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Abstract 4D multi-view reconstruction of moving actors
has many applications in the entertainment industry and
although studios providing such services become more
accessible, efforts have to be done in order to improve the
underlying technology to produce high-quality 4D contents.
In this paper, we present a method to derive a time-evolving
surface representation from a sequence of binary volumetric
data representing an arbitrary motion in order to introduce
coherence in the data. The context is provided by an indoor
multi-camera system which performs synchronized video
captures from multiple viewpoints in a chroma-key studio.
Our input is given by a volumetric silhouette-based recon-
struction algorithm that generates a visual hull at each frame
of the video sequence. These 3Dvolumetricmodels lack tem-
poral coherence, in terms of structure and topology, as each
frame is generated independently. This prevents an easy post-
production editing with 3D animation tools. Our goal is to
transform this input sequence of independent 3D volumes
into a single dynamic structure, directly usable in post-
production. Our approach is based on a motion estimation
procedure. An unsigned distance function on the volumes is
used as the main shape descriptor and a 3D surface matching
algorithm minimizes the interference between unrelated sur-
face regions. Experimental results, tested on our multi-view
datasets, show that ourmethod outperforms other approaches
based on optical flow when considering robustness over sev-
eral frames.
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1 Introduction

The entertainment industry increasingly relies on a mix
of real pictures and computer-generated images. While
advanced technologies such as motion capture or matte
painting are widely used, new methods of multi-view recon-
struction are now emerging. These methods are based on
a virtual cloning system that uses a set of multi-viewpoint
cameras in an indoor studio to generate an animated 3D
model of an actor’s performance, without the need for the
traditionalmarkers used ubiquitously inmotion capture tech-
niques. Most of these multi-view reconstruction studios use
a model-free approach that generates a 3D object for each
frame of the multi-view video sequence. The resulting series
of static poses are not well suited for subsequent editing as
they are devoid of any temporal coherency or known corre-
spondences. Several projects have been developed to achieve
this temporally consistent multi-view reconstruction (e.g.,
[1,23,28]).

This paper fits in the RECOVER3D project [16] which
purpose is to adapt this new technology for TV production.
In this context, a set ofmulti-viewpoint cameras (cyber dome)
generates, for each frame, the digital transcription of the
scene in three dimensions using a volumetric visual hull algo-
rithm [10], producing a sequence of 3D volumes over time
(see Fig. 1).We assume that the input is a binary 3D array that
represents a sequence of poses generated by this reconstruc-
tion process along with the colors captured by the video.
These volumes are usually transformed into a sequence of
3D textured meshes, successively loaded for the rendering
of each frame. In this constrained industrial framework, our
goal is to introduce a dynamic representation of the captured
character, that adds a temporally consistent description of the
scene.Our ultimate goal is to generate a single, time-evolving
triangle mesh representing the motion of the actor in the
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Fig. 1 An overview of our production process. Our method focuses on the motion flow computation and the mesh animation

capture sequence. As the production teams need a practical
animated mesh for scene’s compositing, we want to create a
single, temporally consistent, animated model following the
character’s motion. This technology should be used to per-
form the reconstruction of various types of scenes, involving
actors wearing costumes and accessories, or even animals.
This requirement prevents the use of most existing methods
that assume rigidly articulated models. This project is ori-
ented towards broadcast and TV markets, that is why rapid
computations are preferred to go towards short production
deadlines.

To answer these requirements, we developed a new
method which uses a feature-based volume tracking to iden-
tify the actor’s motions and then apply a surface matching
algorithm. We extract the scene motion by computing a
3D motion flow from the input 3D volume sequence. The
particularity of our method is to combine two different
types of computations with a back and forth approach: a
Euclidean distance transform [20] and a choice of com-
plementary criteria (proximity, orientation, and color) that
permit to discriminate voxel matching. After the motion
flow is filtered, we use it to match a chosen template mesh
(one of the sequence frames) to the subsequent meshes
by pairs of frames, regularized using a mass-spring sys-
tem in an iterative approach, in order to create a unique
mesh, animated over time. This method works on generic
datasets, whatever the shape of the reconstructed object or
character.

In Sect. 2, a brief overview of recent advances in model
tracking is given. In Sect. 3, our approach is explained, giving
details on the object’s representation (Sect. 3.1), the motion
extraction (Sects 3.2–3.4) and the mesh animation process
(Sect. 3.5). Results are then presented in Sect. 4 showing the
quality of the motion retrieval and its robustness over several
frames.

