ω . The normal ni of a candidate filling point bi
is calculated by the weighted sum of normals from its local
neighbors Nr (bi ):
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Fig. 2 Different hole-filled results, from left to right corresponding to
Fig. 1b, c, e respectively, are guided by distinct processes of normal
propagation

ni = 1

K (bi )

∑

p∈Nr (bi )

n p ∗ g1 (‖p − bi‖) g2
(‖n p − ni ′ ‖

)
,

(1)

K (bi ) =
∑

p∈Nr (bi )

g1 (‖p − bi‖) g2
(‖n p − ni ′ ‖

)
, (2)

where r is the neighborhood radius of bi , g1 is the Gaussian
distance weight between different points with standard devi-
ation σd and g2 is the Gaussian normal dissimilarity weight
with standard deviation σn .

Equation (1) resembles bilateral normal filter [17,26] for-
mally. It mainly differs in the purpose that we intend to infer
the unknown normal for a candidate position rather than filter
a known normal. In fact, we cannot offer a reference normal
ni to compute the difference for g2 between a neighboring
normal n p and the normal of candidate bi . Instead, we take
the normalni ′ , corresponding to a pointb

′
i (on the former hole

boundary B
′
) whose position is most close to the candidate

position bi , as the reference normal in Eq. (1).
Note that we use the normal dissimilarity weight g2 to

constrain our normal propagation process and further to con-
trol the hole-filling shape. If a candidate bi locates near a
sharp feature, the neighboring normals on the other side will
hold large values of normal dissimilarity and contribute less
to ni , while the neighboring normals on the same side con-
tribute more. Therefore, the recovered hole boundary could
preserve sharp features. Moreover, σn is an adjustable para-
meter in our normal propagation process. A large value leads
to smooth orientation, while a small value results in normal
propagation with orientation preservation. This constrained
normal propagation combined with progressively boundary
contraction contributes to the shape controllable capability
of our algorithm (see Fig. 2).

3.5 Position sampling

Guided by the propagated normal, position sampling for one-
pass boundary contraction should concern two objectives.
First, the newgeneratedboundarymustmatch its surrounding
surface. Second, the new filled points should hold a reason-

able distribution. The latter requires a sequential and practical
contraction of the hole boundary in one-pass iteration and
guarantees overall decrease of the hole region.

We define the discrepancy value of a filled point bi ,
denoted as E1(bi ), to measure the matching degree with its
neighboring surface. The smaller the value of E1, the better is
thematching degree bi gets.Meanwhile, our algorithm intro-
duces elastic force to control the distribution of new filled
points. A candidate point bi is deemed to be a good sampling
only if it locates in the equilibrium position and receives the
minimum force, denoted as E2(bi ), from its neighbors on
the former and the current boundaries. Combining these two
objectives of E1 and E2 (both will be defined specifically
in Sect. 4), we formulate our position sampling of one-pass
boundary contraction as a minimizing problem of objective
function (3),

E(B) = argmin
B

∑

bi∈B
{E1(bi ) + E2(bi )} , (3)

where B, formed by the latest one-pass filled points, repre-
sents the discrete new hole boundary. The solution of Eq. (3)
should minimize the total elastic forces of the filled points
and the discrepancy between newly generated hole boundary
B and the existing surface.

4 Generating a new hole boundary

Although we have built an objective function for the hole-
boundary contracting process, an optimal new boundary
curve might not exist for Eq. (3). It is because there are
countless sampling patterns and the trivial solutionmakes the
objective function minimum. Moreover, determining a new
boundary in the hole region is also an underdetermined prob-
lem, since we do not have sufficient conditions to constrain
our sampling operation. Hence, the intention to solve Eq. (3)
precisely is unadvisable. Instead, we resort to an approximate
strategy to address this sampling problem.

We propose a new indirect sampling operator, also includ-
ing two sequential operations both based on elastic force,
to construct a new hole boundary B approximately. It first
computes a control curve C for the new hole boundary B
according to those samples on the former pass boundary B

′
.

