Vis Comput (2017) 33:371-383
DOI 10.1007/s00371-016-1207-2

@ CrossMark

ORIGINAL ARTICLE

Interactive directional subsurface scattering and transport of

emergent light

Alessandro Dal Corsol
J. Andreas Baerentzen!

Published online: 19 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Existing techniques for interactive rendering of
deformable translucent objects can accurately compute dif-
fuse but not directional subsurface scattering effects. It is
currently a common practice to gain efficiency by storing
maps of transmitted irradiance. This is, however, not effi-
cient if we need to store elements of irradiance from specific
directions. To include changes in subsurface scattering due
to changes in the direction of the incident light, we instead
sample incident radiance and store scattered radiosity. This
enables us to accommodate not only the common distance-
based analytical models for subsurface scattering but also
directional models. In addition, our method enables easy
extraction of virtual point lights for transporting emergent
light to the rest of the scene. Our method requires neither
preprocessing nor texture parameterization of the translucent
objects. To build our maps of scattered radiosity, we pro-
gressively render the model from different directions using
an importance sampling pattern based on the optical prop-
erties of the material. We obtain interactive frame rates, our
subsurface scattering results are close to ground truth, and
our technique is the first to include interactive transport of
emergent light from deformable translucent objects.

Keywords Subsurface scattering - Global illumination -
Interactive rendering - Translucent objects - Turbid media

B Alessandro Dal Corso
alcor@dtu.dk

Technical University of Denmark, Kgs. Lyngby, Denmark

The Alexandra Institute, Aarhus, Denmark

- Jeppe Revall Frisvad! - Jesper Mosegaard? -

1 Introduction

Subsurface scattering of light is a physical phenomenon
that occurs in translucent materials. Milk, honey, skin, mar-
ble, and candle wax are just a few examples of translucent
materials. It is possible to produce the qualitative appear-
ance of translucency using interactive volume rendering
techniques [32], but such techniques are not quantitatively
accurate. With the advent of analytical models for subsur-
face scattering [26], it became feasible to build more accurate
techniques for interactive rendering of translucent objects.
The first technique of this kind [33], and more recent ones
that also work for deformable objects (see Sect. 2), consider
diffuse subsurface scattering only. In practice, this means that
subsurface scattering is computed by evaluating an integral
over the object surface of an analytic dipole model [26] that
only depends on the distance between the points of incidence
and emergence. Single scattering and other dependencies
of the subsurface scattering on the direction of the inci-
dent light are neglected. Recent work in offline rendering
however shows that the directional effects are not negligi-
ble [10,14,20,50].

We present an interactive technique that supports direc-
tional subsurface scattering without relying on precomputa-
tion or a grid for volumetric light propagation. To the best of
our knowledge, our method is the first of its kind. Since the
method does not rely on texture parameterization, it works
for deformable and even procedurally generated geometry.

Due to reciprocity of light transport, we would ideally treat
the directions of incident and emergent light equally. This is
however too costly for an interactive technique. To achieve
interactivity, we need caching of subsurface scattering com-
putations. Existing techniques typically cache transmitted
irradiance [25,33] (total incoming light in a surface point)
and use a precomputed filter to evaluate the subsurface scat-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-016-1207-2&domain=pdf
http://orcid.org/0000-0002-4005-7365

372

A. Dal Corso et al.

tering [5,29,33]. These techniques require that the subsurface
scattering depends on distance only, whereas we need to use
the direction of the incoming light. To cache another quan-
tity, we note that subsurface scattering partly diffuses the
light even if the incident light and the scattering are highly
directional. Every ray of incoming light gives rise to a (non-
diffuse) lobe of emergent light at all surface points. Adding
up these lobes, the emergent light is in practice nearly diffuse.
We therefore store scattered radiosity (outgoing light) instead
of transmitted irradiance. Some of the directional subsurface
scattering models also neglect dependency on the direction of
emergence but still achieve improved accuracy [14,20,50].
Out of these, we can directly use the ones that do not rely on
precomputation [14,20].

In some existing techniques [4,33,36,42], scattered
radiosity is stored per vertex. To accommodate more detailed
directional effects, we use more detailed maps of the scattered
radiosity. We obtain these maps without requiring texture
parameterization of the translucent object by rendering the
object from multiple views using orthographic cameras. For
each of these views, we compute a map of scattered radios-
ity. We can then efficiently render the translucent object from
any view by look-ups into the scattered radiosity maps.

The scattered radiosity maps have two other important
advantages. As long as the light source and the object
are stationary, we can blend scattered radiosity maps and
thereby progressively improve the rendering. Moreover, we
can compute the transport of emergent light to the surround-
ing scene [40,42]. To include these light paths while keeping
the translucent object deformable, we generate a distribution
of virtual point lights on the surface of the translucent object
and set their intensity according to the scattered radiosity.
These virtual point lights enable us to render the trans-
ported light using a many-light method [8]. Since we include

transport of emergent light, our method is very useful for
interactive rendering of scenes with the light source hidden
behind a translucent object. Indirect illumination of a scene
by light that has scattered through candle wax is one use
case (Fig. 1). Another interesting example is light scattering
through translucent lamp shades or light bulbs. To the best
of our knowledge, we present the first interactive technique
for transport of light emerging from deformable translucent
objects.

2 Related work

One way to obtain interactive subsurface scattering is by
means of precomputation. Several early techniques rely
on precomputed scattering factors that enable subsurface
light transport between surface patches or from patch to
vertex [4,23,24,33]. These factors resemble form factors
in radiosity algorithms and specify transport of transmit-
ted irradiance to scattered radiosity. An extension of these
radiosity-like techniques is to include transport of emergent
light [42]. Other work is based on precomputed radiance
transfer [43,46,47,49], and some of this includes direc-
tional effects such as single scattering in the rendered
result [43,47,49]. Another approach is to precompute a grid
that can be used with a fast diffusion computation to ren-
der subsurface scattering in real-time [45,48]. As opposed
to our work, all these precomputation-based methods cannot
interactively render deformable translucent objects.

Some finite element methods are fast enough to enable
interactive rendering of deformable translucent objects [34,
36]. However, as these methods rely on diffuse incoming
light (transmitted irradiance) and a multi-resolution mesh
(triangular or tetrahedral), they are not easily adapted for

diffuse subsurface scattering

Fig. 1 Deforming translucent candle rendered interactively as with
existing techniques (left block), with our transport of emergent light
(middle block), and including directional subsurface scattering (right
block). Our method is the first to support interactive rendering of the

@ Springer

transport of emergent light

directional subsurface scattering

results in the right block (6 frames per second). For this scene, we use
28 scattered radiosity maps, 45 samples per direction, and 80 virtual
point lights

Interactive directional subsurface scattering and transport of emergent light

373

directional subsurface scattering and would typically require
some mesh preprocessing.

