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Abstract This paper presents a simple, efficient, yet robust
approach, named joint-scale local binary pattern (JLBP), for
texture classification. In the proposed approach, the joint-
scale strategy is developed firstly, and the neighborhoods of
different scales are fused together by a simple arithmetic
operation. And then, the descriptor is extracted from the
mutual integration of the local patches based on the conven-
tional local binary pattern (LBP). The proposed scheme can
not only describe the micro-textures of a local structure, but
also the macro-textures of a larger area because of the joint
of multiple scales. Further, motivated by the completed local
binarypattern (CLBP) scheme, the completed JLBP (CJLBP)
is presented to enhance its power. The proposed descriptor is
evaluated in relation to other recent LBP-based patterns and
non-LBP methods on popular benchmark texture databases,
Outex, CURet andUIUC.Generally, the experimental results
show that the new method performs better than the state-of-
the-art techniques.

Keywords Texture classification · Local binary pattern
(LBP) · Joint-scale local binary pattern (JLBP) ·
Complete JLBP (CJLBP)

1 Introduction

Texture classification is widely used in many fields, such
as image processing, computer vision and pattern recogni-
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tion. It has attracted considerable attention during the past
decades [8,19,34], and [35]. Recently, the local binary pat-
tern (LBP) [23] has attracted the interest of the researchers
for its simplicity, discriminative power, computational effi-
ciency and robustness to illumination changes. It has been
extensively exploited inmany applications for its advantages,
such as texture analysis and classification, face recogni-
tion, motion analysis, image retrieval, and medical image
analysis [1].

Since Ojala’s work [23], various LBP codes have been
developed to improve its performance. Different from the
original local structure (P , R) of LBP, more topology struc-
tures have been introduced, such as ellipse topology [15],
multi-scale block LBP (MB-LBP) [16], three-patch LBP and
four-patch LBP [37], pyramid LBP (PLBP) [25], local mesh
patterns (LMP) [20], average LBP (ALBP) [13] and the other
geometries such as horizontal line, vertical line, horizontal-
vertical cross, diagonal cross and disc shape, explored in
local quantized pattern (LQP) [10]. To reduce the influ-
ence of noise, many anti-noise codes have been developed,
such as local ternary pattern (LTP) [33] and the Improved
LTP [38], noise-resistant LBP (NR-LBP) [26], robust LBP
(RLBP) [2], binary rotation invariant and noise tolerant fea-
ture (BRINT) [17], local contrast pattern (LCP) [31], and
completed robust LBP (CRLBP) [40]. For the original LBP,
each pixel in the neighborhood is firstly turned to binary
form by comparing its gray value with that of the central
pixel. Different from such scheme, more encoding methods
have been given for better performances, such as completed
LBP (CLBP) [6], local binary count (LBC) [39], adaptive
median binary pattern (AMBP) [7], robust differential circle
patterns (RDCP) [30], local extreme co-occurrence pattern
(LECoP) [36], center-symmetric LBP (CS-LBP) [9], orthog-
onal combination of LBP (OC-LBP) [41], concave–convex
LBP (CCLBP) [32], perpendicular LBP (PLBP) [21] and
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local structure patterns (LSP) [29]. In addition, the scale-
and rotation-invariant descriptors have been put forward to
overcome the sensitivity of scaling, rotation, viewpoint varia-
tions, such as rotation- and scale-invariant LBP [4], pairwise
rotation invariant co-occurrence LBP [24], scale and rotation
invariant LBP [14], local frequency descriptors (LFD) [18],
and the rapid transform-based rotation invariant descriptor
[12].

In [23], the multi-scale scheme was introduced for mul-
tiresolution analysis, and it has been applied in many
LBP-based codes. However, the main idea of the scheme
is only the simple concatenation of the features extracted
under each scale. For example, the LBPriu28,1+16,2+24,3 denotes

the concatenation of LBPriu28,1 , LBP
riu2
16,2 and LBPriu224,3. That is

to say, LBPriu28,1 , LBP
riu2
16,2 and LBPriu224,3 are extracted firstly,

and then, they are concatenated simply as LBPriu28,1+16,2+24,3.
It is clear that the mutual integration of the scales, (8,1),
(16,2) and (24,3), is not taken into account in the multi-scale
scheme.

Further, the LBP and many of its extended operators cap-
ture the texture from local regions because they may produce
intractable long dimensionality histograms as the number of
sampling points increases. In other words, those methods are
appropriate for describing the micro-textures but not suitable
for depicting the macro-textures. In [17], Liu et al. proposed
an anti-noise operator, the BRINT, for texture classification,
which can capture the macro-textures by a new sampling
scheme. However, the BRINT still uses Ojala’s multi-scale
scheme [23] directly.Different from the traditional ideas,Ren
et al. [27] and [28] proposed to reduce the dimensionality of
LBP features by selecting an optimal subset of neighbors to
compose the local structure. The new scheme can well solve
the LBP-structure-learning problem and capture the intrin-
sic characteristics of image patches at different locations and
scales.

The main interest of our paper is to develop a new opera-
tor, called joint-scale local binary pattern (JLBP), for texture
classification. The new method can fuse different scales and
capture the micro- and macro-textures at the same time.
Firstly, we fuse different scales together by a simple arith-
metic operation. After that, the descriptor is developed from
the mutual-integration multi-scale local patches based on the
conventional LBP. Further, motivated by the CLBP approach
[6], the completed JLBP (CJLBP) is presented to enhance its
power.