Then under the constraint of the control curve C , one-pass
position sampling on a 2Dmanifold is reduced to a linear 1D
sampling alongC . The introduced control curve restricts new
sampling points in a limited band and makes sampling prob-
lem well posed. Thus, the new sampled boundary B offers a
sound approximate solution for objective function (3).

The control curve C derived from the former pass bound-
ary B

′
should respect the local shape of the existing surface.

We optimize the position of each control point relying on
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both its local neighbors and the new normal field (defined in
Sect. 3.4). Thereafter, we sample along control curve C and
implement position optimization for each sampled point as
well. From these sampled points, our algorithm constructs
the next pass boundary control curve if it does not reach con-
vergence.

4.1 Constructing hole-boundary control curve

4.1.1 Definition of elastic force

Our algorithm leverages Gaussian function to simulate elas-
tic force and control the distance of a sampling point from
its neighbors. Given a new candidate control point c

′
i , as

shown in Fig. 3, it represents the equilibrium position Ob
′
i

with respect to a former pass boundary point b
′
i along its

propagating direction. Ob
′
i
receives elastic forces from its

neighboring points on the former pass hole boundary. We
define the elastic force from a neighbor q as

rq
(
Ob

′
i

)
= 1.0 − exp

((
‖Ob

′
i
− q‖ − ‖Oq − q‖

) /
σ 2
r

)
,

(4)

where Oq is the equilibrium position of neighbor q along

the direction of vector
−−→
qOb

′
i
. Actually, once the neighbor

q is given, the elastic force received by Ob
′
i
from q can be

determinedby thedistance fromOq toOb
′
i
along thedirection

of repulsive force. Note that, for a system of elastic force, we
assign the repulsive direction as the positive direction and
the attractive one as the negative direction. Therefore, the
definition of rq(Ob

′
i
) can be simplified as Eq. (5):

rq
(
Ob

′
i

)
= 1.0 − exp

(
∣∣Ob

′
i
− Oq

∣∣−−→
qO

b
′
i

/
σ 2
r

)
, (5)

where
∣∣A

∣∣−→
l
denotes the signed distance of vector A along

the direction
−→
l .

σr is another adjustable parameter. Its value can refer to the
parameter σd [in Eq. (1)]. In our algorithm, σr determines the
sampling density for a hole region. Specifically, it controls
the equilibrium position for a given point along the specified
direction. For example, in Fig. 3, the equilibrium position
Ob

′
i
can be computed by solving the following equation (see

“Appendix”),

exp

⎛

⎝∣∣b′
i − Ob

′
i

∣∣−−−→
b
′
i Ob

′
i

/
σ 2
r

⎞

⎠ = 10−4. (6)

Fig. 3 Elastic forces of a candidate position Ob
′
i
received from its two

different neighbors q1 and q2. Ob
′
i
is the equilibrium position of b

′
i along

its contracting direction

Fig. 4 A 2D illustration of the equilibrium positions Ob
′
1
, Ob

′
2
,

Ob
′
3
, Ob

′
4
and Ob

′
5
for different boundary points b

′
1, b

′
2, b

′
3, b

′
4 and

b
′
5 along their contracting directions, respectively. The control points
(red circles) are those equilibrium positions which receive no repulsive
forces from any other adjacent boundary points

Figure 4 shows an example and illustrates the equilibrium
positions derived from different boundary points along their
contracting directions according to Eq. (6).

4.1.2 Boundary control curve

In our algorithm, the new boundary control curve is con-
structed from those equilibrium positions corresponding to
the former pass hole-boundary points.