Volume rendering techniques can quite convincingly pro-
duce the qualitative appearance of translucency at high frame
rates [2,3,13,32]. While such methods are inspired by the
volume rendering equation [30], they only provide a rather
rough approximation of its solution. In addition, the accu-
racy of the subsurface scattering is limited by the resolution
of the volume or the grid. Some of the more advanced meth-
ods [3,13] also propagate light using low-order spherical
harmonics that effectively diffuse the subsurface scattering
contribution. Other techniques, which are based on separable
filtering and a depth map, also achieve real-time subsurface
scattering by aiming at the qualitative appearance and sacri-
ficing quantitative accuracy [18,19].

Fast filtering techniques can be constructed so that
they approximate diffuse subsurface scattering more accu-
rately [5,12,21,29]. The filtering is done in texture space and
thus requires texture parametrization of the object surface.
To avoid texture space problems, similar filtering techniques
are available for light space [9] and screen space [27-29,35].
The performance of all these filtering techniques, however,
depends heavily on the assumption that the subsurface scat-
tering is diffuse so that the convolution kernel is only a
function of the distance between the points of incidence
and emergence. Our work uses light space sampling [9], but
removes the assumption that subsurface scattering is diffuse.
If we were to remove this assumption from texture or screen
space filtering techniques and adapt them for directional sub-
surface scattering, they would become texture space or screen
space variations of the technique that we propose. The for-
mer variation would require texture parametrization of the
object surface, the latter would be view dependent.

Another interesting approach to interactive rendering of
deformable translucent objects is based on splatting [6,41].
In this approach, surface points seen from the light source
are splatted as screen-aligned quads. These splats contribute
according to the subsurface scattering model where they
overlap surface points in the geometry buffer of the camera.
On first inspection, this seems an ideal approach for interac-
tive rendering of directional subsurface scattering. However,
the directional model requires larger splats as it varies not
only with distance, and it is more expensive to evaluate as
tabulation is impractical. We, therefore, found the splatting
approach too expensive.

3 Method

We render translucent objects using a bidirectional scat-
tering-surface reflectance distribution function (BSSRDF).
In most BSSRDFs, a translucent material is defined by
the following spectral optical properties: refractive index 7,

Fig. 2 BSSRDF configuration on an object surface A. The diagram
illustrates the notation we use: bold font as in x,, denotes a point, while
arrow overline as in @; denotes a normalized direction vector

absorption coefficient o, scattering coefficient oy, and asym-
metry parameter g. As is common in graphics, we use
trichromatic optical properties (rgb). In addition, the BSS-
RDF depends on the position x; and the direction @; of the
incident light as well as the position x, and the direction &, of
the emergent light. The configuration is illustrated in Fig. 2.
When rendering a translucent object, we obtain the outgoing
radiance L, by evaluating the following integral over all x;
in the surface area A and over all @; in the hemisphere around
the surface normal 7; at x; [26]:

Lo (X0, @o) = Le (x,, C_[)o)“‘//s(xia O3 X, Bp)
AJ2

g

XLi (xi,CT),')COSQi da),' dAi, (])

where cos0; = @; - n;, L; is incident radiance, L, is emit-
ted radiance, and S is a BSSRDF. Disregarding surface
reflection, as this can be incorporated using well-known tech-
niques, the analytical BSSRDF can be written in the form:

S(xiva)i;x01a)0)
= F; (&) (Sa (xi, &3 X0) + §%) Fy (@), 2

where F; is Fresnel transmittance, Sy is the diffusive part,
which is typically modeled by a dipole, and S* (dependencies
omitted) is the remaining light transport, that is, the part not
included with S,;.

As in other interactive subsurface scattering techniques
that are not based on precomputation, we now assume that
S* is insignificant. For most BSSRDF models [11,20,26],
this means that single scattering is excluded entirely. How-
ever, if we use the directional dipole model [14], most single
scattering is included with S;. We therefore get a more accu-
rate result with this model as the neglected S* contains a
significantly smaller part of the scattered light.

In existing interactive techniques, it is common practice
to move the BSSRDF outside the integration over directions

@ Springer

374

A. Dal Corso et al.

of incidence @; (in Eq. (1)) and define transmitted irradiance
by [5,6,9,29,33-36,41]

Exp) = / Li (ei, 37) Fi(@:) cos 6; do. 3)
2

T

We would however like to support BSSRDFs that include
directional effects [14,20]. Since such BSSRDFs depend on
®;, we cannot perform this separation, but we can define
scattered radiosity by

B(x,) =JT// Sa(xi, @iy x0)Li(x;, @)
a2

v

XFZ(C_LBi)COS ‘91' dwl- dAi. (4)

This is an important quantity as the rendering equation (1)
becomes

Lo(x,, C?)n) = L¢(x,, 67)0) + %Ft(a)o)B(xn)a (5)

which enables view-independent rendering of translucent
objects if we store scattered radiosity B. We note that L,
is not fully view independent because of the Fresnel term F;,
but this is an inexpensive term that we can evaluate per pixel
per frame at very little cost.

For simplicity, our initial assumption is of a scene con-
sisting of a single object illuminated by a single directional
light. In Sect. 3.3, we extend to point lights, and in Sect. 4, we
show an example of using multiple lights. For surface points
lit by a directional light with radiance L, and direction @y,
we have

Li(xj, &) = L¢ V(xi, —¢) 8(&; + &), (6)

where V is visibility and § is a Dirac delta function that makes
the inner integral disappear, yielding

B(x,) = 7L /A Sa(xis —0; x0) Fy(—dy) cos By d Ay, ()
lit

where cos @y = —ayg - 11; and Ay is the directly lit area of
the surface (for unlit areas L; = V = 0). Since we only
need to integrate over the directly lit part of the surface area,
we perform the integration in a geometry buffer (G-buffer)
rendered from the point of view of the light source (a translu-
cent shadow map [9]). Since we have a directional light, our
G-buffer is an orthographic projection of the scene into the
light’s view plane, which has @y as its normal.