The new scheme has been demonstrated experimentally
with the LBP-based methods [6,7,17,39,40] and [29] and
two training-based methods VZ_MR8 in [34] and VZ_Joint
in [35] (i.e., non-LBP methods) for texture classification on
three widely used texture databases, Outex [22], CUReT [3]
and UIUC [11]. The results show that the proposed method
performs better than the state-of-the-art techniques. It is also

worth noting that the dimension of the feature vectors of
our method is much smaller than that of the state-of-the-art
techniques.

The remainder of this paper is organized as follows. We
first briefly review the background of the LBP and CLBP
in Sect. 2. Section 3 presents the detailed analysis of the
new proposed JLBP, followed by the extensive experimental
results on the widely used texture databases. Finally, we give
the conclusion of the paper.

2 Related works

2.1 Local binary patterns

The original LBP operator was introduced in [19] for texture
analysis. It works by thresholding a neighborhood with the
gray level of the central pixel. The LBP code is produced
by multiplying the thresholded values by weights given by
powers of two and adding the results in a clockwise way. It
was extended to achieve rotation invariance, optional neigh-
borhoods and stronger discriminative capability in [23]. For
a neighborhood (P , R), it is commonly referred to LBPP,R

LBPP,R =
P−1∑

i=0

s (pi − pc) × 2i (1)

where s(x) = {1, 0} for x ≥ 0 and x < 0, P is the number
of the sampling pixels on the circle, R is the radius of the
circle, pc corresponds to the gray value of the central pixel,
and pi denotes the gray value of each sampling pixel on the
circle. To extract the most fundamental structure and rota-
tion invariance patterns from LBP, the uniform and rotation
invariant operator LBPriu2P,R [23] is given as:

LBPriu2P,R =
{∑P−1

i=0 s (pi − pc) if U
(
LBPP,R

) ≤ 2
P + 1 otherwise

(2)

where the superscript ’riu2’ refers to the rotation invariant
uniformpatterns that have aU value (U ≤ 2). The uniformity
measure U corresponds to the number of transitions from 0
to 1 or 1 to 0 between the successive bits in the circular
representation of the binary code LBPP,R , which is defined
as:

U
(
LBPP,R

) = |s (pP−1 − pc) − s (p0 − pc) |

+
P−1∑

i=1

|s (pi − pc) − s (pi−1 − pc) | (3)

For LBPriu2P,R , all nonuniform patterns are classified as one

pattern. The mapping from LBPP,R to LBPriu2P,R , which has
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P + 2 distinct output values, can be implemented with a
lookup table.

2.2 Complete LBP

Guo et al. [6] proposed the complete LBP (CLBP) by com-
bining CLBP_S, CLBP_M and CLBP_C to improve the
discriminative power. The CLBP_S descriptor is exactly the
same as the original LBP descriptor. The CLBP_M performs
a binary comparison between the absolute value of the dif-
ference between the central pixel and its neighbors and a
threshold, which is written as

CLBP_MP,R =
P−1∑

i=0

s (mi − a) × 2i (4)

wheremi denotes the absolute gray level difference between
the i th neighborhood pixel and the central pixel, and mi =
|pi − pc|, a denotes the mean value of mi from the whole
image.

The CLBP_C thresholds the central pixel against the
global mean gray value of the whole image, and it is defined
as

CLBP_CP,R = s (pc − μ) (5)

where μ is set as the average gray level of the whole image.

3 Joint-scale LBP

3.1 Joint-scale LBP

The multi-scale scheme was firstly introduced for multires-
olution analysis in [23], and it has been widely used in the
LBP-based methods. The main idea of such scheme is that
the features are firstly extracted under each scale by altering
the sampling parameters (the radius and the number of sam-
pling points). Then, the correspondinghistogramsofmultiple
scales are concatenated together for multi-scale application.
The proposed joint-scale LBP (JLBP) is totally different. For
JLBP, multiple scales are fused together firstly by a simple
arithmetic operation. Then, the JLBP code is extracted from
the mutual integration of local patches based on LBP. For
simplicity, we firstly give the definition of JLBP based on
two scales.

Let R1 and R2 denote two scales (i.e., radius of the
neighborhood as LBP). Different from the topology struc-
ture (P, R) of LBP, the new topology structure is written as
(K , R1, R2), where K is the number of the sampling points.

Fig. 1 The principle of JLBP

The proposed JLBP is defined as:

JLBPK ,R1,R2 =
K−1∑

i=0

s
(
pi,R1 + pi,R2 − 2 × pc

) × 2i (6)

where pi,Rl (l = 1, 2) is the gray valve of the sampling point
on the scale Rl . Obviously, for JLBP, the two scales R1 and R2

are combined together firstly by the simple additive operation
(pi,R1 + pi,R2), and then, JLBPK ,R1,R2 code is computed by
the similar way as LBP.

The working principle of the JLBP is illustrated in
Fig. 1, where pc is the gray level of the central pixel,
p1,R1, . . . , pK−1,R1 and p1,R2 , . . . , pK−1,R2 denote the gray
values of the sampling points on scales R1 and R2, respec-
tively.

By the approach in [23], we can also define the uni-
form JLBP as JLBPu2K ,R1,R2

, rotation invariant JLBP as

JLBPriK ,R1,R2
and rotation invariant and uniform JLBP as

JLBPriu2K ,R1,R2
.