For a specified boundary point b
′
i , our algorithm computes

a vector, which is the cross product from the normal of b
′
i to

the orientation of the boundary curve. We take this vector
as the local contracting direction of the boundary curve B

′

(shown in Fig. 5). We search the location of c
′
i depending on

Eq. (6) from the former pass boundary point b
′
i ∈ B

′
along

its contracting direction. The calculated candidate of control
point c

′
i does not necessarily match well the boundary shape.
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Fig. 5 Generating the control points and then sampling along the new
control curve. Red circles denote control points, while small purple
circles are sampling points

We use neighboring points on the existing model to optimize
its position according to the discrepancy definition in Eq. (7).

The optimized control point ci will be discarded if it
receives any repulsive forces from other boundary points.
Finally, by joining all the reserved control points consecu-
tively, we obtain the new boundary control curve. Examples
are shown by red circles in Figs. 4 and 5.

4.2 Sampling along the boundary control curve

We initialize an empty filling sequence B and push the first
control point c0 into it as the first sampling point b0. Then, we
iteratively compute the next new sampling point bi+1 (i.e.,
the equilibriumposition of bi along the control curveC) start-
ing from b1 until each control point has been traversed. Our
algorithm also implements position optimization for each bi
to match the shape of the local surface. The normals of new
sampled points are computed following Eq. (1).

Once our method gets a new boundary sampling point set
B, as the sequence of small purple circles shown in Fig. 5,
it finishes one-pass hole-boundary contraction. By executing
the main loop between the fourth line and the tenth line in
Algorithm 1, the hole-filling procedure will converge if it
generates no new control points after all points on the former
boundary B

′
have been traversed.

In practice, if the ratio between the number of generated
control points and the number of boundary points in B

′
is

below a certain threshold, it means that the boundary no
longer contracts noticeably. In our experiments, we termi-
nate our algorithm when the ratio is lower than 30%.

4.3 Position optimization

Tomatch the local surface shape, a position candidate (either
a control candidate or a sampling candidate, for the sake of

clarity we just explain the sampling candidate) has to be opti-
mized according to its local neighbors. For a new candidate
bi , we define its discrepancy E1(bi ) as the sum of weighted
offsetswith respect to its neighboring points along the normal
direction of bi . Specifically, the discrepancy of bi ismeasured
by the total local offsets:

offsets(bi ) = 1

K (bi )

∑

p∈Nr (bi )

g1 ∗ g2 ∗ ∣∣p − bi
∣∣−→nbi , (7)

where nbi denotes the normal of candidate bi , g1 and g2
are the distance weight and the normal dissimilarity weight,
respectively, and K (bi ) is defined as the same in Eq. (2).
Therefore, the optimized position can be obtained by updat-
ing candidate bi as:

bi = bi + nbi ∗ offsets(bi ). (8)

Note that the normal nbi probably does not match bi after
implementing this position optimization. The recomputed
normal nbi will also cause themismatch that the updated bi is
not the best matching position with respect to the new normal
any more. Theoretically, position optimization is an iterative
process and will be converged finally when the position and
the normal stop updating. In practice, the convergence will
be reached quickly. We implement two iterations of normal
updating and position optimizationwithout triggering notice-
able artifacts in our experiments.

Equations (7) and (8) indicate that local normals and the
normal dissimilarity constraint benefit position sampling,
especially sampling near a sharp region. In turn, the refined
position sampling combined with the normal dissimilarity
constraint improves normal propagation faithfully in the fea-
ture region, as explained in Eq. (1). Consequently, normal
dissimilarity constraint and themutual enhancement between
normal propagation andposition sampling enable ourmethod
to fill holes with sharp features.

4.4 Feature constraint

To complete a surface containing sharp features, our position
sampling (stated in Sect. 4.2) may cause local overshooting
samples. An example is shown in the right of Fig. 7. To elim-
inate this phenomenon, we introduce a sampling constraint
for the sharp feature’s completion.

