
Vis Comput (2015) 31:1113–1122
DOI 10.1007/s00371-015-1126-7

ORIGINAL ARTICLE

Effective structure restoration for image completion
using internet resources

Miao Hua1,2 · Wencheng Wang1

Published online: 9 May 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Structure restoration plays an important role in
image completion. Though much progress has been made,
existing techniques are ineffective to restore plausible com-
plex structures, due to the high complexity of structure
registration between neighboring regions. We address this
challenge by taking two measures. The first is to get the
images whose structures are potential to be well merged
with the structures around the hole. This can be achieved by
effectively retrieving the mass images on the internet, which
provide enough candidates. The second is to coherently blend
the retrieved structures with the structures around the hole,
which is by suppressing the connection differences between
these structures. Experimental results show that we can eas-
ily complete images, especially with complex structures or
for filling large holes.

Keywords Image completion · Structure retrieval ·
Iterative closest point

1 Introduction

Image completion, also known as image inpainting or hole
filling, is the task of filling or replacing an image region
(called a hole in the following description) with new image
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data. Here, the challenge is to make the filled image content
blended with the original image coherently. With regard to
this, structure information plays an important role, because
human vision is liable to ignore large uniform area and
sensitive to structural regions, as pointed out by Nill and
Bouzas [24]. To coherently restore the structures, many tech-
niques have been proposed. Some use user interaction to
specify the structure in the hole, and some try to auto-
matically propagate structure information from the source
image into the hole. Though they have made much progress,
they are not effective to fill large holes or fill holes with
complex structures. These are discussed in the following
paragraphs.

With regard to the approaches via user interaction, they
allow the user to draw strokes to specify structure informa-
tion in the hole [30], or sketch the desired object shape in the
hole [13], so that the user’s visual experiences can be taken
to guide structure restoration. However, the user’s visual
experiences are limited, preventing using complex structures.
Moreover, in filling a large hole, it may be troublesome and
very laborious for the user to specify the structures.

In a lot of methods, structure restoration is implicitly
handled in using image patches to fill the hole, such as hav-
ing each patch in the filled region as similar as possible
to a known patch [2,28,31,32], or having the neighboring
patches/pixels in the filled region from visually coherent
content [15,20,27]. They are based on the observation that
structure information is much correlated with the neighbor-
ing information. When neighboring regions are consistent,
the related structures can be restored correspondingly. How-
ever, in treating complex structures or filling large holes, such
a correlation is not reliable. This is because complex struc-
tures will have much complicated correlation, and the large
holes will increase the complexity to use such correlation,
both of which are very possible to cause wrong structure reg-
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istration between neighboring regions, leading to artifacts in
structure restoration.

There are also many methods explicitly using structure
information for image completion [3,8,19], but they are
not effective to complete images with complex structures
or fill large holes either. Recently, a method [18] suggested
to propagate structure information explicitly to guide image
completion. In thismethod, salient curves are detected to rep-
resent structure information, and the curves from different
image pieces are registered to restore structures in the gaps
between these image pieces. When the gaps are not large and
the structures of the image pieces are not complicated, this
method works very well because in such a case it is easy to
register these curves. However, it cannot well treat compli-
cated structure restoration due to the registration difficulty,
listed as a limitation in this paper. Similarly, it cannot well
restore structures in large gaps.

In this paper, we address this challenge of effectively
restoring structures for plausible image completion. Our
solution is to reduce the structure registration complexity
by getting suitable structures that can be connected well
with the structures around the hole, and then blend these
structures coherently by suppressing the differences between
them. For getting suitable structures, we try to retrieve the
mass images on the internet, which provide enough human
visual experiences on structures. This is motivated by the
study that people always make predictions about what may
exist in the world beyond the image frame using visual
associations or context [1]. In blending the retrieved struc-
tures with the structures around the hole, we design a new
energy function based on Iterative Closest Point (ICP) [4,5]
to progressively refine the propagation of the retrieved struc-
tures in the hole for consistent connection, which is difficult
to obtain with existing techniques. After the structures are
restored in the hole, they are used to guide image comple-
tion. Figure 1 shows the framework of our system for image
completion.

In sum, we have specific contributions in the following:

• A novel image completion approach that can easily treat
large holes and use complex structures.

• A data-based system for image completion using internet
resources, with which the user only needs to select the
reference image from the retrieved ones, saving much
manual labor.

• A new energy function to effectively propagate retrieved
structures for coherent restoration in the hole, superior to
existing techniques.

2 Related work

2.1 Image completion

The methods for image completion have been proposed in a
large quantity. By the manner for structure restoration, they
can be classified into two categories, the one in an explicit
manner, and the other in an implicit manner.

For the methods in an explicit manner, some tried to
infer plausible structures in the hole. For example, Bertalmio
et al. [3] decomposed the image into the sum of two func-
tions, corresponding to the structure information and the
texture information, respectively, which are used to fill the
hole, respectively, in two sub-images that are combined after-
wards. Jia and Tang [19] took a texture-based segmentation
manner to translate image color and texture information into
an adaptive ND tensor, followed by a voting process for
image completion. Criminisi et al. [8] suggested the order in
which the filling is proceeded, to accordwith structure propa-
gation. Other work tried to get information from stereoscopic
images [23]. Recently, Huange et al. [18] extracted salient
curves as structures and used a tele-registration method to
align the image pieces to fill the gaps between those pieces.
There are also many methods proposed to manually specify
structures in the hole, using strokes [30] or sketches [13].
Clearly, in treating large holes or using complex structures,
such a way is not efficient and very difficult to restore plau-
sible structures, because of the high complexity of coherent
structure connection between neighboring regions.

