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Abstract Many real objects are heterogeneous. They are
composed of diverse materials, which are present in vary-
ing proportions. Materials inside the solid do not have to
be uniformly distributed. So, methods capable of accurately
model not only the boundary of the solid, but also the dis-
tribution of material in every single point of its interior, are
needed. In this paperwe propose a new framework formodel-
ing heterogeneous objects. The framework is comprehensive
as it characterizes precisely heterogeneous objects, defines
an adequate mathematical model that captures the essence of
such objects, and a computational representation to represent
the modeled objects in a computer. Our framework is based
on Béziér hyperpatches and solves the main problems of this
mathematical tool. We have implemented it completely in
order to check whether it is possible to precisely model real
objects.
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1 Introduction and motivation

Heterogeneous objects are composed of different materials
whose proportion throughout the solid is variable. These
objects benefit from the best features due to the mix of
materials they are made from. The mixture of materials that
compose heterogeneous solids, is called heterogeneousmate-
rial or functionally gradedmaterial. Heterogeneousmaterials
are used tomanufacturemany types of real objects, e.g., med-
ical implants, engine parts or competition tires.

Designing heterogeneous objects is not an easy task. It is
necessary to have a computer application, based on a well
stated framework, to address all the complex aspects of the
design process.

In this paper, we describe a comprehensive framework
that allows representing heterogeneous objects in a simple
and efficient way. The framework is based on Béziér hyper-
patches, further developed and extended to solve the main
problems of this well-known formulation. A hyperpatch is
a continuous, three-parameter, single-valued function that
defines the coordinates of the set of points comprising the
object exterior as well as its interior. The shape of the object
is definedbygeometric coefficients also called control points.

Our framework is able to maintain continuity between
parametric cells, and also allows representing discontinuities
if necessary, both in the geometry and the gradation of the
used materials. It also keeps the validity of the represented
object.

We also developed a simplified mesh of geometric coef-
ficients, that allows a human operator to stay focused on the
main structure of the object and adjust the fine details in a
very simple and intuitive manner. The editing is performed
by moving geometric coefficients in a process assisted by
the framework, allowing to automaticallymaintainfirst-order
continuity in those regions that need it. It is also possible to
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18 F. Conde-Rodríguez et al.

interactively create new object models with the aid of tech-
niques such as extrusion, sweeping, or revolution of existing
cells.

All this is done while keeping a relatively low number of
parametric cells, which simplifies its recording, processing,
and transmission through a network.

We developed a computer application to test whether the
framework can accurately represent real objects (see Fig. 1).
Using our application, we modeled a real motorcycle tire
from scratch, following precisely the blueprints included in
the patent [11]. The whole process only took 6h.

The remainder of this paper is organized as follows. In
Sect. 2, some of the research works already carried out in this
field are briefly described. Our comprehensive framework is
described in Sect. 3; Sect. 3.1 defines preciselywhat a hetero-
geneous object is and a valid material distribution, Sect. 3.2
describes heterogeneous regular objects (hr-objects) which
are the mathematical model inside our framework, Sect. 3.3
describes heterogeneous composite Béziér hyperpatches that
are the computational representation we use, and Sects. 3.4
and 3.5 describe how our framework keeps two fundamental
properties: validity and continuity.Next, in Sect. 4we explain
how heterogeneous objects can be edited, both in geometry
andmaterial distributions, in a flexible and simple way, using
our framework. In Sect. 5 we describe some of the operations
that our framework provides to construct models of hetero-
geneous objects from scratch. In Sect. 6 several examples of
real objects modeled with a computer application using our

Fig. 1 Real heterogeneous motorcycle tire precisely modeled with our
computer application

framework are shown. And finally, the conclusions of this
work are summarized in Sect. 7.

2 Related work

A precise characterization of a heterogeneous object is
presented in [7] by Kumar and Dutta. The mathematical
model for heterogeneous objects (rm-set / rm-object) pro-
posed by the authors captures very well the essence of this
type of objects, so it is quite an appropriate mathematical
model for computational representations of heterogeneous
objects. The authors also presented a computational rep-
resentation by means of non-manifold B-reps based on
rm-objects.

Traditional solid modeling methods, like boundary rep-
resentation (B-rep), constructive solid geometry (CSG), or
enumeration, are not the most suitable for heterogeneous
objects. This is due to the fact that they either do not allow
representing the inside of the object, or use very simple func-
tions for precisely modeling the interior.

Research on the use of hyperpatches as a tool for mod-
eling heterogeneous objects [1] started during the 1980s.
Hyperpatches have an extraordinary capacity to precisely
represent each point inside the object by allowing to des-
ignate the desired material to every point. However, there is
a high degree of freedom in the mathematical tool, which
needs to be refined so it can be a useful tool.

Several attempts have been made to refine hyperpatches:
Schmitt, Pasko and Schlick [14] suggested a method to

model heterogeneous objects that uses FRep as the basic
model combined with trivariate B-Splines primitives by
means of CSG operations. This method can be very useful
for rapid prototyping or virtual sculpting.

Qian and Dutta [12] suggested using B-Spline hyper-
patches to represent heterogeneous objects. They focused on
making it easy for the user to assign the materials to each
point of the object considering the desired properties for that
specific point. For this task, the authors defined a diffusion
process.

In [5], and later in [3] and [4], a model based on trivari-
ate simplex splines was presented. This model is useful when
constructing a representation of a heterogeneous object using
a triangle mesh as the starting point. It allows obtaining very
accurate tetrahedral spline decompositions. Variable conti-
nuity is defined between 0 and Cn−1, being n the degree of
the splines. The generated simplex B-Spline mesh is huge,
even for objects with relatively simple geometries, because
the models have been constructed from triangulations. The
editing, as with any hyperpatch, is done by moving the con-
trol points.