In order to distribute samples in the G-buffer according
to a distance r and an angle «, we assume a planar surface
normal to the light direction and rewrite the integral in polar
coordinates with origin x,:

@ Springer

27 00
B(x,) =7TLe/ / Sa(xi, —we; Xo)
0 JO
x Fi(—y) cos Oy r dr de, ®)

where r = ||x, —x;|| and « is the angle between x, — x; and
the first basis vector of the light’s view plane. This assumption
is clearly often violated, but it is commonly used in derivation
of BSSRDF models [11,26].

We evaluate the integral in Eq. (8) by Monte Carlo inte-
gration. Our estimator for scattered radiosity is

BN(xo) =

k]

N > -
Ly ZSd (xi, —we; x0) Fi(—wg) cosOpr

N = G

©))

where p(r, @) is the joint probability density function from
which we draw the sample pairs (7, ;). Starting from x,
transformed to the texture space of the light’s camera, each
sample pair corresponds to a texture space offset for looking
up x; and 7; in the light’s G-buffer.

3.1 Sampling distribution

BSSRDFs decay exponentially with the distance r = ||x, —
x;||. In particular, the asymptotic exponential falloff of
the standard and directional dipoles [14,26] is exp(—oud),
where d — r for r — o0 and oy, is the effective transport
coefficient defined by

o = /304 (00 + (1 = 8)0y). (10)
It is therefore highly beneficial to importance sample accord-

ing to this exponential decay. We do importance sampling by
choosing

|
Pexp(r, @) = p(r)p(a) = oye "”’2—, (11)

which is easily sampled by

(rj o)) = (_logél,zngz). (12)

Otr

The symbols &1, & € [0, 1] denote canonical uniform ran-
dom variables, which we obtain on the fly using a linear
congruential pseudorandom number generator.

It is important to note that the effective transport coeffi-
cient oy is different for different color bands. As a conse-
quence, we use a separate set of position samples for each
color band. In this way, we avoid color shifts, especially for
materials with very different scattering coefficients in the
different color bands (ketchup, for example).

Interactive directional subsurface scattering and transport of emergent light

375

Generate light maps

Fig. 3 Our three-step multipass technique for interactive rendering of
directional subsurface scattering in deformable translucent objects. The
scattered radiosity maps enable view-independence and transport of
emergent light

3.2 Rendering technique

The diffusive part of the standard dipole BSSRDF depends
only on » = |x, — x;| and is, therefore, easily tabulated
and used at runtime at nearly no expense. In directional sub-
surface scattering, on the other hand, the diffusive part of
the BSSRDF depends on both x,, 11,, x;, 71;, and @;. This
means that it is impractical to tabulate it and thus expensive
to evaluate it. To limit the number of times that we need to
evaluate the BSSRDF at runtime, we chose to exploit the
opportunity to have view-independence by storing scattered
radiosity in maps. In fact, as we noted in Eq. (5), the scat-
tered radiosity does not depend on the view direction @,.
With view-independence, it is convenient to also make the
update of the scattered radiosity maps progressive. By doing
so, the rendered result improves over time if we are only
moving the camera. Our technique is easily made progres-
sive by adding more samples for each frame. This means
that we have two render modes: (a) converged translucency
with real-time fly-through and (b) fully flexible translucency
rendered at interactive frame rates.

Our rendering technique is based on the rasterization
pipeline of the graphics processing unit (GPU). In fully
flexible mode, we use the three-step multipass algorithm
illustrated in Fig. 3. In the first step, we create a G-buffer
for each light source. In the second step, we compute scat-
tered radiosity maps using these light G-buffers. In the third
step, we sample the scattered radiosity maps and combine the
look-ups. If nothing changed except the camera position, we
also accumulate radiosity map results with the ones from the
previous frames. When convergence is reached, we switch
to converged mode and perform the third step only. In the
following, we provide the details of the three steps.

In the first step, as in translucent shadow mapping [9],
we render a G-buffer from the point of view of the light.
For each pixel, we store positions and normals, as well as a
material index (for global illumination purposes, Sect. 3.4).
Each directional light has an orthographic camera and an
associated G-buffer stored in a layered 2D texture. We com-
pute all the light G-buffers in a single rendering pass, where
each triangle is fed to each layer of a 2D layered texture in a
geometry shader.

In the second step, we render the translucent object from K
directions using orthographic cameras. The number of direc-
tions is chosen so that the surface of the model is covered well.
We place the cameras randomly on the bounding sphere of
the object using a quasi-random Halton sequence [22]. We
then configure the cameras to look at the center of the bound-
ing sphere with a frustum that encapsulates the sphere. Also
in this step, we use layered rendering in order to efficiently
render scattered radiosity into the different maps in a single
pass. For each fragment of the translucent object observed by
an orthographic camera, we compute the scattered radiosity
by generating N samples per color band on-the-go (Eq. (12)),
looking up into the light G-buffers with those samples to get
x; and 71;, and using those to evaluate Eq. (9). To avoid pattern
repetition artifacts, we choose a seed for the random points
using the pixel index in the scattered radiosity map as well
as the current map and frame numbers.

To progressively update the scattered radiosity maps, we
first perform a depth-only pass and then we render the model
with writing into the depth buffer disabled. During the sec-
ond step of the algorithm (except when the light condition is
changing or the object is deforming), blending is enabled to
allow accumulation in the scattered radiosity maps. We also
generate mipmaps for the scattered radiosity maps so that
we have the opportunity to apply a cheap high-pass filter that
smoothes high-frequency noise.

In the third and final pass, we sample the scattered radios-
ity maps for each fragment of the translucent object observed
by the actual camera. This process is described in the pseudo-
code in Algorithm 1. We average the contributions from the
various directions with the visibility of the point as a binary
weight. In the third step of Fig. 3, the green and the red

@ Springer

376

A. Dal Corso et al.

Algorithm 1: Estimating the scattered radiosity in x, using
K maps (step 3 of Fig. 3). Each map has a direction c?k
and a world-to-texture conversion matrix Py. The variable F
counts the number of accumulated frames, which is needed
to average the blending in step 2 of Fig. 3

Data: x,, €pias, €comb, F>, K

Result: B

n=20

color = (0,0, 0)

for k € [0, K) do
cos 6 = clamp(i, - dk 0,1)
Xo =Xy — Ecomb(no —cosf dk)
xo,lex =Prx,
v=multisampleVisibilityMapi (X, tex, €bias)
color = color + v-sampleRadiosityMap (X, tex, €bias)
n=n+4+v

end

__ color
B = Fn

dots represent the visible and not visible contributions from
the point x,, respectively. Storing depth with the scattered
radiosity maps, we use shadow mapping to obtain a visibil-
ity function. To avoid artifacts, we choose a constant shadow
bias €p;,5 for the visibility function. Moreover, to avoid errors
when sampling close to the borders of a scattered radios-
ity map, we multi-sample the shadow map and introduce
an additional bias €., that translates the sample position
towards the negative normal direction —ii,,. After composi-
tion of the scattered radiosity B, we obtain outgoing radiance
from Eq. (5) and perform tone mapping to finalize the result.