2 Previous work

This section gives a brief overview of the existing techniques
for acquiring a 4D model of moving actors. Multi-view
reconstruction methods are usually separated into two main
approaches: model-based and model-free.

Model-free methods do not use a template mesh and are
supposed to be more generic. The most commonly used are
based on visual hull (silhouettes) [10] or depth maps (stereo)
reconstruction [8]. Themain problem is that these approaches
compute a static reconstruction of the scene at each frame of
the multi-viewpoint videos. Thus, they obtain a sequence
of static 3D objects which represent the successive actors’
poses, but without any consistency in term of structure or
topology. To be used for animation, these sequences need
to be processed and transformed into a single, temporally
consistent, and animated object. Starck and Hilton [23] pro-
posed a model-free method based on visual hull and stereo
reconstruction. A spherical parameterization is operated on
the object. This restricts the process to work only on single
closed surfaces. Zheng et al. [29] extract a skeleton from each
frame of a scanned sequence. They then compute a unique
consensus skeleton, matching the successive poses, to derive
a time-consistent reconstruction. Nevertheless, this approach
is limited to clearly articulated shapes, which is not compat-
ible with our goal. Mitra et al. [17] proposed a method for
dynamic registration of scanned surfaces by computing rigid
transformations. The authors then propose an extension for
deformable bodies, noticing that their transformations can be
considered as locally rigid. However, their methods seems
sensitive to fast motions and important inter-frame defor-
mations. Tevs et al. [24] match a model through a scanned
sequence thanks to set of landmarks correspondences. We
can also mention Li et al. [13] who developed a temporally
consistent completion of scanned meshes’ sequences, using
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a deformation graph to establish pairwise correspondences
between consecutive frames. This registration is based on a
non-rigid ICP algorithm [12]. Nevertheless, this method is
applied on high definition meshes (despite the scan holes)
whereas our visual hull surfaces are less trustworthy.

Model-based multi-view reconstruction approaches use a
template model representing an actor—typically, an articu-
lated mesh of a generic human body. De Aguiar et al. [1]
use a similar approach with a tetrahedral mesh reconstructed
from a 3D scan acquisition. The multi-view reconstruction is
then achieved by deforming this template in time according
to a set of directives (optical flow or silhouette matching)
extracted from the multi-viewpoint videos. Vlasic et al. [28]
and Gall et al. [7] employ a predefined skeleton to match the
template model with a set of poses defined by silhouettes or
visual hulls, before applying local deformation on the mesh
to match free-form elements (such as clothes or hair). The
main advantage of this family of techniques is the tempo-
rally coherent animation they produce. Nevertheless, the use
of a template model restricts their generality. Model-based
methods are most often limited to a single human model,
even if some variants (e.g., Liu et al. [14]) allow the track-
ing of several actors. Cagniart et al. [5] employ a dynamic
surface based on a deformable tile set, initialized with the
first frame of the sequence. This mesh is then deformed to
match the subsequent poses. Alain et al. [2] uses a simi-
lar patch-based parameterization. Following the same kind
of approach, we will use the first pose of the sequence as
our initial mesh that we then deform based on the rest of
the sequence. These approaches are too restrictive for our
goal because we do not want to make assumptions about the
reconstructed actors. Skeleton-based approaches, especially,
could lead to strong limitations if the reconstruction is pro-
ceeded on actors wearing loose costumes (dresses or coats,
for example) or accessories (bags, hats ...).

Severalmotionflow-based approaches havebeenproposed
to achieve a reconstruction with temporal consistency from
a sequence of poses. A mesh-tracking method as proposed
by Starck and Hilton [22], Varanasi et al. [26], Furukawa and
Ponce [6] or Tung and Matsuyama [25] can match several
meshes according to curvature, texture criteria, or photo-
consistency, from which one can compute the motion flow
describing the movements of an actor between two frames
[19]. Motion flow extraction is related to the scene flow
described by Vedula et al. [27], obtained by merging in the
3D space the optical flows of a multi-camera rig. Anuar and
Guskov [3] proposed to compute the 3D optical flow using a
voxel-basedmethod. Themotionflowcan then be used to ani-
mate a mesh over time. In our case, however, the visual hull
reconstruction usually creates significant artifacts which pre-
vent us from using such a mesh-tracking approach directly.
Instead, we can use a volumetric approach to compute a
motion flow based on a voxel matching algorithm applied to

the input sequence, as proposed byNobuhara andMatsuyama
[18]. A template is obtained by a marching cube triangula-
tion of the first frame volume. However, the motion flows
computed in this method are simply obtained by matching
each voxel to the closest one in another frame, thus producing
motion vectors which lack accuracy.