Yang and Qian [16] describe a method for construct-
ing complex geometries with B-Spline hyperpatches defined
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from curves using a lofting process. For certain problems,
this method can be a good approach.

Warkhedkar and Bhatt [15] used regular B-Spline hyper-
patches to accommodate the slices from a CT scan and adjust
the distribution values in the vertices of the B-Spline control
mesh to represent the human body. The visualization is done
using classical techniques, such as marching cubes.

In [6], the authors describe amethod based on functionally
graded material (FGM), very adequate for rapid prototyping,
for which it is not necessary to precisely model very complex
geometries.

These current methods have certain weaknesses, such as:

• The classical formulation of hyperpatches produces com-
pletely continuous models or with no continuity at all.
Mixed continuity is not allowed in classic hyperpatches.
For example: Cubic B-Spline hyperpatches have coeffi-
cients that are aligned in regular grids and produce C2

continuous objects. They cannot model discontinuities,
both in geometry or in distribution of materials, between
adjacent cells. Knot insertion and other techniques try to
solve this problem but make the editing process intricate.

• Hyperpatches per se do not address the problem of valid-
ity (the hyperpatch function per se is not injective),
which is a very important property in a object modeling
framework, because it prevents themodeling of nonsense
objects.

• The natural way to edit a hyperpatch is by moving its
geometric coefficients, however if these coefficients are
treated independently,without the aid of the framework to
perceive andmaintain the existing relations among them,
the editing is very unintuitive and difficult for modeling
new objects.

• Other current methods like CSG or B-rep do not allow
a precise representation of both the inside of the object
and its boundary.

• Despite its ability to make rapid prototypes, methods
based on CSG are not well suited to modeling complex
geometries that cannot be obtained by boolean opera-
tions.

• Compact computational representations are preferable
since they produce a finite set of symbols that facilitate
its processing, storage and transmission.

3 Our framework

Traditionally, to describe a new framework for modeling
objects, a three-level approach has been used [9,13]:

• Physical objects They are the objects that need to be
studied or manipulated. They may or may not exist.

• Mathematical models Physical objects cannot be mod-
eled in a computer, so it is necessary to adopt an adequate

idealization thereof. These idealized objects must have a
clear and intuitive connection with physical objects, and
at the same time, be simple enough so that they can be
represented in a discrete and limited computer.

• Computational representationsThe final step in themod-
eling activity is to assign to the mathematical model a
representation that can be suitable for its use in a com-
puter.

We use this approach, so in the next three sections we
explain each of these levels.

3.1 Material distribution

In this section, we characterize the physical objects we are
trying to model.

Kumar and Dutta present in [7] a great mathematical
characterization of heterogeneous objects. We use its char-
acterization with slight variations.

Heterogeneous objects are composed of different con-
stituent materials (also known as primary materials), which
are present in varying proportions throughout the object. It is
assumed that the number of primary materials n is finite. The
material at a point p in a object S is a combination (mixture)
of the n primary materials specified by the volume fractions
of these materials. Thus, the R

n set, with a vectorial space
structure, is a mathematical space that defines the material
distribution, each dimension representing a specific primary
material.

Let M = {m1,m2, . . . ,mn} be a set of primary materials,
where eachmaterialmi is a literal (the name of that material).
Let n = |M| be the cardinality of the set M. The material
distribution of any given point p of a heterogeneous object
is represented by a tuple a = (a1, a2, . . . , an) ∈ R

n , where
each element ai of the material distribution is the fraction of
the volume occupied by the i th material at that point.

The volume fractions of each primary material must add
up to 1, otherwise the objects in the real world are senseless.
In other words, not all possible material distributions a ∈ R

n

are appropriate. The valid space of material distributions V
can be defined as:

V =
{

a ∈ R
n

∣∣∣∣∣
n∑

i=1

ai = 1, ai ≥ 0

}
(1)

A material distribution a is valid only if a ∈ V ⊆ R
n ; i.e.,

a material distribution is valid if its elements ai are the coef-
ficients of a convex combination of a set of primary materials
M.

A combination operation is defined over the set V of valid
material distributions. Let a, b ∈ V be two valid material
distributions, then its combination is given by:
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a ⊕α b = α · a + (1 − α) · b, α ∈ [0, 1], (2)

where α is an scalar that defines the contribution of each
material distribution to the final result.

The operation of combination ⊕α is closed in V. We
think this formulation of the combination operation ⊕α is
more simple and straightforward than other proposed for-
mulations.

3.2 Heterogeneous regular object

In this section we characterize the mathematical model we
use in our framework.

The rm-objects (made up by rm-sets) proposed by Kumar
and Dutta [7] are the appropriate mathematical idealization
for heterogeneous objects. Here, we use rm-objects as the
mathematical model for a heterogeneous object, but with
slight variations.

We force thematerial function to be piecewise continuous,
in order to model discontinuities in the material distribution.
This is a very important capability of our framework as it
allows abrupt change of materials throughout the modeled
object.

Themathematicalmodelwe suggest is the hr-object, based
on the rm-sets and the rm-objects of Kumar and Dutta. Let
M be a set of primary materials, and let n = |M| be the
cardinality of the set M.

A heterogeneous regular object (hr-object) (see Fig. 2) is
defined as a ternion, O = {S, V, F}, where:

• S is an r set. S ⊆ R
3 is a limited set with its boundary

defined by rigid and regular algebraic functions.
• V ⊆ R

n is the set of all valid material distributions.
• F is the material function; it assigns a valid material dis-

tribution a (see Eq. 1) to each point p of the r set. The F

Fig. 2 Structure of a hr-object

function defines thewayprimarymaterials are distributed
throughout the volume of the object.