Considering the procedure described in this section, we
can get a better understanding of the parameter N. The total
number of Monte Carlo samples used for computing the out-
going radiance (L,) in a surface point observed by the camera
is 3N times K times the number of frames used for progres-
sive updates. From the point of view of a surface point, N
can thus be thought of as the number of samples per frame
per map direction per color band.

3.3 Point lighting

A point light at some distance from the translucent object
works much in the same way as a directional light. The light’s
camera simply uses perspective instead of orthographic pro-
jection and intensity falls off with the distance squared. One
particularly important application of our work is however
simulation of the light coming through candles, candlehold-
ers, and lamp shades (Fig. 1, for example). In these cases,
the point light is surrounded by the translucent object and we
then use omnidirectional shadow mapping [15] with a cube
map G-buffer for the light.

With a cube map captured for a point light at x ¢, one would
first get a sampled point x ; by using (7}, ;) to offset x, in
its tangent plane. A look-up into the cube map with x ; — xy

@ Springer

A\

Fig. 4 Effect of stereographic correction when a translucent object
surrounds a point light. With planar sampling (a), we look-up into the
light’s cube map G-buffer using x ; — x,. With stereographic correction
(b), we use X gereo — X ¢ instead. The insets (a, b) show how the correction
improves the final result (torus, potato material)

would then provide the sampled x; and 7;. However, when
observing a translucent object surrounding the light source,
this planar sampling of the light’s G-buffer is no longer a good
approximation. To have a better approximation that enables
sampling of the entire cube map for each x,, (instead of only a
hemisphere), we use an inverse stereoscopic projection. With
this stereoscopic correction, the direction used for look-up
into the cube map becomes

—x¢ = (x¢— %) = 2[(xr —x,) - L]€, (13)

X stereo

where

7= (xj —x¢) — (x¢ —x,) ’ (14)
[(x; —x¢) — (x¢ — x0)l

as illustrated in Fig. 4. The top right image (a) in Fig. 4 is an
example of the sampling noise we get if we use x ; — x,. The
middle right image (b) shows how the stereoscopic correction
betters this problem.

3.4 Transport of emergent light

We further extend our method to account for transport of
emergent light using virtual point lights (VPLs) [31]. We
distribute a set of Nyp points on the surface of the translu-
cent object. Then, for each observed point x,, we add the
contribution from all VPLs using

Interactive directional subsurface scattering and transport of emergent light

377

Fig. 5 Transport of emergent light from a translucent object (blue)
to a diffuse object (red). We distribute VPLs (gray dots) on the outer
surface of the translucent object, and use them to indirectly illuminate
the remaining scene

Nypi
Lu(xm &30) = Zfr(xm _C_[)U» C_[)o)

v=1

XGp(xo, X))V (X0, X0) 1y (15)
with VPL intensity
I =~ F@)BE)A/ N, (16)

where A is the surface area across which the VPLs were
distributed, G}, is the standard bounded geometry term [8],
and B is obtained from the scattered radiosity maps using
Algorithm 1.

As in the previous section, we now take special steps to
accommodate our key use case of a point light surrounded by
a translucent material. Our approach is illustrated in Fig. 5.
In this particular case, the scene illuminated by emergent
light will most commonly be shadowed from surface points
of the translucent object that are directly lit (as the source is
surrounded). We, therefore, approximate the visibility term
V by distributing VPLs on backlit surfaces only. With this
distribution of VPLs, we use the area of the bounding volume
of the translucent object as an approximation of A. This is
computed for each frame on the CPU.

Unfortunately, for a deformable object and a relatively
small set of VPLs, the method is prone to flickering unless
we ensure that the VPL positions are stable over time. Our
solution is to render the outermost surface of the translu-
cent object to a cube map whose center ¢ coincides with the
object’s bounding box center. Each pixel in the cube map
now contains the coordinates of a point on the surface of the
translucent object. By sampling the cube map at a constant
set of random directions, we obtain a stable set of surface
positions that we use as VPL locations (Fig. 5).

4 Results

The implementation of our method interactively renders
directional subsurface scattering in deformable objects and

requires no preprocessing nor texture parameterization of the
object surface. We use the diffusive part of the directional
dipole [14] as S; or the photon beam diffusion model [20]
when evaluating Eq. (9). The directional dipole is signifi-
cantly faster, so we use this one unless noted otherwise. We
define the translucent objects in our scenes using measured
optical properties from different sources [17,26,37].

To validate our results, we compare with Monte Carlo
ray tracing implemented on the GPU using OptiX [38]. In
this reference method, we render directional subsurface scat-
tering using the progressive direct Monte Carlo integration
technique described by Frisvad et al. [14]. As prescribed, we
use a Russian roulette based on the asymptotic exponential
falloff of the model to accept or reject samples. However,
we do not equidistribute the samples using a dart throwing
technique as a more brute force uniform sampling of the
object surface is more well-suited for a GPU ray tracer. This
implementation gave us a ground truth for comparison both
in terms of quality and performance. However, when com-
paring performance, one should keep in mind that unlike our
method the reference method is view dependent.

In all the following examples, performance is at interactive
rates. If nothing changes except the camera, our method will
converge over a number of frames and then run in real-time.
The implementation switches back to interactive rates when
something other than the camera changes. By ‘interactive’
we mean a rendering time below 166 ms per frame (6 frames
per second, fps), as specified by Akenine-Moller et al. [1].
All the tests were performed on an NVIDIA GeForce GTX
780 Ti graphics card. Unless otherwise indicated, our results
use a 512 x 512 frame resolution for both radiosity and light
maps.

Figure 6 allows a visual comparison with ground truth
(results obtained with the reference method). We chose
one highly scattering material with isotropic phase function
(g = 0), namely marble, and two forward scattering mate-
rials (g > 0), namely white grapefruit juice and strawberry
shampoo. At convergence (second row), our method com-
pares favorably to the directional dipole reference (third row).
Our method improves the details of the subsurface scattering
when compared with diffuse subsurface scattering, that is,
the standard dipole [26] (fourth row), especially for white
grapefruit juice and strawberry shampoo. We also show the
results of our method after one frame rendered at interactive
frame rates (first row). These results are similar to our con-
verged solution except that there is a slight bit of sampling
noise, which we reduce using mipmap filtering.