Further, the topology structure of JLBP can be extended
to combine multiple scales, which is denoted as (K , R1, R2,

. . . , RL ). L is a positive integer and L = 1, 2, 3, 4, . . .. The
improved JLBP can be written as:

JLBPK ,R1,R2,...,RL

=
K−1∑

i=0

s

(
L∑

l=1

pi,Rl − L × pc

)
× 2i

(7)

In Eq. (7), the multiple scales are fused together by the
simple arithmetic operation,

∑L
l=1 pi,Rl . When L = 1, the

JLBP is exactly the same as the original LBP.
It is clear that the proposed JLBP descriptor has the same

advantages as the LBP-based methods, such as simplic-
ity, computational efficiency and robustness to illumination
changes. On the other hand, the dimensionality of JLBP
remains the same at different scales (For example, the dimen-
sionality of JLBPriu28,R1,R2,...,RL

remains 10, regardless the
change of L .), which makes it easy to depict the macro-
textures of a larger area. That is to say, the new method
overcomes the problem that the LBP-based methods are
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(a)

(b)

Fig. 2 Comparison of computing multi-scale JLBP and LBP codes

difficult to describe the macro-textures. Further, to obtain
noise robustness, the sampling scheme proposed in [17] is
employed in the paper, which will be discussed in the next
subsection.

3.2 Sampling points

From the definition of JLBP, we know that the sampling
points on each scale should be set the same. The sampling
methods proposed in [23] and [17] are combined together in
the paper.

Similar to the sampling scheme of the original LBP
approach [23], we sample pixels around a central pixel pc.
In addition, the number of points sampled around the cen-
tral pixel is restricted to be K × t (t is a positive integer)
on the scale of Rl (l = 1, 2, 3, . . . , L) as the scheme in
[17], and the points sampled on scale Rl are denoted as
gKt,Rl = [g0,Rl , g1,Rl , . . . , gKt−1,Rl ]T. After that, the gKt,Rl
is transformed to K points, and the transformed pi,Rl is cal-
culated as:

pi,Rl = 1

t

t−1∑

x=0

gx+t×i,Rl , i = 0, 1, . . . , K (8)

Based on the sampling scheme, Fig. 2a, b gives the com-
parison of computing JLBP and LBP descriptors.

For JLBP, the given image area is denoted as a topology
structure of (8,1,2), where K = 8, R1 = 1 and R2 = 2. For
R1 = 1, there are 8 sampled points. For R2 = 2, there are 16
sampled points, and they should be transformed to 8 points
by Eq. (8) firstly. After that, the JLBP code is calculated by
Eq. (6).

For LBP, the image area is firstly divided into two patches,
(8,1) and (16,2). Then, the codes of LBP8,1 and LBP16,2 are
computed separately. Finally, the LBP8,1 and LBP16,2 are
concatenated together as the final feature.

Obviously, JLBP captures the texture from the whole area
(i.e., the local structure (8,1) and (16,2) is fused together),
so it is easy to describe the texture of a larger area. While,
the LBP handles different scales separately, it is not as better
as JLBP to capture the macro-textures. Further, by choosing
the radius, JLBP is also easy to capture the micro-textures of
a local region.

3.3 Completed joint-scale LBP

Motivated by the striking classification performance of the
Completed LBP (CLBP) proposed by Guo et al. [6], we
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also proposed the Completed Joint-scale LBP (CJLBP)
descriptor. As CLBP, CJLBP also contains three opera-
tors: CJLBP_S, CJLBP_M and CJLBP_C. The CJLBP_S
is exactly the same as the JLBP. The CJLBP_C is defined the
same as CLBP_C.

Combined by the definitions of CLBP_M (Eq. 4) and
JLBP (Eq. 7), the CJLBP_M is defined as:

CJLBP_MK ,R1,R2,...,RL

=
K−1∑

i=0

s

(
L∑

l=1

mi,Rl −
L∑

l=1

a(Rl )

)
× 2i

(9)

wheremi,Rl = |pi,Rl − pc| and a(Rl ) denotes the mean value
of mi,Rl from the whole image, which is computed by the
same method as [6]. When L = 1, the CJLBP_M descrip-
tor is exactly the same as the CLBP_M descriptor, and the
CJLBP descriptor is exactly the same as the CLBP descrip-
tor. Further, the two-dimensional joint (2D-joint) and the
three-dimensional joint (3D-joint) of the proposedCJLBP_S,
CJLBP_M and CJLBP_C can also be built, respectively, for
texture representation as [6].

It is also clear that the CLBP operators are not appro-
priate for depicting the macro-textures because of the
higher dimensionality. In comparison with those CLBPs,
the CJLBPs produce much smaller feature vectors. For
example, CLBP_SMCriu2

24,3 produces a 1352-bin histogram,

while, CJLBP_SMCriu2
8,R1,R2,...,RL

only produces a 200-bin
histogram. Further, the dimension of the proposed operators
remains unchanged regardless of the variation of the joint
scales.

3.4 Multiple CJLBPs

It has been proved that the multi-scale scheme (the concate-
nation of individual LBPs) [23] can enhance the power of
LBP and other LBP-based methods, such as [6] and [17].
The proposed approach could derive many CJLBPs, which
makes it suitable to capture the texture structures at different
scales. In this case, the histograms of the individual CJLBPs
can also be concatenated together for better performance as
the multi-scale scheme in [23]. For example, the two individ-
ual CJLBPs, CJLBP8,1,2 and CJLBP8,2,3, are concatenated
together and denoted as CJLBP8,1,2+8,2,3.

4 Experimental results

To evaluate the performance of the proposed operators in
texture classification, we have carried out a series of exper-
iments on three representative texture databases, i.e., the
Outex database [22], Columbia-Utrecht Reflection and Tex-
ture (CUReT) database [3] and UIUC database [11]. The

Fig. 3 The Outex dataset includes 24 different texture classes

Nearest Neighbor Classifier (NNC) and the chi-square dis-
tance are used together as the dissimilarity measure as [6]
and [39].