Unlike other proposed models, the domain of our material
function F is not E3. This make it possible to apply defor-
mations to themodeled heterogeneous objects without losing
information on the material distributions.

F is a piecewise continuous function:
Let {S1, S2, . . . , Sp} ⊆ P(S) be a partition of S, i.e.:

Si ∩ S j = ∅, i �= j and
p⋃

i=1

∗Si = S.

F(p) =
{
Fi : Si → V
Fi (p) = a, p ∈ Si 1 ≤ i ≤ p

(3)

Each function Fi is continuous in the Si set in which it
is defined. We name each of the subsets Si an hr-set (every
volume in which the F function is continuous).

As can be seen in Eq. 3, thematerial function F defines the
way the materials are distributed in the volume of the object.
It assigns a valid distribution of materials to each point p of
the r set.

The material function F does not have to be continuous in
thewhole r set S. This allowsmodeling complex objects with
discontinuities both in geometry and material distribution.

The external geometric boundary of the regular heteroge-
neous object O, bext(O), is the boundary of the regularized
union of the Si sets.

bext(O) = b

(⋃
i

∗Si

)
, 1 ≤ i ≤ p

The points that do not belong to bext(O), but belong to
b(Si ), 1 ≤ i ≤ p, that is, those points that are not in the
boundary of the regular heterogeneous object but only in the
boundary of some of the hr-sets that form it, are called inter-
nal boundary points.

bint(O) = bext(O)

∖ ⋃
i

b(Si ), 1 ≤ i ≤ p

Internal boundary points can be part of more than one
hr-set. They are irregular points that may have two or more
associated material distributions.

Letp ∈ bint(O) be a point belonging to the internal bound-
ary points of the hr-object O.

Let L = {l1, . . . , lm} ∈ {1, . . . , p}, be the set formed
by the indices of the hr-sets to which the point p belongs:

p ∈
L⋃
li

b(Sli ) ⊆ bint(O), and let lmin = min(L)

We define the material function on this internal boundary
point F(p) as:

F(p) = Flmin(p)
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Thus the material function F is injective in these points,
and therefore the hr-object is valid.

Note that M is not part of the mathematical definition
of heterogeneous regular object, because the only thing that
matters is its cardinality n = |M| (number of primary mate-
rials for a specific problem). Applications using hr-objects
will assign the meaning of each material.

3.3 Heterogeneous composite Béziér hyperpatches

Finally, in this section, we characterize the computational
representation we use in our framework.

Hyperpatches (also known as parametric objects or trivari-
ate objects) are amathematical tool that has been successfully
used to represent objects [10]. They have a clear advantage
over other classical tools, such as boundary representation
(B-rep), constructive solid geometry (CSG), or decompo-
sition models (exhaustive enumeration, octrees, etc.): they
allow to accurately represent not only the boundary of the
object, but also the interior. A hyperpatch is a set of points
whose coordinates are the result of a vectorial, continuous,
single-valued function:

B(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)),

where the parametric variables u, v, andw are usually limited
to values within the closed interval [0, 1].

This vectorial function defines the coordinates of the set
of points that make up the object. For every 3-tuple of values
of the parametric variables (u, v, w), the B function pro-
vides the coordinates of a point p = (x, y, z) ∈ R

3 of the
object. Thus, a hyperpatch is a parametric projectionof a solid
domain (a unit size cube) in the three-dimensional space. The
domain of the projection is known as parametric space U,
and the projection range is called modeling space R3.

The geometric form of the hyperpatch is:

p(u, v, w) =
3∑

i=0

3∑
j=0

3∑
k=0

gi jk B3
i (u)B3

j (v)B3
k (w)

u, v, w ∈ [0, 1],

where gi jk = (xi jk, yi jk, zi jk) are the geometric coefficients
that define the shape of the object and B3 are the cubic blend-
ing functions that combine these coefficients to obtain all
the points of the object. The geometric coefficients are also
known as control points. As can be seen, the shape of the
object is directly linked to the geometric coefficients.

There are several types of blending functions that can be
used to combine geometric coefficients. For this work, we
have chosen cubic Béziér blending functions [8].

B3
0 (t) = (1 − t)3 B3

1 (t) = 3t (1 − t)2

B3
2 (t) = 3t2(1 − t) B3

3 (t) = t3
(4)

Fig. 3 Three-dimensional array of 4 × 4 × 4 = 64 geometric coeffi-
cients with indices i , j , and k varying from 0 to 3

In the tricubic case, 4×4×4 = 64 geometric coefficients
are used to define a hyperpatch (as can be seen in Fig. 3). It
is usually useful to think that these coefficients are organized
in a three-dimensional array with indices i , j , and k varying
from 0 to 3.

A set of boundary elements is associated to each tricu-
bic Béziér hyperpatch, perfectly defining its boundary (see
Fig. 4):

• Six surfaces that are obtained by fixing the value of one
of the parametric coordinates u, v, w, which takes the
value 0 or 1, while the other two run freely along the
[0, 1] interval. They are called isoparametric boundary
surfaces. For example B(0, v, w) or B0vw.

• Twelve curves obtained by fixing the value of two of the
parametric coordinates u, v, w, which take the value 0
or 1, while the third runs freely along the [0, 1] interval.
These are called isoparametric boundary curves.

• Eight points obtained byfixing the value of the three para-
metric coordinates u, v, w, which take the value 0 or 1.
These are called corner points.

The Béziér functions were chosen because:

• They interpolate the eight corner points of a parametric
Béziér hyperpatch, that is, the hyperpatch passes through
these points.

• The tangents to each corner point are defined by only
its neighboring geometric coefficients (in the array of 64
coefficients). Thus, moving a control point close in the
array to a corner point, have a clear effect on the shape
of the hyperpatch around that corner point.