Figure 7 compares the transport of emergent light obtained
with our method to that obtained with the reference method.
While the 200 VPLs used here do not provide a highly accu-
rate result, they do provide something better than a constant
ambient term. At 6 fps, our solution is similar to the refer-
ence and converges very quickly to a better result, while the

@ Springer

378

A. Dal Corso et al.

ours, 6 fps

reference ours

standard

white
grapefruit

marble

strawberry
shampoo

Fig. 6 Comparison of our method (rows 1, 2) with the reference
method (row 3) and diffuse subsurface scattering (row 4) for differ-
ent materials. Row I is our results for a single frame at 6 fps, while row
2 is our view-independent result after convergence. All results use 31
maps

directional dipole, 6 fps standard dipole and VPLs

our method

ray tracer

directional dipole, reference

directional dipole, 6 fps

Fig. 7 Equal time comparison (left column) of our method with the
reference method and qualitative comparison with diffuse subsurface
scattering (upper right) and the converged reference solution (lower
right). The scene is lit by a point light in a white grapefruit candle
holder

OptiX solution has both high-frequency and low-frequency
noise, is view dependent, and converges very slowly.
Figure 8 provides zoom-ins and difference images from
Figs. 6 and 7. Our results in general seem to be missing a part
of the light transport. As revealed by the difference images,
the missing contribution is due to undersampling of the sur-
face at grazing incidence and missing interreflections. This
undersampling is the reason why Mertens et al. [35] chose
to sample in screen space instead of light space. However,

@ Springer

difference

0.4 0.5

Fig. 8 Zoom-ins and differences from Figs. 6 and 7. Root-mean-

squared error of the color bands \/ Ar? + Ag? + Ab? is used as error

metric in the difference images

reference

our method

0 0.1 0.2

0.3

sampling in screen space has other problems, as not all sam-
ples are lit. When considering transport of emergent light,
the zoom-ins and difference images show missing shadows
and inaccuracies due to the small number of VPLs. However,
as graphics hardware improves, we will be able to use more
VPLs and one of the several fast VPL visibility techniques [8]
to get better accuracy while retaining interactive frame rates.

In Fig. 9, we compare the quality reached by our solu-
tion with the quality reached by the ray traced solution in
equal time. We perform this comparison for a marble bunny
at three different scales. Generally, our method has a uniform
behavior for different scales. For materials that are not opti-
cally thin (not at low scale), our method converges faster. The
highly scattering materials (mid and high scale) are the more
important cases to render well, as these are inside the range of
materials for which the analytic subsurface scattering mod-
els are valid. At high scales, scattering effects become more
localized; so our method is better at capturing the effect than
the ray traced solution. At low scales, fewer G-buffer sam-
ples hit the object, which leads to a more noisy result with
our solution.

In order to test the method using dynamically generated
geometry, we created an implicit 3D surface [44] as the sum,
@, = X;¢;.1(p), of four blobs,

Interactive directional subsurface scattering and transport of emergent light

379

reference

our method ray tracer

Fig. 9 Stanford bunny with marble material at different scales (from
top to bottom the scaleis 0.01, 0.1, and 1 m). The left and middle columns
show equal time results for our method and the ray tracer (1 frame at 6
fps). The right column shows the ray traced results after convergence.
Here we use 16 maps and a 1024 x 1024 light map

¢i1(P) = exp(—a || p — pi (D)),

where the position of each blob, p; (1), is a periodic function.
Since the periods are different, the period of the aggregate
implicit @, is potentially very large, and precomputation of
the light transport inside the object would not be practical.
Our method, however, applies, as it does not rely on precom-
putation, but we do need to rasterize the object. To do this, we
compute a triangle mesh for an isosurface of @; using dual
contouring [16] implemented in a geometry shader. This is
done in a pre-pass to each frame where the geometry shader
evaluates @; and its gradient directly based on the current
time. The output triangle strips are streamed back to a vertex
buffer object using transform feedback. Figure 10 presents a
rendered blob using different materials.

To justify our claimed need for scattered radiosity maps,
we compare our method with an implementation with-
out caching of subsurface scattering computations (as in
translucent shadow mapping [9]). Note that this approach
as opposed to ours is view dependent and pixel bound, and
that unobserved VPLs would be more expensive to evalu-
ate. Figure 11 compares performance without considering
view dependency and VPLs. Caching of scattered radiosity
in maps is more efficient as soon as the translucent object
occupies more than 5.8 % of a 1024 x 1024 image.

The candle scene in Fig. 1 demonstrates the usefulness
of our method. We scaled the optical properties of glycerine
soap to approximate the scattering properties of candle wax.

Fig. 10 Rendering with our method and a dynamically generated 3D
surface (‘blob’) and transport of emergent light for three materials. The
blob renders at 6 fps with 50 VPLs and 1500 samples per map in six
maps. Materials from left to right: white grapefruit juice, soy milk, and
glycerine soap

1.9%

64% 5.8%

ours, 12 fps

no cache, = fps

z = 30 fps

z = 1.5 fps z =12 fps

Fig. 11 Chocolate milk blob occupying different percentages of the
image (noted at the fop). We compare our method (ours) with a view-
dependent, caching-free implementation (no scattered radiosity maps).
We use 1000 samples per map in ten maps when caching, per pixel
when not caching. Equal frame rates (12 fps) occur when occupancy is
5.8 % of the image

Our method creates a soft ‘caustic’ on the ground with vary-
ing intensity depending on the shape of the candle model.
We, thus, enable a more realistic lighting of the scene than is
obtainable with existing interactive techniques.

To provide a performance breakdown of our technique,
Fig. 12 lists render times dedicated to the different steps
of our algorithm in our various results. BSSRDF evalua-
tion (step 2 of Fig. 3) dominates all the timings, with the
exception of Figs. 1 and 7, where the transport of emergent
light dominates. Figure 13 provides timings and coverage
improvement of a bunny rendering with increasing K. The
first seven directions cover most of the surface, while the
remaining directions are necessary to cover small holes in
the shading.