Discussion
Traditional articulated model-based approaches present dis-
criminating constraints for our application context. Motion
flows could be considered limited due to the amplitude of the
movements but they can help managing any type of model
and work on volumes. We thus decided to explore a motion
flow approach and use it to animate a template mesh, gener-
ated by our model-free multi-view reconstruction.

3 Our approach

Our input is a sequence of n digital volumes obtained by a
silhouette-based reconstruction from multi-view video. The
i th volume of this sequence represents the actor at time ti
(see Fig. 1). Our method starts by estimating a 3D motion
flow between two consecutive frames by computing a voxel
matching based both on local geometry and color between the
two corresponding consecutive poses. At this stage, we work
on the reconstructed volumes. In the next step, we use these
flows to animate a dynamic mesh model. The reconstructed
mesh at the first frame, obtained by a marching cube algo-
rithm, is used as the initial template model. By deforming it
at each frame according to the estimated flows, we deduce a
character’s animation.

3.1 Volume description

The reconstructed volumes we use are simple digital vol-
umes, a regular 3D grid of isotropic binary voxels (0 for void
voxels and 1 for voxels covering or intersecting the object).
Voxels straddling the surface (i.e., those that are not void,
yet direct neighbors of void voxels) are assigned a color as
well, extracted from the multi-view video frames: the color
associated to a voxel is interpolated from themulti-viewpoint
images which contains this point. Each surface voxel is then
associated with an RGB color (see Fig. 2a). Note that for
simplicity of our data structure, we implement a volume
as an RGBA array, where the alpha channel is set to 0 for
void voxels, 1 for internal voxels, and 0.5 for surface voxels.
We then compute another representation of these volumes
using a Euclidean distance transform (EDT), as described
by Saito and Toriwaki [20]. We obtain an unsigned distance
volume, represented by a 3D gray-level voxel grid, as shown
in Fig. 2b. Each voxel is associated to a positive value which
corresponds to the Euclidean distance to the closest boundary
of the object. This volume description could be considered as
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Fig. 2 Volume processing. aAn example of colored reconstructed vol-
ume issued from multi-view reconstruction. b A sliced representation
of the corresponding EDT. a Volume, b EDT

a gray-level 3D picture. Thus, we can compute a derivative
estimation of this picture. It will be used to compute the nor-
mal vectors (see Sect. 3.2.2) and gradient values. To compute
the spatial derivative, we use a set of Sobel-like filters which
estimate, in a 3× 3× 3 window around each voxel, the EDT
variations for each spatial axis. A temporal derivative is also
computed on the same neighborhood by the differences of
the values between two consecutive frames.

3.2 Voxel matching

Given two consecutive volumes V n and V n+1 which corre-
spond to frames tn and tn+1, our goal is to compute amatching
V n → V n+1 representing the scene flow. We define as sur-
face voxels the voxels which belong to the object and have
at least one void voxel in their direct neighborhood. These
surface voxels are characterized by an RGB color and a sur-
face’s normal vector. We want to match each surface voxel
vni ∈ V n to another surface voxel vn+1

j ∈ V n+1 minimizing
the following distance function:

D(vni , v
n+1
j ) = ωpδi, j + ωnϕi, j + ωcσi, j , (1)

where δi, j , ϕi, j , and σi, j correspond, respectively, to a prox-
imity criterion (see Sect. 3.2.1), an orientation criterion (see
Sect. 3.2.2) and a colorimetric criterion (see Sect. 3.2.3). ωp,
ωn andωc areweighting terms, fixed by the user. In our exper-
imentations we used ωp = 0.3, ωn = 0.45, and ωc = 0.25.
These criteria allow to match the voxels which correspond
to the same part of the surface, identified by an orientation
and a texture. In case of large motions, the color is the most
invariant feature. The proximity should only be a discrim-
inating characteristic when several voxels satisfy the other
terms of the distance function.