Béziér hyperpatches accuratelymodel their interior. How-
ever, it is not possible to determine material distribution at
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22 F. Conde-Rodríguez et al.

Fig. 4 Boundary elements associated to a hyperpatch. From left to right corner points, boundary isoparametric curves and boundary isoparametric
surfaces

Fig. 5 A heterogeneous Béziér hyperpatch Bm , is composed by a set Pm of points that defines the geometry of the hyperpatch, and a set Am of
material distributions that defines the gradation of materials throughout the hyperpatch

every point; thus, it is necessary to define the heterogeneous
Béziér hyperpatch as follows [1]:

Bm =
3∑

i=0

3∑
j=0

3∑
k=0

hi jk B
3
i (u)B3

j (v)B3
k (w)

u, v, w ∈ [0, 1], (5)

where hi jk = (pi jk, ai jk) are the heterogeneous geometric
coefficients, which are pairs of values. The elements

pi jk = (xi jk, yi jk, zi jk) ∈ R
3

are the points that define the shape of the hyperpatch, and the
elements

ai jk= (a1i jk , a2i jk , . . . ,ani jk )∈ V ⊆ R
n

are the material distributions defining the gradation of the
different materials throughout the hyperpatch.

Note that a heterogeneous Béziér hyperpatch Bm is a set
formed by two sets:

Bm = {Pm, Am}

The setPm defines the shape of the hyperpatch, and the setAm

defines the gradation of the different materials throughout it
(see Fig. 5).

Pm =
3∑

i=0

3∑
j=0

3∑
k=0

pi jk B
3
i (u)B3

j (v)B3
k (w) u, v, w ∈ [0, 1]

Am =
3∑

i=0

3∑
j=0

3∑
k=0

ai jk B3
i (u)B3

j (v)B3
k (w) u, v, w ∈ [0, 1]

A heterogeneous composite Béziér hyperpatch, B, is a
finite collection of heterogeneous Béziér hyperpatches.

B = {B1, B2, . . . , Bm} ,

where Bi = {Pi , Ai }.
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∀ Pi ∈ Bi , P j ∈ B j i �= j, Pi ∩∗ P j = ∅. That
is, the hyperpatches are pairwise disjoint, and at most, only
share one, twoor four corner points; one or four isoparametric
boundary curves; and/or one isoparametric boundary surface.

Aheterogeneous compositeBéziér hyperpatch canbe seen
as a cell decomposition, inwhich each cell is a heterogeneous
Béziér hyperpatch. From now on, we are going to use either
parametric cell or hyperpatch to refer to the heterogeneous
Béziér hyperpatches in this decomposition.

3.4 Validity

In any framework for object modeling, validity is a very
important property [9,13], as it ensures that meaningless
models of objects cannot be obtained. Therefore, in this sec-
tion we will study the validity of objects modeled by using
our framework.

If additional conditions are not established, the classic
hyperpatch formulation does not guarantee the validity of
the objects represented. For that reason, in 2001, we devel-
oped a validity condition for b-spline hyperpatches that easily
extends to the Béziér case [2]. Our validity condition works
by checking relative positions of geometric coefficients in
each parametric cell. Thus, after editing the solid by mov-
ing some geometric coefficients it is only necessary to check
the validity in those parametric cells containing these coef-
ficients. This process is very fast and can be done in real
time.

Our condition of validity is sufficient but not necessary.
This means that some parametric cells, that are in fact valid,
are rejected. However, this is an advantage of our validity
condition, since the points inside the rejected heterogeneous
Béziér hyperpatches are not regularly distributed (see Fig. 6).
Parametric cells with points regularly distributed inside them
are preferable when modeling heterogeneous objects.

3.5 Continuity

There is zero-order continuity C0 between two parametric
cells Bl and Bm , if they share 16 boundary geometric coeffi-
cients. Let Bl(1, v, w) = Bm(0, v, w) be the shared surface,
then the coefficients hl3 jk ∈ Bl and hm0 jk ∈ Bm have to be
equal ∀ j, k ∈ {0, 1, 2, 3}.

Note that the reasoning is the same in the case of shared
surfaces with fixed values of v or w.

This zero-order continuity condition is too restrictive, so
we developed a more flexible one. This is another contribu-
tion of our work. In our framework, zero-order continuity
can be established for each of the four corner points of the
shared surface independently (see Fig. 7).

For a given corner point, only three geometric coefficients
have effect in the shape of the boundary isoparametric surface
around it. They are its immediate neighbors. So, to obtain

Fig. 6 This parametric cell is valid, however, our condition of validity
rejects it. This is an advantage of our framework, because the points
inside this cell are not regularly distributed (encircled points in blue).
Parametric cells with regular distributions of points inside them are
preferable when modeling heterogeneous objects

Fig. 7 Zero-order continuity between two parametric cells can be
established at corner point level. These two parametric cells share the
corner points in dark blue and their immediate neighbors so they have
C0 continuity in the left side. In the right side, each cell has different
corner points and different neighbors, so they do not haveC0 continuity

zero-order continuity around a given corner point, both cells
have to share it, and have to share its immediate neighboring
geometric coefficients.

Let hl3,3,3 = hm0,3,3 be the shared corner point, then the
neighbor geometric coefficients hl3,3,2 = hm0,3,2 , hl3,2,3 =
hm0,2,3 and hl3,2,2 = hm0,2,2 have to be equal in order to obtain
zero-order continuity around that corner point (see Fig. 7).

Our condition is veryflexible and allows tomodel complex
shapes easily.

Notice that a heterogeneous geometric coefficient hi jk =
(pi jk, ai jk) has two components: a position in three-
dimensional space pi jk ∈ R

3 and a material distribution
ai jk ∈ V ⊂ R

n , so zero-order continuity C0 applies to both
the geometry and the distribution of the materials.
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24 F. Conde-Rodríguez et al.