To underline the versatility of our approach, Fig. 14 has
a set of results rendered using the photon beam diffusion
model [20]. The weak singularities in this model lead to fire-
flies (overly bright pixels) with our sampling approach. We

@ Springer

380

A. Dal Corso et al.

Fig. 1 i | -
Fig. 6 | | -
Fig. 9 | | -
Fig. 10 | |]
. [Procedural geometry
Fig. 11 | [Fig. 3, Step 1]
[CJFig. 3, Step 2
) [CFig. 3, Step 3
Fig. 7 | [1vpPLs i
Fig. 14 | 1

0 20 40 60 80 100 120 140 160
Milliseconds

Fig. 12 Timing breakdowns for some of our renderings. Initialization
times were negligible and were thus included with step 1 of Fig. 3. The
evaluation of the BSSRDF and the VPLs (when present) dominate the
rendering times

7:71.2 ms

8:79.2.2ms 9:88.0ms 10: 99.3 ms 11: 116.0 ms

Fig. 13 Converged renderings of a potato bunny (N = 30) and tim-
ings for increasing number of scattered radiosity maps K. We list K
followed by rendering time in milliseconds (ms) for each result. The first
seven maps cover most of the surface, while the following four cover
small details (the small area just to the left of the bunny’s hind leg, for
example)

avoid this problem by clamping the distance d, to a mini-
mum of 0.25/(o, + o) when it is used in a denominator.
Factors that photon beam diffusion is slower than the direc-
tional dipole are included in the figure. These factors double
if we use a graphics card with 512 cores (GTX 580) instead
of 2880 cores.

Finally, Fig. 15 presents results with multiple directional
lights. To approximate an environment light, we sample a
number of representative directional light sources from the
environment map using the method described by Pharr and
Humpbhreys [39]. Contributions from all the directional lights
are cached in the same scattered radiosity maps. In this exam-
ple, we add specularly reflected light by looking up into the
environment map using the direction of the reflected ray and
multiplying by Fresnel reflectance.

@ Springer

white grapefruit

2.7x

2.3x 3.2x

Fig. 14 Converged results with scenes and parameters as in other fig-
ures, but this time rendered using the photon beam diffusion model [20].
For each rendering, we provide the factor that this model is slower than
if we use the directional dipole

Fig. 15 Stanford Bunny illuminated by an environment map. The map
was importance sampled and converted to eight different directional
lights. Potato material, 16 maps

5 Discussion

The resolution of a light’s G-buffer (a light map) should
be chosen carefully. If the range of the scattering effects
(roughly 1/0y) is smaller than the size of one pixel in the
light map, the contributions from the directional dipole tend
to cluster and form ‘pearling’ artifacts. A possible solution
would be a variation of cascaded shadow maps [51] to pro-
vide a higher resolution light map when needed. Generally,
a light map of 512 x 512 pixels is an acceptable size that can
be brought to 1024 x 1024 in problematic cases.

User parameters of our method include the resolutions of
the light map and the scattered radiosity maps, the two biases
€comp and €p; 45, the number of samples N, the number of scat-
tered radiosity maps K, and the number of VPLs Ny, We
now provide some guidelines for setting parameters. The size
of the light map was already discussed in the previous para-
graph. For the scattered radiosity maps, a size of 512 x 512
is fine for most application, and K = 16 directions generally
provide enough coverage for simple models (the dragon, with
its complicated geometry, required K = 31 directions). Per-
formance scales linearly with K (Fig. 13), as we spend most
of the time evaluating the BSSRDF (Fig. 12). The two biases
€comp and €piq5 need to be tweaked manually. The numbers
N and Nyp| are usually set manually to get the desired per-
formance once the other parameters have been settled.

Interactive directional subsurface scattering and transport of emergent light

381

For most of our results, we choose the directions Jk of the
scattered radiosity maps automatically. This works well for
objects that are roughly convex, but for more oddly shaped
concave objects some part may be left uncovered. Tearing
artifacts caused by insufficient coverage appear in the mouth
of the dragon in Fig. 6 and in the supplementary video. Fig-
ure 13 also illustrates the problem, and shows that increasing
the number of directions or manually choosing them can
often ease this problem.

The memory consumption of our technique is comparable
to that of the texture space filtering techniques [5,12,21,29].
As such, the maps and buffers that we use easily fit in the
memory of modern GPUs. We surprisingly use more memory
than the volumetric techniques [2,3,13,32]. The reason is that
they make do with very low resolution volumes (323 or 64%).
It is, however, important to note that the added directionality
and quality of details that we achieve cannot be achieved
with such low resolution volumes. High-resolution volumes
would be needed with these techniques, which would lead to
performance and memory issues.

Since we cache scattered radiosity, we cannot directly
use a BSSRDF that fully depends on the direction of emer-
gence @, (the dual-beam model [10], for example). For such
a BSSRDF, we would have to rely on the assumption that
the emergent radiance integrates to a nearly diffuse distribu-
tion. We would then carry out a cosine-weighted integral over
@, when computing the scattered radiosity maps and other-
wise use the same method. On the other hand, our concept of
caching scattered radiosity instead of transmitted irradiance
might be of interest in offline rendering techniques such as
multiresolution radiosity caching [7]. This would enable use
of directional subsurface scattering and inexpensive trans-
port of emergent light in a movie production rendering
solution.

6 Conclusion

We have presented a novel technique for interactive render-
ing of directional subsurface scattering. The method is view
independent and applicable to deformable 3D models with-
out requiring a texture parameterization of the object surface.
While our method takes the direction of incident light into
account, it also relies on the assumption that emergent light
is not directional. This enables us to cache emergent light
in so-called scattered radiosity maps. These maps enable us
to control the output quality, to render progressively, and to
illuminate the scene with light that has scattered through a
translucent object.

Acknowledgements We would like to thank Christian Esbo Ager-
gaard, Technical Director, Sunday Studios for the melting candle model.
The Stanford Bunny and the Stanford Dragon models are courtesy of the

Stanford University Computer Graphics Laboratory (http://graphics.
stanford.edu/da-ta/3Dscanrep/). The HDR environment map in Fig. 15
is courtesy of Tobias Grgnbeck Andersen.