We also compare the proposed CJLBPwith some state-of-
the-art LBP-based algorithms, CLBP [6], Completed LBC
(CLBC) [39], CRLBP [40], BRINT [17], AMBP [7] and
LSP [29] besides the two non-LBP methods VZ_MR8 [34]
and VZ_Joint [35]. For the sampling scheme, we chose the
BRINT2 proposed in [17] and set K = 8.

4.1 Experimental results on Outex database

The Outex dataset is one of the well-known databases used
for the evaluation of texture classification, which includes 24
texture classes shown in Fig. 3. We chose Outex_TC_0010
(TC10) and Outex_TC_0012 (TC12) in the experiments,
where TC10 and TC12 are collected under three different
illuminants (’horizon’, ’inca’, and ’t184’) and nine different
rotation angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦).
There are 20 nonoverlapping 128 × 128 texture samples for
each class under each condition.

For TC10, samples of illuminant ’inca’ and angle 0◦ in
each class are adopted for classifier training and the other
eight rotation angles with the same illumination are used
as testing suits. Hence, there are 480 (24 × 20) models and
3840 (24 × 8 × 20) validation samples. For TC12, all the
24 × 20 × 9 samples captured under illumination ’tl84’ or
’horizon’ are used as the test data.

Table 1 gives the experimental results of different meth-
ods, where the results of VZ_MR8 and VZ_Joint are repro-
duced from [6], and the results of other methods are taken
directly from the cited papers. From Table 1, we can draw
the following conclusions.

– For CJLBP_Ss, the proposed operators, CJLBP_Sriu28,2,4

(87.51 %) and CJLBP_Sriu28,4,8 (87.27 %) perform better

than CLBP_Sriu224,3 (86.96 %).

– For CJLBP_Ms, the proposed operator CJLBP_Mriu2
8,4,8

achieves better score (85.91 %) than CLBP_Mriu2
24,3

(85.11 %).
– In the 2D-joint way, CLBP_S_Mriu2

24,3 produces higher

score (95.41 %) than CLBP_S_Mriu2
16,2 (93.18 %) and

CLBP_S_Mriu2
8,1 (86.85 %). The proposed operators,
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Table 1 Classification rate (%)
on TC10 and TC12

Methods Bins TC10 TC12
(‘t184’)

TC12
(‘horizon’)

Average

CLBP_Sriu224,3 [6] 26 95.07 85.04 80.78 86.96

CJLBP_Sriu28,1,2 10 84.22 78.96 68.68 77.29

CJLBP_Sriu28,1,3 10 89.17 82.71 77.31 83.06

CJLBP_Sriu28,2,3 10 89.19 81.88 75.65 82.24

CJLBP_Sriu28,2,4 10 92.89 85.53 84.10 87.51

CJLBP_Sriu28,2,5 10 92.50 84.35 83.33 86.73

CJLBP_Sriu28,4,8 10 92.71 85.76 83.33 87.27

CJLBP_Sriu28,1,3,4 10 92.50 84.17 82.71 86.46

CLBP_Mriu2
24,3 [6] 26 95.52 81.18 78.65 85.11

CJLBP_Mriu2
8,1,2 10 88.54 67.94 71.34 75.94

CJLBP_Mriu2
8,1,3 10 94.14 71.41 79.33 81.63

CJLBP_Mriu2
8,2,3 10 93.70 75.19 80.95 83.28

CJLBP_Mriu2
8,2,4 10 92.94 74.40 81.46 82.93

CJLBP_Mriu2
8,2,5 10 91.80 71.53 75.93 79.75

CJLBP_Sriu28,4,8 10 91.61 83.24 82.87 85.91

CJLBP_Sriu28,1,3,4 10 93.59 74.07 81.48 83.05

CLBP_S_Mriu2
24,3 [6] 676 99.32 93.58 93.35 95.41

CJLBP_S_Mriu2
8,1,2 100 97.50 88.63 89.63 91.92

CJLBP_S_Mriu2
8,1,3 100 98.52 90.83 92.01 93.79

CJLBP_S_Mriu2
8,2,3 100 98.23 93.75 93.54 95.17

CJLBP_S_Mriu2
8,2,4 100 99.35 93.96 93.33 95.55

CJLBP_S_Mriu2
8,2,5 100 99.01 94.61 94.00 95.87

CJLBP_S_Mriu2
8,4,8 100 98.98 94.26 94.91 96.05

CJLBP_S_Mriu2
8,1,3,4 100 99.14 93.75 93.40 95.43

CLBC_CLBP [39] 2602 98.96 95.37 94.72 96.35

CJLBP_SMCriu2
8,1,2 200 98.93 92.92 94.28 95.38

CJLBP_SMCriu2
8,1,3 200 98.77 94.58 95.56 96.30

CJLBP_SMCriu2
8,2,3 200 98.93 95.93 95.69 96.85

CJLBP_SMCriu2
8,2,4 200 99.27 96.83 95.90 97.33

CJLBP_SMCriu2
8,2,5 200 99.22 96.44 95.74 97.13

CJLBP_SMCriu2
8,4,8 200 98.78 94.93 95.65 96.45

CJLBP_SMCriu2
8,1,3,4 200 99.30 96.57 96.20 97.36

CLBP_SMCriu2
8,1+16,2+24,3 [6] 2200 99.14 95.18 95.55 96.62

CRLBP (α = 1) [40] 1352 99.48 97.57 97.34 98.13

CLSPriu224,3 (a = 0, b = 1) [29] 1352 99.04 95.81 95.09 96.65

RLSPriu224,3 [29] 1352 99.07 95.86 96.63 97.19

BRINT2_CS_CM(MS9, NNC) [17] 1296 99.35 97.69 98.56 98.53

BRINT2_CS_CM(MS9, SVM) [17] 1296 99.30 98.13 98.33 98.59

AMBPriu2P,R,L1
/W/� [7] 320 – 98.0 96.7 –

VZ_MR8 [34] 610 93.59 92.55 92.82 92.99

VZ_Joint [35] 610 92.00 91.41 92.06 91.82

CJLBP_SMCriu2
8,4,8+8,1,3,4 400 99.77 98.59 98.68 99.01
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CJLBP_S_Mriu2
8,2,4, CJLBP_S_M