We immerse the binary volume V 0 in the EDT grid of
V 1, so that the EDT value associated to each surface voxel
of V 0 represents its distance to the next pose at time t1. This

Fig. 3 Voxel matching between two consecutive volumes. The voxel
(1) from the V n volume matches better the voxel (2) from the V n+1

volume than the voxel (3). The neighboring voxels are represented with
their colors. Normal vectors are figured by arrows

Fig. 4 Top forward (a) and backward (b) matching between the two
volumes.BottomGaussian filter (in gray) applied to the rawvector fields
(c) and final motion field (d)

distance is used to automatically define a search radiuswhich
corresponds to the maximum amplitude of the motion. For
each surface voxel vni we look through the surface voxels
of V n+1 contained in this neighborhood and we select the
voxel vn+1

j which corresponds to the smallest result of the
function (1). Figure 3 shows an example of voxel matching.
The positions of voxels vni and vn+1

j define a 3D vector. This
vector is added to a vector field at the vni position. This vector
field is represented by the same structure as the voxel grid.
Each square could contain one or several vectors. The same
operation is repeated, looking this time, for each vn+1

j , for the
matching surface voxel vni . The resulting vectors are added
to the vector field at vni position. This backward pass allows
us to find a part of the motion which could have been ignored
by the forward matching process (see Fig. 4, top). Thus, we
ensure that each surface voxel in V n and V n+1 is associated
to at least one vector.

3.2.1 Proximity criterion

The proximity criterion corresponds to the Euclidean dis-
tance between the two voxels:

δi, j = ‖pn+1
j − pni ‖

with pni and p
n+1
j being the 3D positions of vni and vn+1

j . This
criterion allows us, if several voxels satisfy the other criteria,
to select the closest one (see Fig. 5b).
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Fig. 5 Influence of the matching criteria. Results, before and after
regularization, of the left hand’s voxel matching: a with ωp = 0.3,
ωn = 0.45, and ωc = 0.25, b without proximity criterion (ωp = 0), c

without orientation criterion (ωn = 0), d without colorimetric criterion
(ωc = 0), and e with all weights set to 1

3.2.2 Orientation criterion

The orientation criterionmeasures the difference between the
normal vectors of the two voxels:

ϕi, j = 1 − nni · nn+1
j

withnni andn
n+1
j being, respectively, the normal vectors at vni

and vn+1
j . As illustrated in Fig. 5c, this criterion penalizes the

matching of two voxelswhich belong to back facing surfaces.
For example, in Fig. 3, the voxel (1) is matched with voxel
(2) which normal vector has a closer orientation.

3.2.3 Colorimetric criterion

The colorimetric criterion is similar to a block matching
algorithm, as used for motion estimation in digital video
processing.We compare the colorimetric difference between
two voxels as well as between their direct neighborhoods:

σi, j = ‖vn+1
j − vni ‖RGB + ‖Bn+1

j − Bn
i ‖RGB

Bn
i and Bn+1

j are the blocks which correspond to the surface
voxels contained in a neighborhood of fixed size b around vni
and vn+1

j , respectively,

Bn
i =

b∑

k=1

vni+k

if vni+k belongs to the surface. This constraint favors the
matching of two voxels which belong to close color blocks
corresponding to the same object’s part (see Fig. 5d).

3.3 Motion regularization

The voxel matching step results in a 3D vector field which
should describe the motion of the volumetric object between
V n and V n+1. However, several inconsistent matches remain
and the global motion is too irregular to be used. That is why
a smoothing step is performed to get a coherent motion flow,
as shown in Fig. 4 (bottom). We apply a Gaussian filter on
the initial vector field. For each surface voxel, we compute

a single vector which is an average, weighted by Gaussian
coefficients, of all the vectors in a defined neighborhood.
Thus, we obtain a smooth 3Dmotion fieldwhere each surface
voxel is associated with a single motion vector. This filtering
operation cleans the irrelevant vectors and regularizes the
vector set to produce a coherent motion description where
each surface voxel is associated to a singlemotion vector. The
size of this filter depends on the dimension of the volumes
and must be defined by the user. In our case, we perform
a single filtering iteration, but for high-resolution volumes,
the filter can also be applied several times to enhance the
smoothing effect.

3.4 Prediction

Considering that, at a time ti , the motion flow between ti
and ti + 1 should be a continuity of the previous motion
vectors (between ti−1 and ti ), we can improve our voxel
matching algorithm once themotion vectors between the first
two frames of the sequence has been estimated. Each sur-
face voxel at ti uses the motion vector previously estimated
between ti−1 and ti to predict the position of the matching
voxel in ti+1. We then search for the best matching voxel in
ti+1 using a noticeably reduced radius around the predicted
position, offering a highly efficient speedup of 60 % com-
pared to the brute force algorithm. This prediction is repeated
for the next matching phases throughout the whole sequence.