References

1. Akenine-Moller, T., Haines, E., Hoffman, N.: Real-Time Render-
ing, 3rd edn. A. K. Peters, Ltd, Natick, MA, USA (2008)

2. Bernabei, D., Hakke-Patil, A., Banterle, F., Benedetto, M.D.,
Ganovelli, F,, Pattanaik, S., Scopigno, R.: A parallel architecture
for interactively rendering scattering and refraction effects. IEEE
Comput. Graph. Appl. 32(2), 34-43 (2012)

3. Bgrlum, J., Christensen, B.B., Kjeldsen, T.K., Mikkelsen, P.T.,
Noe, K.@., Rimestad, J., Mosegaard, J.: SSLPV: subsurface light
propagation volumes. In: Proceedings of ACM SIGGRAPH Sym-
posium on High Performance Graphics (HPG’11), pp. 7-14 (2011)

4. Carr, N.A., Hall, J.D., Hart, J.C.: GPU algorithms for radiosity and
subsurface scattering. Proc. Graph. Hardw. 2003, 51-59 (2003)

5. Chang, C.W., Lin, W.C,, Ho, T.C., Huang, T.S., Chuang, J.H.:
Real-time translucent rendering using GPU-based texture space
importance sampling. Comput. Graph. Forum (Proc. Eurograph.)
27(2), 517-526 (2008)

6. Chen, G., Peers, P., Zhang, J., Tong, X.: Real-time rendering of
deformable heterogeneous translucent objects using multiresolu-
tion splatting. Vis. Comput. 28(6-8), 701-711 (2012)

7. Christensen, P.H., Harker, G., Shade, J., Schubert, B., Batali, D.:
Multiresolution radiosity caching for efficient preview and final
quality global illumination in movies. Tech. Rep. Pixar Technical
Memo #12-06, Pixar (2012)

8. Dachsbacher, C., Krivanek, J., Hasan, M., Arbree, A., Walter, B.,
Novdk, J.: Scalable realistic rendering with many-light methods.
Comput. Graph. Forum 33(1), 88-104 (2014)

9. Dachsbacher, C., Stamminger, M.: Translucent shadow maps.
In: Proceedings of Eurographics Symposium on Rendering
(EGSR’03), pp. 197-201 (2003)

10. d’Eon, E.: A dual-beam 3D searchlight BSSRDF. In: ACM SIG-
GRAPH 2014 Talks, p. 65 (2014)

11. d’Eon, E., Irving, G.: A quantized-diffusion model for rendering
translucent materials. ACM Trans. Graph. (Proc. ACM SIG-
GRAPH’11) 30(4), 56:1-56:13 (2011)

12. d’Eon, E., Luebke, D., Enderton, E.: Efficient rendering of human
skin. In: Proceedings of Eurographics Symposium on Rendering
(EGSR’07), pp. 147-157 (2007)

13. Di Koa, M., Johan, H.: ESLPV: enhanced subsurface light propa-
gation volumes. Vis. Comput. 30(6-8), 821-831 (2014)

14. Frisvad, J.R., Hachisuka, T., Kjeldsen, T.K.: Directional dipole
model for subsurface scattering. ACM Trans. Graph. 34(1), 5:1-
5:12 (2014)

15. Gerasimov, P.S.: Omnidirectional shadow mapping. In: Fernando,
R. (ed.) GPU Gems: Programming Techniques, Tips, and Tricks for
Real-time Graphics, vol. 12, pp. 193-203. Addison Wesley, Menlo
Park (2004)

16. Gibson, S.E.F.: Constrained elastic surface nets: generating smooth
surfaces from binary segmented data. In: Medical Image Comput-
ing and Computer-Assisted Interventation—MICCAI’98. Lecture
Notes in Computer Science, vol. 1496, pp. 888—898. Springer, New
York (1998)

17. Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., Levin, A.: Inverse
volume rendering with material dictionaries. ACM Trans. Graph.
32(6), 162:1-162:13 (2013)

18. Gosselin, D.R., Sander, P.V., Mitchell, J.L.: Real-time texture-
space skin rendering. In: Engel, W. (ed.) ShaderX>: Advanced
Rendering with DirectX and OpenGL, vol. 2.8, pp. 171-184.
Charles River Media, USA (2004)

@ Springer

http://graphics.stanford.edu/da-ta/3Dscanrep/
http://graphics.stanford.edu/da-ta/3Dscanrep/

382

A. Dal Corso et al.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Green, S.: Real-time approximations to subsurface scattering. In:
Fernando, R. (ed.) GPU Gems: Programming Techniques, Tips,
and Tricks for Real-time Graphics, vol. 16, pp. 263-278. Addison
Wesley, Menlo Park (2004)

Habel, R., Christensen, P.H., Jarosz, W.: Photon beam diffusion:
a hybrid Monte Carlo method for subsurface scattering. Comput.
Graph. Forum (Proc. EGSR’13) 32(4), 27-37 (2013)

Hable, J., Borshakov, G., Heil, J.: Fast skin shading. In: Engel,
W. (ed.) ShaderX”: Advanced Rendering Techniques, vol. 2.4, pp.
161-173. Charles River Media, USA (2009)

Halton, J.H.: Algorithm 247: radical-inverse quasi-random point
sequence. Commun. ACM 7(12), 701-702 (1964)

Hao, X., Baby, T., Varshney, A.: Interactive subsurface scattering
for translucent meshes. In: Proceedings of ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics (i3D’03), pp. 75-82 (2003)
Hao, X., Varshney, A.: Real-time rendering of translucent meshes.
ACM Trans. Graph. 23(2), 120-142 (2004)

Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique
for translucent materials. ACM Trans. Graph. (Proc. ACM SIG-
GRAPH’02) 21(3), 576-581 (2002)

Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practi-
cal model for subsurface light transport. Proc. ACM SIGGRAPH
2001, 511-518 (2001)

Jimenez, J., Sundstedt, V., Gutierrez, D.: Screen-space perceptual
rendering of human skin. ACM Trans. Appl. Percept. 6(4), 23:1—
23:15 (2009)

Jimenez, J., Whelan, D., Sundstedt, V., Gutierrez, D.: Real-time
realistic skin translucency. IEEE Comput. Graph. Appl. 30(4), 32—
41 (2010)

Jimenez, J., Zsolnai, K., Jarabo, A., Freude, C., Auzinger, T., Wu,
X.C.,vonderPahlen, J., Wimmer, M., Gutierrez, D.: Separable sub-
surface scattering. Comput. Graph. Forum 34(6),188-197 (2015).
doi:10.1111/cgf. 12529

Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. Com-
put. Graph. (Proc. ACM SIGGRAPH’84) 18(3), 165-174 (1984)
Keller, A.: Instant radiosity. Proc. ACM SIGGRAPH 97, 49-56
(1997)