Both components are independent, so it is possible to
establish C0 continuity between two parametric cells for the
geometry (the shape of the modeled object) but not for the
material distribution.

Wewill study nowfirst-order continuityC1. LetBl andBm

be two parametric cells that share a boundary isoparametric
surface. Let Bl(1, v, w) = Bm(0, v, w) be the points of the
shared surface.

The heterogeneous Béziér hyperpatches have first-order
continuity C1 in the shared surface if all the isoparametric
curves with constant values of v and w passing through each
point of the shared surface, have equal tangent vectors to
these points on both cells.

Bu
l (1, v, w) = Bu

m(0, v, w) ∀v,w ∈ [0, 1] (6)

The tangents to these points depend on the 16 geometric
coefficients that define the shared surface, and their imme-
diate neighbors on each cell. So, in order to ensure C1

continuity, each group of three coefficients must form two
vectors that must be equal.

Let h∗, j,k be one geometric coefficient shared between
Bl and Bm . Let vl = h∗, j,k − hl3−1, j,k the vector formed by
the shared coefficient and its immediate neighbor in Bl . And
let vm = hm0+1, j,k − h∗, j,k the vector formed by the shared
coefficient and its immediate neighbor in Bm . Then, there is
C1 continuity between Bl and Bm in the shared surface, if
(see Fig. 8):

vl = vm; h∗, j,k−hl3−1, j,k = hm0+1, j,k −h∗, j,k ∀ j, k∈{2, 3}
(7)

Fig. 8 The tangents to the points on the shared surface (light blue)
are defined by the 16 geometric coefficients of the surface (dark blue)
and their immediate neighbors (red) on each cell. In order to ensure C1

continuity, each group of three coefficients must form two vectors that
must be equal. In our framework, C1 continuity can be established at
corner point level, so the continuity condition of Eq. 8 can be set for
each group of four shared coefficients independently (encircled points
in blue)

Note that the reasoning is the same in the case of shared
surfaces with fixed values of v or w.

Again, this first-order continuity condition is too restric-
tive, so we developed a more flexible one. In our framework,
C1 continuity can be established for each corner point of the
shared surface independently (see Fig. 8).

After editing an immediate neighbor hl3−1, j,k of a shared
geometric coefficient h∗, j,k it is easy to calculate the position
of the corresponding coefficient hm0+1, j,k as:

hm0+1, j,k = 2h∗, j,k − hl3−1, j,k (8)

Note that the reasoning is the same in the case of shared
surfaces with fixed values of v or w.

A heterogeneous geometric coefficient hi jk = (pi jk, ai jk)
has a position in three-dimensional space and a material dis-
tribution. Let us study first-order continuity in both cases
separately.

The position of a heterogeneous geometric coefficient is a
point in the three-dimensional space R3, so the result of the
operation 2p∗, j,k − pl3−1, j,k is always a valid point in R3.

However, the same operation cannot be applied on the
material distribution, as the material distribution of a hetero-
geneous geometric coefficient has to be a point in V ⊂ R

n .
For example, if we use a setM = {m0,m1} of two primary

materials, |M| = 2, only the points of R2 that lie in the
line segment with endpoints (1, 0) and (0, 1) represent valid
material distributions.

Suppose al3−1, j,k = (0.5, 0.5) and a∗, j,k = (0.2, 0.8),
applying Eq. 8, am0+1, j,k = (−0.1, 1.1) which is a not valid
material distribution.

In order to maintain C1 continuity for material distribu-
tions automatically, we developed a C1 continuity condition
for material distributions different to Eq. 7. Given the mater-
ial distribution a on a corner point shared by two parametric
cells Bl and Bm , we ensure C1 continuity in the distribu-
tion of materials around that corner point, by assigning the
samematerial distribution a to all the immediate neighboring
coefficients in both cells (see Fig. 10).

As can be seen in Fig. 9 this continuity condition for the
distribution of material allows us to model many interesting
continuous transitions between two materials (for example,
transitions with shape of cylinders or spheres). It is impor-
tant to note that this is not a linear interpolation between the
distributions of material in each of the eight corner points of
each parametric cell, but a cubic interpolation.

It is also possible to have C1 continuity between two cells
in some corner points and discontinuity in other corner points
shared by the same cells (see Figs. 9, 10).

Of course, if a greater degree of accuracy in the transition
between a material and another one is required, continuity
always can be adjusted manually.
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Fig. 9 Our first-order continuity condition for distribution of material
allows to model many interesting continuous transitions between two
materials, for example with shape of cylinders or spheres (left side). It

is also possible to combine discontinuity and first-order continuity in
the same shared surface between two cells (right side)

Fig. 10 Our framework maintains C1 continuity for material distri-
butions between two cells in a given corner point (white point), by
assigning the same material distribution to its immediate neighboring
points (blue points)

We do not consider second-order continuity C2, because
this type of continuity cannot be maintained locally, as it
involves all geometric coefficients of both cells Bl and Bm ,
and consequently all other adjacent cells. That means that,
if we establish second-order continuity between two cubic
parametric cells, all adjacent cells have to be also C2 contin-
uous, and then it is not possible tomodel discontinuities in the
object. This makes it poorly flexible for modeling complex
objects. Furthermore, second-order continuity has moderate
use. For example, most mechanical parts do not need it [10]
(page 95).

However, it is possible to obtain second-order continu-
ity between two adjacent cells if necessary by using our
framework while maintaining flexibility, just by increasing
the degree of the Béziér blending functions.

4 Editing objects

We have specifically designed this model to make the editing
process of heterogeneous objects an easier task.