riu2
8,2,5, CJLBP_S_M

riu2
8,4,8

and CJLBP_S_Mriu2
8,1,3,4 give better scores, 95.55, 95.87,

96.05 and 95.43 % than CLBP_S_Mriu2
24,3. Further, their

feature dimensionality (100 bins) is less than one-sixth
of CLBP_S_Mriu2

24,3 (676 bins).
– In the 3D-joint way, the CLBC_CLBP (the concate-
nation of CLBC_SMCriu2

24,3 and CLBP_SMCriu2
24,3) per-

forms the best among the methods discussed in [6] and
[39]. Yet, the introduced CJLBP_SMCriu2

8,2,3 (96.85 %),

CJLBP_SMCriu2
8,2,4 (97.33%),CJLBP_SMCriu2

8,2,5 (97.13%),

CJLBP_SMCriu2
8,4,8 (96.45 %) and CJLBP_SMCriu2

8,1,3,4
(97.36%) work better than CLBC_CLBP (96.35%) with
a far smaller number of features.

– For the multiple CJLBPs, CJLBP_SMCriu2
8,4,8+8,1,3,4 (400

bins) (the concatenation of CJLBP_SMCriu2
8,4,8 and

CJLBP_SMCriu2
8,1,3,4) are used as an example. It increases

the classification accuracy by 2.39, 0.88, 0.48,
0.42 2.26 and 1.82 % over the LBP-based methods,
CLBP_SMCriu2

8,1+16,2+24,3 [6], CRLBP (α = 1) [40],
BRINT2_CS_CM (MS9, NNC) [Using nine scales
(MS9) and Nearest Neighbor Classifier (NNC)],
BRINT2_CS_CM(MS9,SVM) (Usingnine scales (MS9)
and support vector machine (SVM) classifier) [17],
CLSPriu224,3 and RLSPriu224,3 [29], respectively. The results

also show that it gives higher score than AMBPriu2P,R,L1
/W/� [7].

– The proposed CJLBP_SMCriu2
8,4,8+8,1,3,4 yields 6.02 and

7.19 % improvement over the two non-LBP methods,
VZ_MR8 [34] (610 bins) and VZ_Joint [35] (610 bins).
Further, our method is train free, and requires no costly
data-to-cluster assignments. Even, all the 3-D joint oper-
ators and 2-D joint operators (except CJLBP_S_Mriu2

8,1,2)
given in the paper are also better than VZ_MR8 and
VZ_Joint.

– Based on the results, CJLBP_SMCriu2
8,4,8+8,1,3,4 represents

the best performance (99.01 %).

It is obvious that there are many combinations
of CJLBPs. We have tested the other three combina-
tions, CJLBP_SMCriu2

8,1,2+8,1,3, CJLBP_SMCriu2
8,2,4+8,2,5, and

CJLBP_SMCriu2
8,2,5+8,1,3,4 besides CJLBP_SMCriu2

8,4,8+8,1,3,4.
Their average classification rates are 96.32, 98.61, and
97.57 %, respectively. It can be simply concluded that the
combinations will achieve better results if the individual
CJLBPs performs good.

On the other hand, better results may be produced by
applying different number of sampling points (K ). For exam-
ple, CJLBP_Sriu212,2,3 (K = 12) could achieve 91.30, 83.98
and 78.58 % for TC10, TC12 (’t184’) and TC12 (’horizon’),
and it has about 2.11, 2.10 and 2.94 % improvement over
CJLBP_Sriu28,2,3, respectively.

Fig. 4 The 61 textures in the CURet dataset

4.2 Experimental results on CUReT database

For the CUReT database, we use the same subset of images
which was previously used in [6,39,40] and [17]: 61 classes
of textures were captured at different viewpoints and illu-
mination orientations (illustrated in Fig. 4) and each class
has 92 samples. In the experiments, N (N = 46, 23, 12, 6)
images per class are selected randomly for training and the
remaining (92 − N ) (46, 69, 80, 86) for testing.

Table 2 depicts the classification scores over a hundred
random splits for different techniques. We also note that
the results of VZ_MR8 and VZ_Joint are reported directly
from [6]; the results of other methods are taken directly from
the cited papers except CLBP_S_Mriu2

24,3 and CLBP_SMCriu2
24,3

which are our implementation. Some findings could be
obtained as follows from Table 2.

– The CLBP_Sriu224,3 and CLBP_M
riu2
24,3 achieve better results

than those of the CJLBP_Ss and CJLBP_Ms, respec-
tively.

– In the 2D-joint way, CLBP_S_Mriu2
24,3 [6] produces the

classification rates of 94.01, 89.83, 83.89 and 73.66 %
for 46, 23, 12 and 6 training samples, respectively. The
presented CJLBP_S_Ms, CJLBP_S_Mriu2

8,1,3, CJLBP_S

_Mriu2
8,2,3, CJLBP_S_M

riu2
8,2,4, CJLBP_S_M

riu2
8,2,5, CJLBP_S

_Mriu2
8,4,7 and CJLBP_S_Mriu2

8,1,2,3 produce higher scores

than CLBP_S_Mriu2
24,3. It is also worth noting that the

length of the feature vectors of our methods and CLBP
_S_Mriu2

24,3 is 100 and 676, respectively.