3.5 Mesh animation

We construct an initial (template) mesh based on the first vol-
ume of the sequence by extracting it using a marching cubes
algorithm over the alpha value. We clean up the resulting
triangle mesh through edge collapse simplification to ensure
that each triangle is non-degenerate, and will thus not create
numerical artifacts in our subsequent tracking.

In the animation step, the template mesh is immersed in
the motion field and we apply to each vertex the translation
defined by the closest vector. The result is too irregular to be
used (see Fig. 6), details due to non-rigid deformation (such
as cloth folds or hair) will be missed.Moreover, mesh quality
may also degrade over time as large deformation happens,
making mesh regularization desirable. Thus, we once again
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Fig. 6 Results of themesh animation process. Templatemesh (in gray)
in initial pose (a). The same mesh after the application of the motion
vectors towards the next visual hull in yellow (b). The final result after
mesh regularization (c)

Fig. 7 Silhouette fitting. Vertices are moved normal to the surface,
according to the EDT values

apply a regularization algorithm, this time to obtain a regular
mesh which corresponds to the pose defined by the visual
hull. We thus compute local vertex displacements based on
both fitting accuracy and regularization as follows.

Regularization
We regularize the mesh by applying spring-like forces to
favor equi-length edges:

fr (pi ) =
∑

j∈N (i)

(‖pi − p j‖ − r̄i )
pi − p j

‖pi − p j‖

where p j is a vertex from the one-ring neighborhood of pi ,
while the rest length r̄i is set to the current average length of
the edges adjacent to pi . We use only the tangential compo-
nent of the resulting vector.

Silhouette fitting
Using the EDT, we also push each vertex toward the visual
hull surface (see Fig. 7) by adding the following force:

fs(pi ) = npi · EDT(pi )

with npi and EDT(pi ) being the normal vector and the EDT
value at pi , respectively.

We integrate the sum of these two forces over 250 time
steps by updating position and velocity of each vertex
(assumed to be all of unit mass) using a simple Runge–Kutta

explicit integrator to make the integration trivially paralleliz-
able. Weighting the two forces further allows the user to
control regularization vs shape fitting depending on the noise
present in the volume sequence.

4 Results

We tested our method on several datasets obtained through
volumetric visual hull reconstruction. The girl dataset con-
tains simplemotions, with awoman slowlymoving her arms.
The visual hull volume has a 73 × 132 × 43 voxels res-
olution and is reconstructed for 30 frames. The first mesh,
used as a template, contains 11,912 vertices. The cheerleader
and astronaut sequences both contain 25 volumes, with an
average 180 × 270 × 170 voxel resolution. The template
mesh contains 19,234 vertices for the cheerleader sequence
and 8048 for the astronaut sequence. These three datasets
come from an indoor studio shoot using a 24-camera rig.
The astronaut contains a nearly rigid but large motion of
the arms. The cheerleader is more challenging due to the
free-moving shapes of the pom-pom, the skirt and the large
motions of the arms. The dancer sequence was generated
using the multi-viewpoint images provided by the GrImage
platform1 with an average 150×100×300 voxels resolution
for 30 frames. This dataset presents a quick dancing motion,
with large movements of the arms and a dress, with a lower
quality of the visual hull. We also tested our method on the
capoeira sequence, using the multi-view videos described in
[1] to generate a 30 frames sequences. This last sequence
contains fast motions, especially for the legs, which lead to
large inter-frame displacements. All timings were done on a
64 bit Intel Core i7 CPU 2.20 GHz.

4.1 Evaluation of the motion flow reconstruction

When testing the motion flow on these datasets, we obtain a
satisfying motion field due to the regularization step, where
each surface voxel is associated to a displacement vector
(see Fig. 9). Figure 8 presents the results for the three
sequences produced by our multi-view studio. The motion
flowbetween two frames is computed in an average timeof 50
and 100 s for the cheerleader (Fig. 8a) and astronaut (Fig. 8c)
sequences, respectively. For the girl sequence (Fig. 8a), the
motion is computed in less than 10 s. The motion estima-
tion is performed in 60 s per frame with the dancer sequence
(Fig. 8d). Due to the fast inter-frame motion in the capoeira
sequence, the motion flow computation took an average of
200 s (Fig. 8e).