Specifically, during the boundary contracting process, a
few control points close to a sharp region may overshoot
the local surface as the topmost and rightmost control points
shown in Fig. 6. Our method holds these control points for
keeping the chance of sampling near the sharp region (as
sample bi ). However, it might give rise to the overshooting
samples as well (candidate b

′
i+1 and b

′′
i+1). These overshoot-

ing samples will trigger the divergence of our algorithm. We
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Fig. 6 Combination constraint for recovering sharp features. The sam-
pling candidates overshooting the local potential surface (as b

′
i+1 and

b
′′
i+1) will have at least one positive offset value corresponding to a
neighboring control point and will be rejected by our algorithm

Fig. 7 Overshooting samples occur (right) when we fill the deficient
corner of a cube (left) without the combination constraint

utilize a combination condition to check these overshooting
samples (Fig. 7).

For the control curve locating in a convex region, all sam-
pled points should lie either on the boundary or in the inner
part of the polygon if no overshooting occurs. This “com-
bination constraint” means that the offset, starting from the
tangent plane of a neighboring control point to the sampling
candidate, should always be a negative value or zero with
respect to the normal direction of this control point.

In Fig. 6, the offsets of the candidate sample b
′
i+1 con-

tain a positive value. Actually, it overshoots the horizontal
potential surface and should be discarded. Another sampling
candidate b

′′
i+1, which contains positive offset and overshoots

the vertical surface, is also rejected. In contrast, for a con-
cave boundary such offsets of a candidate should always be
non-negative values. Thus, once a negative offset appears,
the sampling candidate must have overshot the local concave
surface and will be discarded by our algorithm.

By employing the combination constraint, our algorithm
eliminates the overshooting samples during the position sam-
pling process. The fifth column in Fig. 8 exhibits the sharp
results of geometry completion under the combination con-
straint.

5 Results and discussion

We test our geometry completion algorithm on both synthetic
and scanned surfaces to explore its capability.

The different completed results of a deficient sphere in
Fig. 1 show the shape control capability of our algorithm.
We use the neighborhood radius r of normal propagation
to control the hole-boundary contraction. More neighboring
points will be involved so that the orientation of the hole
boundary converges quickly if a large r is assigned. Only
a few neighbors will participate in the normal propagation
if we set a small r , and the orientation of hole boundary
will strictly respect the local shape of the existing model. By
taking different r , our algorithm generates 4 distinct shapes,
as shown in Fig. 1b–e. Figure 1e demonstrates a recovered
cone shapewith a small r (0.05)multiplied by a default value,
the bounding box diagonal length of the input model. We
denote this value as “BBL”.

We compare our algorithm with three representative tech-
niques of Volfill [10], MPU [25] and screened Poisson
reconstruction [19]. The results produced by the three exist-
ing techniques on six deficient point cloud models are shown
in Figs. 8, 9 and 10. Note that these three techniques recon-
structed the input models and generated mesh results. Our
method fills a hole by contracting its boundary, so that non-
hole regions remain unchanged. For comparison, we display
these results in a point cloud pattern.

Screened Poisson reconstruction method fills all holes
robustly, but generates smooth results. Volfill algorithm gen-
erates feature preserved results for cube, pyramid, fandisk
and dihedral models to a certain extent. But it still fails
to recover sharp features. The MPU algorithm generates a
sharp apex for the pyramid and recovers the sharp edge for
the dihedral. But it fills the non-hole region and expands the
boundaries of these two openmodels (see the bottom of pyra-
mid from a side view in Fig. 8 and the left part of the dihedral
in Fig. 9). In contrast, due to rigorous constraint of normal
dissimilarity (see the small σn in Table 1), our method could
strictly control the boundary propagation to recover the sharp
features for these models. The results are shown in Figs. 8
and 9.

Besides completing the sharp features, our method could
recover round surfaces by loosening the normal dissimilarity
constraint. The completed results on cube, pyramid and fan-
disk models are shown in the last column of Fig. 8. For the
“heart” model with a large hole, compared with Volfill [10],
our algorithm can effectively control the boundary contrac-
tion by slightly decreasing the normal dissimilarity parameter
σn . It recovered a desirable surface with continuous curva-
ture change; see comparison of the third and the fifth results
in the last row of Fig. 8.