– In the 3D-joint way, CLBP_SMCriu2
24,3 presents the classi-

fication rates of 95.27, 91.86, 85.33 and 76.09 % for 46,
23, 12 and 6 training samples, respectively [6]. For the
CJLBP_SMCs, CJLBP_SMCriu2

8,1,3, CJLBP_SMCriu2
8,2,3,

CJLBP_SMCriu2
8,2,4, CJLBP_SMCriu2

8,2,5, CJLBP_SMCriu2
8,4,7

and CJLBP_SMCriu2
8,1,2,3 present better performance than

CLBP_SMCriu2
24,3. Further, the dimensionality of the pro-
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Table 2 Classification rate (%)
on CURet

Methods Bins 46 23 12 6

CLBP_Sriu224,3 [6] 26 86.06 81.63 75.51 67.00

CJLBP_Sriu28,1,2 10 76.57 70.28 63.62 55.42

CJLBP_Sriu28,1,3 10 81.47 75.86 69.30 60.81

CJLBP_Sriu28,2,3 10 81.04 75.01 68.26 59.94

CJLBP_Sriu28,2,4 10 83.24 77.76 71.11 62.58

CJLBP_Sriu28,2,5 10 84.13 78.37 71.43 62.27

CJLBP_Sriu28,4,7 10 81.69 75.69 68.69 59.72

CJLBP_Sriu28,1,2,3 10 81.35 75.42 68.82 60.50

CLBP_Mriu2
24,3 [6] 26 86.59 79.76 72.12 62.81

CJLBP_Mriu2
8,1,2 10 79.06 71.91 64.01 54.68

CJLBP_Mriu2
8,1,3 10 82.81 76.06 68.49 58.90

CJLBP_Mriu2
8,2,3 10 82.36 75.71 68.19 58.79

CJLBP_Mriu2
8,2,4 10 84.54 78.07 70.67 61.24

CJLBP_Mriu2
8,2,5 10 84.39 78.25 70.87 61.68

CJLBP_Mriu2
8,4,7 10 83.70 77.51 70.35 61.16

CJLBP_Mriu2
8,1,2,3 10 82.20 75.36 67.88 58.16

CLBP_S_Mriu2
24,3 [6] 676 94.01 89.83 83.89 73.66

CJLBP_S_Mriu2
8,1,2 100 93.52 88.69 81.47 71.61

CJLBP_S_Mriu2
8,1,3 100 94.87 90.33 83.58 74.07

CJLBP_S_Mriu2
8,2,3 100 94.53 89.97 83.27 73.80

CJLBP_S_Mriu2
8,2,4 100 95.05 90.82 84.33 75.05

CJLBP_S_Mriu2
8,2,5 100 95.24 90.93 84.28 74.73

CJLBP_S_Mriu2
8,4,7 100 94.47 90.02 83.56 73.96

CJLBP_S_Mriu2
8,1,2,3 100 94.57 90.18 83.25 73.45

CLBP_SMCriu2
24,3 [6] 1352 95.27 91.86 85.33 76.09

CJLBP_SMCriu2
8,1,2 200 95.56 91.35 84.59 74.65

CJLBP_SMCriu2
8,1,3 200 96.24 92.35 85.81 76.05

CJLBP_SMCriu2
8,2,3 200 95.96 91.98 85.55 75.98

CJLBP_SMCriu2
8,2,4 200 96.35 92.55 86.32 76.85

CJLBP_SMCriu2
8,2,5 200 95.97 92.15 85.85 76.15

CJLBP_SMCriu2
8,4,7 200 95.67 91.82 85.83 76.13

CJLBP_SMCriu2
8,1,2,3 200 96.14 92.35 85.30 75.42

CLBP_SMCriu2
8,1+16,3+24,5 [6] 2200 97.39 94.19 88.72 79.88

CRLBP (α = 8) [40] 1352 96.27 91.83 86.06 78.43

CLSPriu216,2 (a = 0, b = 1) [29] 648 96.06 92.68 87.82 78.36

RLSPriu216,2 [29] 648 96.34 93.21 88.32 79.21

BRINT2_S_M(MS9, NNC) [17] 648 97.86 – – –

BRINT2_CS_CM(MS9, NNC) [17] 1296 97.06 – – –

AMBMri
P,R,L1

/W/� [7] 576 97.0 92.4 84.6 71.1

VZ_MR8 [34] 2440 97.79 95.03 90.48 82.90

VZ_Joint [35] 2440 97.66 94.58 89.40 81.06

CJLBP_SMCriu2
8,1,2+8,4,7+8,1,2,3 600 97.51 94.75 89.73 79.89
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posed CJLBP_SMCs (200 bins) is less than one-sixth of
CLBP_SMCriu2

24,3 (1352 bins).

– CJLBP_SMCriu2
8,1,2+8,4,7+8,1,2,3 (600 bins) (the concate-

nation of CJLBP_SMCriu2
8,1,2, CJLBP_SMCriu2

8,4,7 and

CJLBP_SMCriu2
8,1,2,3) is used as an example of multi-

ple CJLBPs. It has about 1.19, 2.92, 3.37 and 1.26 %
improvement for 46, 23, 12 and 6 training samples over
CRLBP (α = 8) (1352 bins) [40]. It also performs better
than CLBP_SMCriu2

8,1+16,3+24,5 [6], AMBPriP,R,L1
/W/�

[7], BRINT2_CS_CM (MS9, NNC) [17], CLSPriu216,2 and

RLSPriu216,2 [29].
– The BRINT2_S_M (MS9, NNC) [17] has better per-
formance than CJLBP_SMCriu2

8,1,2+8,4,7+8,1,2,3. Firstly, it
is because the BRINT2_S_M uses the rotation invari-
ant patterns (’ri’). Further, more scales are concen-
trated together (MS9) for BRINT2_S_M than CJLBP_
SMCriu2

8,1,2+8,4,7+8,1,2,3. We expect that the proposed
method would give an improved classification rate
by the same schemes as [17]. Additionally, CJLBP
_SMCriu2

8,1,2+8,4,7+8,1,2,3 is the only one example of the
proposed CJLBP scheme.