4.1 Editing geometry

Because the shape of an object is directly linked to its geo-
metric coefficients, the natural way to edit a hyperpatch is by
moving its geometric coefficients. This generates immediate
results.

However, if the geometric coefficients are treated indepen-
dently, without the framework aid to perceive and maintain
the existing relations, the editing process becomes very con-
fusing and difficult for a human operator.

Figure 11 shows that even in a very simple composite
hyperpatch (only six parametric cells), the large number of
coefficients makes knowing which points have to be edited
to generate a certain effect difficult. We have developed
a simplified mesh of geometric coefficients where only the
boundary curves and the corner points are shown.

In the Béziér case, corner points have maximum influence
on the object because the blending functions interpolate them
(the object passes through them); thus, they are the first level
of interaction presented to the user.

When the user selects a corner point, the system shows
a grid of immediate neighbors. Each corner point has seven
contiguous coefficients in the 4 × 4 × 4 grid of geometric
coefficients that defines a parametric cell. These seven coef-
ficients are the immediate neighbors of the corner point (see
Fig. 12). In general, each corner point is shared by eight
adjacent parametric cells and therefore has 26 neighboring
control points arranged in a 3×3×3 grid. This is the second
level of interaction presented to the user.

When the user moves a corner point, our framework auto-
matically applies the same movement to all the immediate
neighbors, maintaining the continuity of the adjacent para-
metric cells on that corner point, as well as the general shape
of the hyperpatch around it (see Fig. 14b).
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Fig. 11 Even with a simple model, a classical mesh of geometric coefficients (center) makes it difficult to localize which points need editing to
obtain the desired effect. The image on the right shows our simplified mesh, which greatly eases the task

Fig. 12 (Left) each corner point has seven contiguous coefficients in
the 4 × 4 × 4 grid of geometric coefficients that defines a parametric
cell. (Right) in general, each corner point has 26 neighboring control
points arranged in a 3 × 3 × 3 grid

The framework also allows moving the neighboring geo-
metric coefficients of a selected corner point, for precise
adjustments of the shape of the heterogeneous composite
Béziér hyperpatch on that point. If the corner point is marked
as continuous, when the user moves an immediate neighbor,
the system automatically compensates the position of some
of the others immediate neighbors by applying Eq. 8, thus
maintaining C1 continuity. If the corner point is marked as
non-continuous, when the user moves a neighbor, the system
does not modify the neighboring geometric coefficients (see
Fig. 14c, d).

Our framework is not limited to regular grids inwhich each
corner point is shared by exactly eight parametric cells, so a
given corner point can have an arbitrary number of immediate
neighbors. In these irregular corner points it is not possible to
maintain continuity automatically; this is an unsolved prob-
lem; however, our system can integrate these points, because
certain types of discontinuity are very useful for modeling
complex objects (see Figs. 13, 14).

4.2 Editing material distributions

When editing the distribution of materials inside a het-
erogeneous composite Béziér hyperpatch our framework

Fig. 13 Our framework is not limited to regular grids of coefficients.
In this imagewe can see a real mechanical part modeled with our frame-
work, with irregular corner points

shows the parametric cells that compose it, and the corner
points.

If the user selects cells, the system allows to apply the
samematerial distribution to all the 64 geometric coefficients
of each cell. This is a uniform distribution of materials. It
can be very useful to model those parts of the solid that are
homogeneous.

If the user selects a corner point, the system allows to
apply the same material distribution to the seven neighbor
geometric coefficients of the corner point in each cell that
share it. This is a C1 continuous gradation of materials (see
Fig. 15).

If some cells have been selected and the user selects a
corner point belonging to them, the system allows to apply
the same material distribution to the neighboring geometric
coefficients of the corner point but only in each selected cell.
This is a C1 continuous gradation of materials among the
selected cells and a non-continuous gradation of material
among the non selected cells which also share the selected
corner point (see Fig. 15).

It is also possible to apply a different material distribution
to each coefficient of a parametric cellmanually. Thisway the
user has a very precise control of the gradation of materials.

123



A comprehensive framework for modeling heterogeneous objects 27

Fig. 14 Hyperpatch editing. From left to right: a before editing, b
moving a corner point, c moving a neighboring point with continuity
activated, d moving three neighboring points with no continuity acti-

vated. Note that in b and c the framework automatically moves the
neighboring points accordingly to maintain C1 continuity

Fig. 15 Editing material distributions. If the user selects a corner point
shared among several cells (left), the framework can apply a givenmate-
rial distribution to all cells that share the corner point (center) or to some

cells (right). It depends on whether or not there are selected some cell.
Thus it is possible to establish non-continuous or C1 continuous grada-
tions of materials among cells, if necessary

Fig. 16 Extrusion along the normal of three parametric cells from one
of their boundary isoparametric surfaces to generate a more complex
geometry

However, this manual process is only necessary in a few
cases.

In all cases the framework checks automatically the valid-
ity of the material distribution, ensuring that all the elements
of the applied material distribution are the coefficients of
a convex combination of the set of primary materials (see
Eq. 1).

5 Creating new objects

Aheterogeneous composite Béziér hyperpatch is constructed
by adding parametric cells to it. This way of working simpli-

Fig. 17 Blending of two parametric cells. The blended cell is C1 con-
tinuous both for the geometry as for the distribution of materials

fies the creation of new objects. When a user adds a new cell,
our framework automatically performs the following tasks:

• It checks whether the added parametric cell is injective
(valid).

• It checks that the new cell does not intersect any exist-
ing cell, or that both cells only share a corner point, a
boundary isoparametric curve, or a boundary isopara-
metric surface.