For the real scanned models (Figs. 11, 12, 13) and the
noise-contaminated models (Figs. 9, 10), our method imple-
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Fig. 8 The first three rows are the geometry completion results of a
deficient cube, an incomplete pyramid and a destroyed fandisk model.
The results from the second to the fifth columns correspond to screened
Poisson reconstruction,Volfill,MPU and ourmethods, respectively. The

last column is the round surface generated by our approach. The fourth
row is a deficient “heart” shape surface. It is completed by screened
Poisson reconstruction, Volfill, MPU and our algorithm successively.
The rightmost is the top view of our result

Fig. 9 Preprocessing and completing a dihedral model. Figures from
top-left to bottom-right are the input deficient model, denoised dihedral
and hole-filled results generated by screened Poisson reconstruction,
Volfill,MPU and our method, respectively

ments an anisotropic filtering preprocessing (Sect. 3.2) to
get a relatively neat model. We detect a hole boundary on the
denoised model and then implement the geometry comple-
tion.

Fig. 10 Completing a noised Planck model. Figures from top-left to
bottom-middle are the input noised model, hole-filled results produced
by screened Poisson reconstruction, Volfill, MPU and our algorithm,
respectively. The last figure is the ground truth model
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Table 1 Our experimental settings of the core parameters and the statistic data for most hole-filling cases

Model Figures r (BBL) σn (BBL) σr (BBL) Orig. point
(num.)

Hole-bound.
point (num.)

Iterative
times

Filled point
(num.)

Sphere 1c
0.25;
r = r/1.1

Sup 0.22 4320 120 14 738

Sphere 1e 0.05 Sup 0.22 4320 120 22 1004

Cube 8(1–5) 0.05 0.1 0.25 9192 51 12 448

Pyramid 8(2–5) 0.05 0.1 0.25 572 32 11 268

Dihedral 9(2–3) 0.05 0.1 0.25 1520 66 4 160

Planck nose 10 0.04 0.6 0.14 25,052 31 78 508

0.9 0.13 26 8

Sculpture 11 0.013 Sup 0.12 105,727 148 21 2077

Printer 12 0.015 1.5 0.13 64,647 68 15 998

Hand (11 holes) 13 – – – 203,723 – – 10,387

Sweeping surface
(circle)

15 0.03 Sup 0.16 8313 51 15 769

“Sup” means loosening the normal dissimilarity constraint. “Figure 8(1–5)” denotes the 5th figure of the 1st row in Fig. 8

Fig. 11 A destroyed sculpture (left) is completed by our method. The
details of the recovered region is shown in a close-up view (right)

Fig. 12 Our method handles a scanned printer (left) and generates the
hole-filled result. The close-up view is also given (right)

Figure 10 is the Planck model with the destroyed nose.
Since we want to generate the straight nose bridge and the
round nose tip, we separate this hole boundary into two parts.
The straight nose bridge is first generated with a relatively
small σn , as listed in Table 1. Finally we fill the round nose
tip with a little bit bigger σn , as shown in Fig. 10.

A scanned sculpture model, in Fig. 11, contains a large
deficiency which is composed of two connected holes. Dur-
ing the boundary contracting process, our method marks the

Fig. 13 A scanned hand (a) is first denoised (b) and then completed by
the screened Poisson reconstruction method (c). d The repaired results
of our method from different viewpoints

encountered boundary parts as the non-updatable boundary
control points and skips position sampling in these regions
(see the accompanying video). The trajectories of bound-
ary propagation demonstrate that the combination of control
curve and elastic force fulfills our position sampling appro-
priately. Figure 12 shows a scanned printermodelwith coarse
input normals. Our algorithm is not sensitive to the accuracy
of initial normals. The deficient corner (containing both con-
cave and convex features) is recovered by our method.