– The two learning techniques, VZ_MR8 and VZ_Joint,
also yield better performance than the proposed operator,
CJLBP_SMCriu2

8,1,2+8,4,7+8,1,2,3. It should be noted that
the feature dimensionality of ours (600 bins) is no more
than one fourth of the two training-based methods (2440
bins). Additionally, our method is train free and requires
no costly data-to-cluster assignments.

4.3 Experimental results on UIUC database

TheUIUC texture database includes 25 texture classes (illus-
trated in Fig. 5) and 40 images (640×480) in each class. The
database contains materials imaged under significant view-
point variations. In the experiments, we also use the same
subset of images which has previously been used in [6,39],
and [40]: N (N = 20, 15, 10, 5) images per class were
selected randomly for training and the remaining (40 − N )
(20, 25, 30, 35) for testing.

The experimental results in [39] show that CLBC yields
higher scores than CLBP [6] on UIUC database, which

Fig. 5 The UIUC dataset includes 25 different texture classes

demonstrates that CLBC offers high tolerance for significant
viewpoint and scale changes.

Table 3 gives the average accuracy over 100 randomly
splits of the training and test sets. In Table 3, the results of
CLSP, RLSP, Multi_CLBC and CRLBP are taken directly
from the cited references, the results of VZ_MR8 and
VZ_Joint are taken from [5], the results of AMBMri

P,R,L1
/W/�, BRINT2_S_M(MS9, NNC), BRINT2_CS_CM
(MS9, NNC), and CLBC are our implementation. From
Table 3, the following observations could be made.

– The CJLBP_Sriu28,2,4, CJLBP_S
riu2
8,2,5 and CJLBP_Sriu28,3,4,8

achieve better results than CLBC_S24,3.
– All the CJLBP_Ms (except CJLBP_Mriu2

8,1,2) produce bet-
ter scores than CLBC_M24,3.

– In the 2D-joint way, the introduced CJLBP_S_Mriu2
8,2,4,

CJLBP_S_Mriu2
8,2,5 and CJLBP_S_Mriu2

8,3,4,8 present bet-
ter performance than CLBC_S_M24,3. In particular,
CJLBP_S_Mriu2

8,3,4,8 yields about 4.02, 4.45, 5.08, 5.99 %
improvement over CLBC_S_M24,3 for 20, 15, 10 and
5 training samples, respectively. Further, the proposed
operators enjoy more compact representation (100 bins)
than CLBC_S_M24,3 (625 bins).

– In the 3D-jointway, the presentedCJLBP_SMCs,CJLBP
_SMCriu2

8,2,3, CJLBP_SMCriu2
8,2,4, CJLBP_SMCriu2

8,2,5 and

CJLBP_SMCriu2
8,3,4,8 present better performance than

CLBC_SMC24,3. Further, CJLBP_SMCriu2
8,3,4,8 yields the

best results; it has about 3.18, 3.15, 3.82, 3.48 %
improvement for 20, 15, 10 and 5 training samples over
CLBC_SMC24,3, respectively. The CJLBP_SMCs also
have much more compact representation (200 bins) than
CLBC_SMC24,3 (1250 bins).

– For the multiple CJLBPs, CJLBP_SMCriu2
8,1,2,3+8,3,4,8

(600 bins) (the concatenation of CJLBP_SMCriu2
8,1,2,3

and CJLBP_SMCriu2
8,3,4,8) is used as an example and it

reaches the classification rates of 95.13, 93.80, 91.11
and 84.49 % for 20, 15, 10 and 5 training samples,
respectively. It presents better results with more com-
pact feature than the Multi_CLBC (R = 1, 2, 3, 4, 5)
[39], CLSPriu216,2 and RLSPriu216,2 [29], AMBPriP,R,L1

/W/�

[7], BRINT2_CS_CM (MS9, NNC) and BRINT2_S_M
(MS9, NNC) [17], VZ_MR8 [34], VZ_Joint [35] and
CRLBP(α = 1) [40].

4.4 The influence of the parameter L

It can be seen that L (Eqs. 7, 9) is the key parameter for
the proposed scheme. To discuss the influence of L , we
choose CJLBP_Sriu2, CJLBP_Mriu2 and CJLBP_S_Mriu2 as
examples, and 50 randomly trails are tested, respectively, for
L = 2, 3, 4 and 5. The maximization, minimization, aver-
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Table 3 Classification rate (%)
on UIUC