• If the new cell shares a boundary isoparametric surface
with any other cell in the hyperpatch, our framework
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checks whether there is C1 continuity in each of the four
shared corner points, and, it classifies each point as con-
tinuous or non-continuous.

Incorporating new cells can be done using several intuitive
methods like:

• Extrusion of existing cells (see Fig. 16).
• Blending of two parametric cells. The new blended cell
can be C1 continuous both for the geometry as for the
distribution of materials if needed (see Fig. 17).

• Revolution of a Béziér surface around an axis.
• Lofting of a Béziér surface along a Béziér path.
• Addition from a library of predefined cell structures (see
Fig. 18).

• Addition from a file containing a previously saved model.
This allows to merge together several objects.

In all cases our framework ensures the validity of the gen-
erated heterogeneous composite Béziér hyperpatch. A new
parametric cell is only added to the model if it is valid.

Fig. 18 Creating a heterogeneous object in eight steps. From top to
bottom, and from left to right: a adding two rings from a library of
predefined cell structures; b and c extrusion of the rings to obtain a
wider structure; d non-continuous blending of two groups of two cells

to connect both rings; e subdivision of the two blended cells; f editing of
the external cells of the rings in order to obtain a more rounded shape;
g and h setting a C1 continuous gradation of materials among selected
cells
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Fig. 19 Example 1Mechanical part modeled from scratch using the computer application based on our framework

Fig. 20 Example 2Heterogeneous motorcycle tire modeled following
precisely the blueprints included in the patent [11]

6 Examples

We developed a computer application to test whether the
framework can accurately represent real objects. Using our
application we have modeled several objects.

We modeled a mechanical part (see Figs. 19, 20) com-
posed of four materials (light grey, dark grey, blue and red in
the figure). In some zones of the object, the transition among
the materials is a C1 continuous gradation. The number of
parametric cells needed to accurately model the part is low
(100 cells).

The most interesting heterogeneous object we have mod-
eled is a motorcycle tire (see Figs. 21, 22). We followed the
exact blueprints of a patented tire [11]. The whole modeling
process of the shown tire only took 6h. The amount of cells
needed only was 204.

An interesting feature of the framework is that the whole
tire, including all its components (tread, body ply, belt, side-
wall, etc.) is modeled as a single object, which is very
convenient for simulations. This is possible due to the ability
of the framework to model discontinuities in material dis-
tributions in the various parametric cells that make up the
object.

Fig. 21 Detailed view of the mechanical part showing its heteroge-
neous internal structure

7 Conclusions

In this work, we have presented a comprehensive framework
that allows representing heterogeneous objects in a simple
and efficient way. The framework is based on Béziér hyper-
patches and solves the main problems of this well-known
formulation.

Validity of the represented objects is kept automatically by
checking relative positions of geometric coefficients in each
parametric cell. Our validity condition not only rejects non-
valid cells, it rejects also cells with interior points not well
distributed. This is very usefulwhenmodeling heterogeneous
objects.
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Fig. 22 Detailed viewof the heterogeneous tire. The tread is composed
by a continuous combination of three materials

In addition, we have presented a simplified mesh of geo-
metric coefficients that allows a human operator to focus on
the main structure of the object and adjust the fine details
in a very simple and intuitive way. The editing is performed
by movements of geometric coefficients in a process assisted
by the system. The framework simplifies the editing process
by automatically maintaining continuity (both in the geom-
etry as in the distribution of materials) at the corner points
that require it. Furthermore, our framework can also manage
irregular non-continuous corner points, for modeling com-
plex objects that require discontinuities.

The presented framework can also create new object mod-
els in an interactive manner with the aid of techniques such
as extrusion, sweeping, or revolution of existing parametric
cellswhilemaintaining a relatively lownumber of parametric
cells.

Finally,we have presented several complex objects shaped
with a computer application using our framework. The appli-
cation allows testing the ability of the model to accurately
represent real objects.

7.1 Future work

Our framework can be extended to represent Porous materi-
als as it is possible to use the emptiness as a primarymaterial.
This is perfectly coherent with the methods used for layered
manufacturing (LM), in which a special material is used to

fill in the empty spaces during themanufacturing process and
later this special material is removed leaving a gap.

Modeling internal microstructures on several scale levels
inside the object is also possible. Each parametric cell is the
mapping of a unit cube into three-dimensional space, so we
can define the microstructure in this unit size domain.

Acknowledgements This work has been partially funded by the Span-
ishMinistry of Economy andCompetitiveness throughGrants TIN2014
58218-R and TIN2014-60956-R with ERDF funds.

References

1. Casale, M., Stanton, E.: An overview of analytic solid model-
ing. IEEE Comput. Graph. Appl. 5(2), 45–56 (1985). doi:10.1109/
MCG.1985.276402

2. Conde Rodriguez, F.A., Torres Cantero, J.: A simple validity con-
dition for b-spline hyperpatches. In: Proceedings of Eurographics,
2001, short presentations (2001)

3. Hua, J., He, Y., Qin, H.: Multiresolution heterogeneous solid mod-
eling and visualization using trivariate simplex splines. In: ACM
Symposium on Solid Modeling and Applications, SM, pp. 47–58
(2004)

4. Hua, J., He, Y., Qin, H.: Trivariate simplex splines for inhomoge-
neous solid modeling in engineering design. J. Comput. Inf. Sci.
Eng. 5(2), 149–157 (2005). doi:10.1115/1.1881352

5. Jackson, T., Liu, H., Patrikalakis, N., Sachs, E., Cima, M.: Mod-
eling and designing functionally graded material components for
fabrication with local composition control. Mate. Des. 20(2–3),
63–75 (1999). doi:10.1016/S0261-3069(99)00011-4

6. Kou, X., Tan, S.: Heterogeneous object modeling: a review. CAD
Comput. Aided Des. 39(4), 284–301 (2007). doi:10.1016/j.cad.
2006.12.007

7. Kumar, V., Dutta, D.: An approach to modeling and representation
of heterogeneous objects. J. Mech. Des. Trans. ASME 120, 659–
667 (1998). doi:10.1115/1.2829329

8. Lasser, D.: Bernstein-bézier representation of volumes. Com-
put. Aided Geom. Des. 2(1–3), 145–149 (1985). doi:10.1016/
0167-8396(85)90018-4

9. Mantyla, M.: An Introduction to Solid Modeling. Computer Sci-
ence Press, College Park, MD (1988)

10. Mortenson, M.E.: Geometric Modeling. Wiley, New York (1985)
11. Ochiai, K.: Tire for motorcycle. Sumitomo Rubber Industries, Ltd.