A scanned hand with many holes is displayed in Fig. 13.
Too close a distance between adjacent fingers leads tomutual
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Fig. 14 Completing a horse model. Figures from top-left to bottom-
right are input model, recovered results with different elastic force
parameters σr corresponding to 0.14 BBL, 0.15 BBL and 0.16 BBL,
respectively

Fig. 15 Recovering a sweeping surface with three different holes by
using our method. The left is the input deficient sweeping surface. The
middle and the right are our completed results from different viewpoints

interference when screened Poisson reconstruction is imple-
mented. Our method avoids this influence by taking the
constraint of normal dissimilarity. We fill the complex hole
region using piecewise boundary contraction. Figure 13
shows our repaired hand from different viewpoints (for more
details, see the accompanying video).

Our method could natively treat the smooth holes. We
loosen the normal dissimilarity constraint to complete a defi-
cient horse and a sweeping surface with open boundary. The
results are shown in Figs. 14 and 15, respectively.

There are three parameters that need to be assigned for our
algorithm, including the neighborhood radius r , the parame-
ter of normal dissimilarity σn and the elastic force parameter
σr . A relatively small σn , corresponding to a strict normal
dissimilarity constraint, is needed for filling holes around
sharp regions. σr has direct proportion relationship with the
repulsive force. Large repulsive force means less sampling
points, while small repulsive force produces more sampling
points (see Fig. 14). The values of these parameters for most
examples are given in Table 1.

Table 2 Evaluation of the results generated by different methods on
five models

Cube Pyramid Dihedral Planck Fandisk

Scr.

Max 0.2048 0.1266 0.0532 0.0221 0.0276

Ave 0.0070 0.0070 0.0048 0.0016 0.0008

Vol.

Max 0.0729 0.0975 0.0982 0.0248 0.0153

Ave 0.0063 0.0050 0.0051 0.0017 0.0008

MPU

Max 0.0619 0.0828 0.0495 0.0830 0.0141

Ave 0.0047 0.0059 0.0022 0.0051 0.0008

Our

Max 0.0046 0.0114 0.0034 0.0099 0.0049

Ave 0.0031 0.0027 0.0019 0.0012 0.0001

Since the highlight of our method is repairing the geom-
etry feature, we quantitatively evaluate our results in terms
of recovering sharp features. Five models (cube, pyramid,
dihedral, Planck and fandisk) are chosen. We normalize each
model into a unit cube and calculate the errors for all points
on each recovered model. The closest distance from a point
on a repaired model to the ground truth surface is taken as
the error measurement. Three synthesized complete surfaces
(cube, pyramid and dihedral with sharp features) and two
original models (unbroken Planck and fandisk) are taken as
the ground truth.

Table 2 reports the maximum and average errors for all
results generated by different methods. Note that the errors
that occurred on the filled non-hole regions, including the
bottom of the pyramid (Volfill and MPU), the left part of
the dihedral (MPU) and the bottom of the Planck model
(screened Poisson, Volfill and MPU), were excluded. In
Table 2, our algorithm has the least values on both maxi-
mum and average errors for each model.

Figure 16 shows the colored errors for five models com-
pleted by four methods. Some obvious errors along sharp
edges were found on results produced by screened Poisson
and Volfill methods. The existing methods failed to complete
sharp corners on several cases. Our method recovered faith-
ful sharp features for these deficient edges and corners. The
recovered trajectories on both pyramid and dihedral mod-
els show that our algorithm performs each step with a low
repairing error.
Limitations The limitations of our method mainly exist in
three aspects. First, it needs to select a few feature points on
a hole boundary for generating the initial boundary. Thus,
it is a semi-automatic approach. Second, just depending on
the constrained local propagation, our method will fail if
two-thirds of a sphere has been cut. For this kind of highly
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Fig. 16 Error plots of the quantitative evaluation. From top to bottom, cube, pyramid, dihedral, Planck and fandisk. From left to right, screened
Poisson, Volfill,MPU and our method

ill-posed case which has more than half shape missed, more
priori normal variations should be integrated in our normal
propagation to generate the desired result. The last one is that
our method currently focuses on shape recovery and does not
treat the lost geometry details of a hole if it contains high-
frequency features.