We compared our approachwith our own implementations
of two3D-adaptedoptical flowalgorithms as presented in [4]:

1 http://4drepository.inrialpes.fr/.
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Fig. 8 Accumulatedmotion flows through several frames of five test sequences (motion vectors are oriented from blue to red). aGirl,bCheerleader,
c Astronaut, d Dancer, e Capoeira

Fig. 9 Motion field regularization. Left result of the voxel matching step. Right vector field after regularization (vectors are oriented from blue to
red)

the first one is based on the Lucas and Kanade method [15]
and the second one on the variational approach by Horn
and Schunck [9]. For comparison, the method described in
[3] is using a similar approach to the Lucas–Kanade ver-
sion, applied on a discrete distance function, as our EDT.
Our tests show that for similar settings, the Lucas–Kanade
approach is faster (less than 5 s for girl) but displacement
vectors are not oriented correctly (see an example of results
in Fig. 10a for a zoom-in on the girl’s upper body). It was
expected as this kind of image warping approach is not well
suited for large displacements. One common improvement
to avoid this problemwould be to implement a coarse-to-fine
computation. The Horn–Schunck algorithm is significantly
slower (5min on the same dataset) and does not give convinc-
ing results with displacement distances not corresponding to
the actual movement (see Fig. 10b). With the other datasets,
these limitations of our Horn–Schunck implementation are
increased, due to the higher resolution of the volumes. We
thus compared our motion flow computing with the Lucas–
Kanade flows. Results are presented in the Table 1 for three
datasets. With the other sequences, the motion’s amplitude
between two consecutive frames is too large to get a con-
sistent flow with the Lucas–Kanade implementation. On the
other hand, our back and forth voxel matching ensures that
the motion flow covers the whole displacements, whatever
their amplitude.

The Euclidean distance volume, used as a 3D picture,
does not seem to be a good enough information to com-
pute a consistent motion information. Despite of its high

Fig. 10 Result of the two 3D optical flow computation between two
frames of the girl sequence. a Lucas–Kanade, b Horn–Schunck

algorithmic complexity, our voxel matching method pro-
vides a better representation of the motion. While it is
mostly only possible to evaluate visually the motion flows,
a quantitative evaluation was performed on the mesh itself
(see Sect. 4.3) which confirms our observations on the
flows.
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Table 1 Mesh matching measurement (average Hausdorff distance) between animated mesh and visual hull of the target pose

Frame Girl Dancer Cheerleader

Lucas–Kanade Voxel matching Lucas–Kanade Voxel matching Lucas–Kanade Voxel matching

2 0.00157 0.00157 0.007325 0.003321 0.002224 0.001772

3 0.00157 0.00157 0.008143 0.003091 0.002180 0.001846

4 0.00157 0.00157 0.007863 0.003061 0.002558 0.001914

5 0.00160 0.00160 0.006692 0.002173 0.002914 0.002244

6 0.00167 0.00167 0.006649 0.002682 0.002564 0.002196

7 0.00172 0.00173 0.006525 0.002569 0.002709 0.002054

8 0.00171 0.00173 0.007404 0.002431 0.002872 0.002150

… … … … … …

12 0.00175 0.00177 0.003065 0.003166 0.001854

… … … … … …

16 0.00180 0.00183 0.007644 0.003232 0.002061

… … … … … …

20 0.00171 0.00174 0.005482 0.003198 0.002085

… … … … … …

24 0.00177 0.00175 0.003628 0.002930 0.001945

… … … …

28 0.00206 0.00191 0.002933

4.2 Discussion on the chosen parameters

The method presented by [18], which uses only Euclidean
distance (meaning, in our case, ωn = ωc = 0) is less effi-
cient than the results we obtain with our multiple criteria
approach. Figure 5 shows the influence of the three crite-
ria (proximity, orientation, and color) for voxel matching,
defined by weights ωp, ωn , and ωc (see Eq. (1)), fixed by the
user. Figure 5b shows that without the proximity criterion
(ωp = 0), most of the matched voxels are too distant. The
matching could associate two voxels which seems identical
but does not correspond to the same part of the surface. The
same problem appears if the orientation criterion’s weight
(ωn) is set to zero. As illustrated in Fig. 5c, most of the
voxels arematchedwith another voxel which is close but cor-
responds to a backfacing surface. Figure 5d shows the lack
of precision in the matching computed without colorimetric
criterion (ωc = 0). The efficiency of this criterion increases
when the volume is highly textured (i.e., there are lots of
variations in the voxels’ colors). At last, Fig. 5e shows that
these criteria do not have the same influence, depending on
the dataset used, and most of the time, different weights are
chosen by datasets. These results show that this voxel-based
approach can bemade drasticallymore robust for visual hulls
if one considers orientation and texture of the voxels for
matching and proper filtering. It is really the combination
of the three criteria that improves the quality of the matching
process.