methods bins 20 15 10 5

CLBC_S24,3[39] 26 66.67 63.52 57.87 47.23

CJLBP_Sriu28,1,2 10 55.70 51.54 46.15 36.95

CJLBP_Sriu28,1,3 10 62.79 58.70 52.65 42.54

CJLBP_Sriu28,2,3 10 63.66 59.62 53.66 43.29

CJLBP_Sriu28,2,4 10 68.84 64.84 58.69 47.63

CJLBP_Sriu28,2,5 10 72.77 68.96 62.61 50.75

CJLBP_Sriu28,3,4,8 10 78.93 75.58 69.71 57.47

CJLBP_Sriu28,1,2,3 10 61.73 57.79 52.04 42.01

CLBC_M24,3[39] 26 70.02 66.57 60.91 52.07

CJLBP_Mriu2
8,1,2 10 68.46 64.93 60.60 51.41

CJLBP_Mriu2
8,1,3 10 72.39 69.08 64.05 54.45

CJLBP_Mriu2
8,2,3 10 75.59 72.32 67.49 57.80

CJLBP_Mriu2
8,2,4 10 76.17 73.42 68.73 59.25

CJLBP_Mriu2
8,2,5 10 76.06 73.44 68.78 59.84

CJLBP_Mriu2
8,3,4,8 10 78.21 75.33 71.09 62.42

CJLBP_Mriu2
8,1,2,3 10 73.33 70.18 65.54 55.94

CLBC_S_M24,3 [39] 625 89.67 87.70 83.77 75.25

CJLBP_S_Mriu2
8,1,2 100 85.40 82.48 78.10 68.10

CJLBP_S_Mriu2
8,1,3 100 89.17 86.63 82.76 73.25

CJLBP_S_Mriu2
8,2,3 100 89.58 86.97 83.12 73.52

CJLBP_S_Mriu2
8,2,4 100 91.09 89.09 85.60 76.41

CJLBP_S_Mriu2
8,2,5 100 92.10 90.34 87.11 78.27

CJLBP_S_Mriu2
8,1,2,3 100 88.84 86.63 82.43 73.12

CJLBP_S_Mriu2
8,3,4,8 100 93.69 92.15 88.85 81.24

CLBC_SMC24,3 [39] 1250 91.32 89.96 86.44 79.63

CJLBP_SMCriu2
8,1,2 200 89.36 87.52 84.43 77.11

CJLBP_SMCriu2
8,1,3 200 91.36 89.58 86.82 79.65

CJLBP_SMCriu2
8,2,3 200 91.70 90.01 87.24 79.93

CJLBP_SMCriu2
8,2,4 200 93.19 91.44 88.73 81.33

CJLBP_SMCriu2
8,2,5 200 93.85 92.16 89.38 81.98

CJLBP_SMCriu2
8,1,2,3 200 91.40 89.88 86.97 79.86

CJLBP_SMCriu2
8,3,4,8 200 94.50 93.11 90.26 83.11

Multi_CLBC (R = 1, 2, 3, 4, 5) [39] 7530 93.68 92.04 88.86 81.67

CLSPriu224,3(a=0, b=1) [29] 1352 91.87 90.92 88.06 83.51

RLSPriu224,3 [29] 1352 92.32 91.24 88.47 83.73

AMBMri
P,R,L1

/W/� [7] 576 93.03 91.11 88.46 78.84

BRINT2_S_M(MS9, NNC) [17] 648 89.59 86.97 83.02 74.81

BRINT2_CS_CM(MS9, NNC) [17] 1296 93.26 91.78 88.57 81.21

VZ_MR8 [34] 2500 93.59 91.67 88.35 80.71

VZ_Joint [35] 2500 93.47 92.00 89.35 82.87

CRLBP (α = 1) [40] 1352 93.31 92.03 89.47 81.90

CJLBP_SMCriu2
8,1,2,3+8,3,4,8 400 95.13 93.80 91.11 84.49
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Table 4 Classification rate (%) on TC10

Methods L = 2 L = 3 L = 4 L = 5

Max Min Ave Var Max Min Ave Var Max Min Ave Var Max Min Ave Var

CJLBP_Sriu2 94.17 86.80 91.45 2.75 94.11 89.35 92.13 1.08 94.61 90.45 92.20 0.88 94.09 89.56 92.13 0.71

CJLBP_Mriu2 94.14 83.57 89.91 6.87 93.59 87.03 90.35 2.50 93.83 87.55 90.64 2.22 92.76 87.84 90.28 1.28

CJLBP_S_Mriu2 99.38 97.24 98.66 0.33 99.48 97.71 98.83 0.18 99.43 97.73 98.79 0.23 99.56 97.89 98.70 0.18

Fig. 6 Classification accuracy comparison for L = 2, 3, 4 and 5

Table 5 Feature extraction and classification time (s) averaged by 50
trials for the three examples

L = 2 L =3 L = 4 L = 5

Time complexity 229.62 324.72 379.18 421.42

age and variance (denoted as ’Max’, ’Min’, ’Ave’ and ’Var’)
of the classification rates for the three examples are given
in Table 4 and the comparison of the average and variance
is also given in Fig 6. Further, Table 5 shows the feature
extraction and classification time (time complexity) of these
three examples averaged by 50 trials. Some findings could
be obtained from the results that

– All the three examples achieve relatively better results
when L = 3 or 4.

– The variances of the classification accuracy reduce with
the increase of L .

– The bigger the L , the higher is the time complexity of the
CJLBPs.

– Generally, L = 3 or 4 is the best option for the CJLBPs
according to the average classification rate, the variance
and the time complexity.

5 Conclusion

In this paper, we have discussed the demerit of the original
LBP and its extensions firstly. To avoid the shortcomings,
we have presented a new robust scheme, JLBP. The new

method also has the advantages of LBP and its extensions,
such as the simplicity, discriminative power, computational
efficiency, robustness to illumination changes, noise robust-
ness. Further, it can easily capture the macro-textures by the
fusion of varieties of scales. In addition, CJLBP has been
introduced to enhance its power. The proposed scheme is
shown to exhibit very good performance on popular bench-
mark texture database. In the future work, we will extend the
proposed approach to focus on additional information (such
as choosing ’ri’ feature and discussing varieties of K values)
and additional scales to improve performances even further.
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