6 Conclusions

We devised a shape-controllable geometry completion algo-
rithm for point cloud models. It provides potential shape
options for those hole regions that probably contain sharp fea-
tures. Our method inherits the merits of the local propagation
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Fig. 17 Our approach benefits surface reconstruction. We implement
two state-of-the-art algorithms (EAR [16] and RIMLS [26]) for sharp
feature reconstruction on four deficient point cloud models. For each
group, themiddle and the right figures of the first row show the results of
EAR and RIMLS methods directly working on the original point model,
respectively. The left figure of the second row is our hole-filled result.
Themiddle and the right figures of the second row are the corresponding
results of EAR and RIMLS methods based on our result

pattern. It augments the capability of recovering sharp fea-
tures by incorporating normal dissimilarity constraint into
the decomposed normal propagation and position sampling
operations. By defining the elastic force and introducing
the boundary control curve, our method has appropriately
addressed the sampling problem for point cloud hole filling.
Those filled points shown in our experiments exhibit a rea-
sonable distribution on the hole regions.

The completed point cloud model will practically benefit
3D surface reconstruction and many follow-up applications.
With our hole-filled results, two sharp feature-preserved
reconstruction methods of EAR [16] and RIMLS [26] gen-
erated intriguing results; see the reconstructed surfaces in
Fig. 17.

In the future, we would like to develop an automatic
hole-boundary recognition technique to enhance our geom-
etry completion approach. Another natural thought of the
following work is to explore the detail recovering method
for those deficient point cloud surfaces containing high-
frequency geometry features.
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Appendix: Computing the equilibrium position

To compute the equilibrium position Ob
′
i
for a former pass

hole-boundary point b
′
i , as shown in Fig. 3, we introduce

a point q0 whose position just exactly locates in Ob
′
i
, as

depicted in Fig. 18. The equilibrium position of q0 on the

direction of vector
−−−→
Ob

′
i
b

′
i must have the same position with

point b
′
i , that is to say Oq0 coincides with the position of b

′
i .

Taking the elastic force received by Oq0 from b
′
i into account,

its value should be the positive maximum (equals 1, corre-
sponding to the maximum repulsive force) according to the
definition of the elastic force in Eq. (5). The overlap positions
can be seen as the extremely close distance between Oq0 and
b

′
i . Without loss of generality, we assign this repulsive force

along the vector
−−−→
b

′
i Ob

′
i
. Therefore, we have rb′

i
(Oq0) = 1,

specifically 1.0−exp

⎛

⎝∣∣Oq0 − Ob
′
i

∣∣−−−→
b
′
i Ob

′
i

/σ 2
r

⎞

⎠ = 1. By sub-

stituting Oq0 with b
′
i ,we have exp

⎛

⎝∣∣b′
i − Ob

′
i

∣∣−−−→
b
′
i Ob

′
i

/σ 2
r

⎞

⎠ =
0.
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Fig. 18 Computing the
equilibrium position Ob

′
i
for a

point b
′
i

Our purpose is to compute the equilibrium position Ob
′
i

for point b
′
i . So, we need to take the logarithm for the above

equation. However, the right side of this equation equals zero
and cannot enforce a logarithm operation immediately. For
the sake of numerical computing, we use a small constant
10−4 to approximate instead of zero and make our compu-
tation feasible. Finally, we can use the following equation to
compute Ob

′
i
for b

′
i if the parameter σr is assigned,

exp

⎛

⎝∣∣b′
i − Ob

′
i

∣∣−−−→
b
′
i Ob

′
i

/σ 2
r

⎞

⎠ = 10−4.
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