In: Kobeshi (JP) Assignee. US Patent 7,201,198 (2007)
12. Qian, X., Dutta, D.: Physics-based modeling for heterogeneous

objects. J. Mech. Des. Trans. ASME 125(3), 416–427 (2003).
doi:10.1115/1.1582877

13. Requicha, A.G.: Representations for rigid solids: theory, methods,
and systems. ACM Comput. Surv. 12(4), 437–464 (1980). doi:10.
1145/356827.356833

14. Schmitt, B., Pasko, A., Schlick, C.: Constructive sculpting of het-
erogeneous volumetric objects using trivariate b-splines. Vis. Com-
put. 20(2–3), 130–148 (2004). doi:10.1007/s00371-003-0236-9

15. Warkhedkar, R., Bhatt, A.: Material-solid modeling of human
body: a heterogeneous b-spline based approach. CAD Comput.
Aided Des. 41(8), 586–597 (2009). doi:10.1016/j.cad.2008.10.016

16. Yang, P., Qian, X.: A b-spline-based approach to heterogeneous
objects design and analysis. CAD Comput. Aided Des. 39(2), 95–
111 (2007). doi:10.1016/j.cad.2006.10.005

123

http://dx.doi.org/10.1109/MCG.1985.276402
http://dx.doi.org/10.1109/MCG.1985.276402
http://dx.doi.org/10.1115/1.1881352
http://dx.doi.org/10.1016/S0261-3069(99)00011-4
http://dx.doi.org/10.1016/j.cad.2006.12.007
http://dx.doi.org/10.1016/j.cad.2006.12.007
http://dx.doi.org/10.1115/1.2829329
http://dx.doi.org/10.1016/0167-8396(85)90018-4
http://dx.doi.org/10.1016/0167-8396(85)90018-4
http://dx.doi.org/10.1115/1.1582877
http://dx.doi.org/10.1145/356827.356833
http://dx.doi.org/10.1145/356827.356833
http://dx.doi.org/10.1007/s00371-003-0236-9
http://dx.doi.org/10.1016/j.cad.2008.10.016
http://dx.doi.org/10.1016/j.cad.2006.10.005


A comprehensive framework for modeling heterogeneous objects 31

Francisco Conde-Rodríguez re-
ceived a B.Sc. in Computer Sci-
ence from the University of
Granada in 1992 and a M.Sc.
in Computer Science from the
University of Granada in 1994.
He is a lecturer at the University
of Jaén since 1994. His research
interests include Solid Model-
ing, volume visualization and
human-computer interaction.

Juan-Carlos Torres received is
M.Sc. in Physics in 1982 and
his Ph.D. from the Universi-
dad de Granada in 1992. He
is presently a full professor of
Software at the University of
Granada. His research interests
include solid modeling, geomet-
ric algorithms, virtual reality and
geographic information systems.
He has more than 100 publica-
tions. He is presently the Head
of the Virtual Reality Lab of
the University of Granada. He
was Co-Chair of the Eurograph-

ics 2003 Conference, Co-Chair of SIACG’04 and Co-Chair of Digital
Heritage 2015 in Granada. He has been the Chair of the Eurographics
Spanish Chapter and a member of the Eurographics Executive Com-
mittee. http://lsi.ugr.es/~jctorres/.

Ángel-Luis García-Fernández
received a B.Sc. in Computer
Science from the University of
Jaén in 1998, a M.Sc. in Com-
puter Science from the Univer-
sity of Granada in 2000, and his
Ph.D. in 2007 from the Univer-
sity of Granada. He is a lec-
turer at the University of Jaén
since 2004. His research inter-
ests include Solid Modeling and
multidisciplinary applications of
Computer Science.

Francisco-Ramón Feito-
Higueruela received the B.Sc.
degree in mathematics from
the University Complutense of
Madrid and the Ph.D. degree
in computer science from the
University of Granada, Spain.
Currently, he is a full profes-
sor at the Escuela Politécnica
Superior of Jaén, being the head
of the Graphics and Geomatics
ResearchGroup.Hewas the head
of the Department of Computer
Science from 1993 to 1997, the
vice chancellor in charge of stud-

ies and quality from 1997 to 1999, and the vice chancellor in charge
of research and international affairs from 1999 to 2002. His research
interests include formal methods for computer graphics, geometric
modeling, computational geometry, geographical information sciences,
GIS 3D and Smart cities.

123

http://lsi.ugr.es/~jctorres/

	A comprehensive framework for modeling heterogeneous objects
	Abstract
	1 Introduction and motivation
	2 Related work
	3 Our framework
	3.1 Material distribution
	3.2 Heterogeneous regular object
	3.3 Heterogeneous composite Béziér hyperpatches
	3.4 Validity
	3.5 Continuity

	4 Editing objects
	4.1 Editing geometry
	4.2 Editing material distributions

	5 Creating new objects
	6 Examples
	7 Conclusions
	7.1 Future work

	Acknowledgements
	References