Kniss, J., PremozZe, S., Hansen, C., Ebert, D.: Interactive translucent
volume rendering and procedural modeling. Proc. IEEE Vis. 2002,
109-116 (2002)

Lensch, H.P.A., Goesele, M., Bekaert, P., Kautz, J., Magnor, M.A.,
Lang, J., Seidel, H.P.: Interactive rendering of translucent objects.
In: Proceedings of Pacific Graphics (PG’02), pp. 214-224 (2002)
Li, D., Sun, X., Ren, Z., Lin, S., Tong, Y., Guo, B., Zhou, K.:
TransCut: interactive rendering of translucent cutouts. IEEE Trans.
Vis. Comput. Graph. 19(3), 484-494 (2013)

Mertens, T., Kautz, J., Bekaert, P., Reeth, F.V., Seidel, H.P.: Effi-
cient rendering of local subsurface scattering. In: Proceedings of
Pacific Graphics (PG’03), pp. 51-58 (2003)

Mertens, T., Kautz, J., Bekaert, P., Seidel, H.P., Reeth, F.V.: Interac-
tive rendering of translucent deformable objects. In: Proceedings of
Eurographics Symposium on Rendering (EGSR’03), pp. 130-140
(2003)

Narasimhan, S.G., Gupta, M., Donner, C., Ramamoorthi, R.,
Nayar, S.K., Jensen, H.-W.: Acquiring scattering properties of par-
ticipating media by dilution. ACM Trans. Graph. (Proc. ACM
SIGGRAPH’06) 25(3), 1003-1012 (2006)

Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J.,
Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A.,
Stich, M.: OptiX: a general purpose ray tracing engine. ACM Trans.
Graph. (Proc. ACM SIGGRAPH’10) 29(4), 66:1-66:13 (2010)
Pharr, M., Humphreys, G.: Physically Based Rendering: From The-
ory to Implementation, 2nd edn. Morgan Kaufmann/Elsevier, San
Francisco (2010)

@ Springer

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

. Rushmeier, H.E., Torrance, K.E.: Extending the radiosity method

to include specularly reflecting and translucent materials. ACM
Trans. Graph. 9(1), 1-27 (1990)

Shah, M.A., Konttinen, J., Pattanaik, S.: Image-space subsur-
face scattering for interactive rendering of deformable translucent
objects. IEEE Comput. Graph. Appl. 29(1), 66-78 (2009)

Sheng, Y., Shi, Y., Wang, L., Narasimhan, S.G.: A practical analytic
model for the radiosity of translucent scenes. In: Proceedings of
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (i3D’13), pp. 63-70 (2013)

Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered principal com-
ponents for precomputed radiance transfer. ACM Trans. Graph.
(Proc. ACM SIGGRAPH’03) 22(3), 382-391 (2003)

Velho, L., Gomes, J., de Figueiredo, L.H.: Implicit Objects in Com-
puter Graphics. Springer, New York (2002)

Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B.,
Shum, H.Y.: Modeling and rendering of heterogeneous translucent
materials using the diffusion equation. ACM Trans. Graph. 27(1),
9:1-9:18 (2008)

Wang, R., Cheslack-Postava, E., Wang, R., Luebke, D., Chen, Q.,
Hua, W., Peng, Q., Bao, H.: Real-time editing and relighting of
homogeneous translucent materials. Vis. Comput. 24(7), 565-575
(2008)

Wang, R., Tran, J., Luebke, D.: All-frequency interactive relighting
of translucent objects with single and multiple scattering. ACM
Trans. Graph. (Proc. ACM SIGGRAPH’05) 24(3), 1202-1207
(2005)

Wang, Y., Wang, J., Holzschuch, N., Subr, K., Yong, J.H., Guo,
B.: Real-time rendering of heterogeneous translucent objects with
arbitrary shapes. Comput. Graph. Forum (Proc. Eurograph.) 29(2),
497-506 (2010)

Xu, K., Gao, Y., Li, Y., Ju, T., Hu, S.M.: Real-time homogenous
translucent material editing. Comput. Graph. Forum 26(3), 545-
552 (2007)

Yan, L.Q., Zhou, Y., Xu, K., Wang, R.: Accurate translucent mate-
rial rendering under spherical Gaussian lights. Comput. Graph.
Forum 31(7), 2267-2276 (2012)

Zhang, F., Sun, H., Nyman, O.: Parallel-split shadow maps on
programmable GPUs. In: GPU Gems 3, vol. 10. Addison-Wesley,
Menlo Park (2007)

Alessandro Dal CorsoisaPh.D.
student at the Technical Uni-
versity of Denmark (DTU). His
research interests ranges from
interactive global illumination
to realistic rendering and effi-
cient implementation of GPU
algorithms, with applications to
entertainment and manufactur-
ing. He has received two M.Sc.
degrees in computer science
engineering and digital media
engineering.

http://dx.doi.org/10.1111/cgf.12529

Interactive directional subsurface scattering and transport of emergent light

383

Jeppe Revall Frisvad is an asso-
ciate professor at the Technical
University of Denmark (DTU).
His research interests are mainly
material appearance modeling,
realistic rendering, and light scat-
tering. He received an M.Sc.
(Eng.) degree in applied math-
ematics (2004) and a Ph.D.
degree in computer graphics
(2008) from DTU. Since 2007,
he has taught several postgradu-
ate courses in rendering and also
freshman courses in mathematics
and programming.

J. Andreas Barentzen Ph.D.
is an associate professor at the
Department of Applied Mathe-
matics and Computer Science at
the Technical University of Den-
mark from where he also holds
his Ph.D. degree. His research
focuses on the representation of
digital shape and more gener-
ally on computer graphics. His
teaching is mostly on geometry
processing and real-time graph-
ics. Andreas Barentzen has been
director of studies for the Digitial
Media Engineering M.Sc. Eng.

program at the Technical University of Denmark and is currently chair-
man of the study board for the department of Applied Mathematics and

Jesper Mosegaard is head of the Computer Science.

Computer Graphics Lab at the
Alexandra Institute, Denmark.
He received his Ph.D. degree in
Computer Science from the Uni-
versity of Aarhus in 2006. His
research interests include real-
time rendering, global illumina-
tion effects, volumetric render-
ing, efficient implementation of
GPU algorithms and applications
within medicine, entertainment,
simulation and analysis.

@ Springer

	Interactive directional subsurface scattering and transport of emergent light
	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Sampling distribution
	3.2 Rendering technique
	3.3 Point lighting
	3.4 Transport of emergent light

	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgements
	References