4.3 Qualitative evaluation of the mesh animation

After the application ofmotion vectors’ translations, the tem-
plate mesh (see Fig. 6a) is altered (see Fig. 6b). After our
iterative regularization, we obtain a smooth and regular mesh
which matches the pose at each frame (see Fig. 6c). The
girl mesh processing between two frames took around 50 s.
Mesh adjustment (see Sect. 3.5) was applied with weights
0.6 and 0.4 for regularization vs. fitting. We used 50 itera-
tions for the numerical integration step. The first mesh, used
as a template, contains 11,912 vertices. We applied a max-
imum of 200 iterations during the mesh regularization step
for the cheerleader astronaut sequences, with an average
computing of 100 s. For the dancer sequence, for which the
template mesh contains 7843 vertices, the mesh animation
is processed in 60 s. Results from these sequences are pre-
sented in Fig. 11, demonstrating robustness of our approach
in light of the coarseness of the input volumes. Our two-steps
mesh animation allows non-rigid deformations and will thus
remove the potential geometric features present at the initial
time which should not be kept as is in time (for instance, a
wrinkle on a dress).The cheerleader dataset shows that shape
of the pom-poms is correctly adjusted after the global defor-
mation phase (see Fig. 6b, c).

To measure the matching quality of the deformed tem-
plate and the target pose, we used the average Hausdorff
distance as metric, which represents the distance between
the deformed template and a mesh obtained by visual hull
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Fig. 11 Result of the mesh animation for the Cheerleader, Astronaut
and Dancer sequences. From left to right the extracted motion flow
volume (motion vectors oriented from blue to red), the initial mesh,
and the result of the mesh animation

reconstruction of the same frame (this value is computedwith
respect to the diagonal of the bounding box). We tested the
whole process with motion vectors obtained by our method
(voxel matching) and by 3D optical flow with the same mesh
regularization parameters. The Table 1 presents the evolution
of this matching metric during three sequences. We can see
that after several frames, the Hausdorff distance increases
for the Lucas–Kanade approach whereas it stays stable with
our method. These divergences correspond to the inconsis-
tencies that appear in the mesh after several frames, due
to a bad motion flow. If the Lucas–Kanade approach and
ours give similar results for the first poses, the results differ
significantly from the real visual hull after several frames.
With Lucas–Kanade, the mesh animation stays robust for
23 frames of the girl sequence. With our voxel matching
approach, we obtain consistent results during the complete
sequence. With the dancer dataset, the shape matching,
using Lucas–Kanade, starts to produce inconsistent results
after only three frames. Similar results are obtained with
the cheerleader where the mesh animation becomes incon-
sistent after five frames (see Fig. 12b). Whereas with our
motion flow, the Hausdorff distance stay stable (see Fig. 13).
The girl dataset is the only one where the mesh matching
stay robust during the whole sequence using the 3D opti-
cal flow approach, even if the visual mesh consistency is
quickly lost, because of the low motion’s amplitude. With
the other sequences, the 3D Lucas–Kanade implementation
fails to maintain a consistent mesh animation after a few

Fig. 12 Stress case. a Example of small details where the mesh slowly
degrades over time by lack of dense enough information. b Other kind
of mesh drift occurs when the motion flow does not correctly matches
the new pose of the actor. Here is an example with the cheerleader
dataset, animated with the 3D Lucas–Kanade motion flow

Fig. 13 Evolution of the average Hausdorff distance during the girl
and cheerleader sequences

frames. The consistency of the matching of the matching
between the animated mesh and the visual hulls is also mea-
sured by comparing the color of the voxels that correspond
to each vertex during the sequence. We compute the dis-
tance in the colorimetric space between the closest voxels of
a vertex in two consecutive frames and repeat this for each
pair of frames through the whole sequence. The resulting
values are normalizedwith respect to themaximumcolor dif-
ference (between black and white). The average difference
is 0.042 for the dancer dataset (with a standard deviation
of 0.059) and 0.039 for the cheerleader sequence (with a
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Fig. 14 Representation of the texture matchingmetric on the animated
mesh for the cheerleader (a) and dancer sequences. Each vertex is
associated with a color that represents the colorimetric difference of the
closest voxels in two consecutive frames. A goodmatching corresponds
to a small value. The minimum value is 0 (blue) and maximum is 0.7
(red)

Fig. 15 Example of free-moving clothes’ tracking in the dancer
sequence

standard deviation of 0.058). These values shows that, despite
the regularization of the mesh, the moving vertices stay glob-
ally associated with the same parts of the surface during the
animation. The maximum differences are logically observed
in the regions animated by the largest motions, as shown in
Fig. 14.

Our mesh animation method leads to an adaptation of
the template during the sequence, avoiding some of the
model-based inconveniences, as in [1], where the tracked
model retains some of the surface details (clothing folds)
from the initial pose during the whole sequence. The cheer-
leader dataset shows that shape of the pom-poms is correctly
adjusted after the global deformation phase (see Fig. 6b, c).
With the dancer sequence, we show that the mesh correctly
tracks the shape of the moving dress (see Fig. 15). This type
of animation would be hardly recovered with an articulated
model tracking approach. However, in this extreme case, our
local regularization step degrades the details of the hands
as they are of a size too close to the size of a grid element.
While a decrease of the regularization factor canmitigate this
issue, thin features cannot be well preserved. A local opti-
mization with subgrid accuracy (i.e., super-resolution) could

solve this issue, most likely at the cost of a significantly
increased computational complexity. The validity duration
of the mesh template thus depends on the geometry topol-
ogy changes rather than on the number of frames. When
large topological changes occur, a new pose should be used
as a new template, and the whole processing started again
to continue the animation. We expect this limitation to vary
depending on the volumetric resolution of the input.

4.4 Limitations and future work

In order to restrict the number of topology errors, our goal is
to proceed the reconstruction of the first frame, which is used
as template mesh, with a model’s pose that limits ambigu-
ities and using a high-quality visual hull method, enhanced
with stereo-based voxel carving. However, the changes in the
topology of objects that could appear during the sequences
are notwell supported andmay result in inconsistentmotions.
Our future implementationswill have to integrate an adaptive
shape model which could deal with these topology modifi-
cations, as in the method proposed by Letouzey and Boyer
[11], for example. As presented in Fig. 12, our method is
still sensitive to thin details recovering. Figure 12a shows
an example on a synthetic dataset that contains thin details
such as fingers. As described in Sect. 4.3, the animated mesh
may become inconsistent if the motion flow does not prop-
erly matches the successive actor’s poses. These problems
often occurs when we use the 3D Lucas–Kanade approach
(as presented in Fig. 12b) instead of our voxel matching algo-
rithm, but can also occur after several frames even using our
method, especially due to large displacements between two
frames. A mesh animation based on an ARAP deformation
[21], guided by themotion vectors, could ensure a better con-
servation of the mesh structure during the sequence and lead
to more robust results. The datasets on which we tested our
method where around 30 frames long. We wish to work on
longer sequences in our future improvements. Another issue
is the number of parameterswhich have to be fixed by the user
or empirically determined (weighting coefficients for voxel
matching and mesh regularization, Gaussian filter radius,
and number of iterations) and that may not be robust for
all the sequence. These problems prevent us from computing
efficiently an animation from long and complex sequences.
The last limitation is the computation time, which could be
reduced by the use of GPGPU technologies. Notice that all
the processing times concern a simple CPU implementation.
We currently do not use any kind of parallelization.

5 Conclusion

Our method allows us to compute a voxel matching for
motion flow estimation. This correspondence is established
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without a priori knowledge about the nature of the volumes,
except that they are of course supposed to represent the same
object and belong to the same sequence. Note that the motion
flow may be used, as a descriptor of the actor’s movements,
in other applications such as interaction of the reconstructed
characterwith its virtual environment.Ourmesh deformation
process, associated with a vertex regularization step, leads
the mesh from the first frame to the pose defined by the next
frame’s reconstruction, providing a temporally coherent evo-
lution. Our future work will focus on the identification of the
changes occurring in the topology during the sequence. It
could be argued that working on volumetric input could lead
to approximations. However, this allows us to keep the input
as generic as possible to later be able to transfer the motion
flow to more precise modeling.
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