For the methods in an implicit manner, they are gener-
ally based on the observation that when neighboring regions
are consistent, the related structures are restored correspond-

Fig. 1 Framework of our system. Given an input image (a), where
the hole is marked in blue, and the surrounding region in red. The
structures in the surroundings are extracted (b). By the structures in the
surroundings, the reference imagewithmatchable structures is retrieved

(c). Then, the retrieved structure is propagated in the hole and blended
seamlessly with the structures in the surrounding region (d). Finally,
the image is completed guided by the propagated structures (e)
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ingly. Thus, Wexler et al. [31,32] optimized a global cost
function to have each patch in the filled region as simi-
lar as possible to a certain known patch. To speed up the
optimization process, a fast PatchMatch algorithm was pro-
posed [2]. Othermethods optimized graph-basedmodels like
Markov Random Fields (MRFs), as in the works of Priority-
BP [20] and Shift-map [27]. In [9,22], structure information
under a variety of transformations such as scale, rotation
and brightness change was also considered for quality image
completion. To effectively employ reliable information, it
was proposed to use a few dominant patch offsets [15].
Though much progress has been made, they are difficult to
restore quality structures in the hole inmany cases, especially
in treating large holes, because limited candidates increase
the difficult to get suitable structure registration between
neighboring regions.

Our work follows the framework of the work by Hays
and Efros [14], the first method to complete images with
image retrieval. It found the similar scenes which contained
image fragments that could convincingly complete the input
image, and then used them to fill the holes by minimizing the
gradient of the image difference along the seams between
them. Unfortunately, this method did not take into account
structure restoration in image completion, and so may fail in
restoring plausible structures inmany cases. As for our work,
we try to find the images with similar structures instead of
similar scenes and then propagate structures to seamlessly
blend with the structures around the hole, so that structures
can be well restored for high-quality image completion.

2.2 Image retrieval

To take advantages of the abundant image resources on the
internet, many works have been done [17], such as for image
editing by semantic colorization [7] and object manipulation
in images [13]. Here, an important task is to retrieve suit-
able images from the internet. For this, some methods used
key words to search on the internet and applied a series of
filters. In this aspect, the techniques via descriptors are very
effective, such as the scene descriptors for finding similar
scenes for scene completion [14]. As our method is based on
structure information for image retrieval, and the structures
are represented by the extracted edges, which are very like
sketches, we adopt the sketch-based image retrieval method
in [11] in our system. To have the images retrieved very effec-
tively, we apply several measures to promote edge extraction
and the SHoG descriptor, which is used in [11] for image
retrieval.

2.3 Image blending

There are a lot of works on image blending for various appli-
cations, such as optimizing the affine transformation between

the structures in the reference image and the input image for
consistent blending [6]. It is out of the scope of the paper to
survey them. In our system, image blending is executed after
the structures are restored, so that we can care less attention
on the structure consistency in the blending process. Con-
sidering the efficiency, we mainly adopt the method in [15]
for image blending, which takes patches from the reference
image to fill the hole, and runs very fast. As this method may
spendmuch time on optimizing the patch selection, we adopt
Poisson cloning [25] for image blending when the reference
image has similar appearance with the input image, because
Poisson cloning can achieve a seamless blending by smooth-
ing the differences between the input image and the reference
image on the border of the hole across the reference image,
saving the selection of patches.

3 Structure retrieval

Our structure retrieval is using the structure information in
the surroundings of the hole. In [30], it is investigated that
most salient structures can be approximated using a few
well-defined curves, and these curves are composed of the
extracted edges from the image. Thus, we extract edges in
the surroundings of the hole as the query template for struc-
ture retrieval. For robust extraction, we first filter the input
image using the edge-preserving WLS filter [12], which can
sharpenmajor edgeswhile eliminating low salient structures,
then apply the technique in [18] to the filtered image for edge
extraction. After the edges are extracted, they are regarded as
sketches to retrieve images on the internet using the sketch-
based image retrieval approach [11].

In implementing the retrieval approach, many things
should be carefully considered. The first is the width of
the surrounding region of an image hole. If the surround-
ing region is larger, more edges would be extracted, which
may be useful to getmore plausible structureswithmore con-
straints, and since there are more edges, fewer images with
similar structures will be obtained in the internet. On the con-
trary, a smaller surrounding region will lead to fewer edges
extracted, which may have the retrieved structures not plau-
sible for image completion. Of course, larger surrounding
regions will lead more cost on edge extraction and retrieval
processing. Thus, as a balance, we set the width of the sur-
rounding region of an image hole as 0.4× |H |, where |H | is
the diameter of the image hole, which works well in our tests.

The descriptor we adopt is the SHoG descriptor [11]. To
generate the descriptor, we used 4 × 4 spatial and eight ori-
entational bins, as used in many methods. We then randomly
sample 1 million local features and use them for learning a
visual vocabulary using standard k-means clustering, which
costs about 30 h. In our implementation, k = 1000 clusters
were used. For a query, we generate the SHoG descriptor
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Fig. 2 Our interface for structure retrieval. The first row shows the
input image with a hole in blue, and the other rows show the retrieved
results, which are ordered by retrieval scores. The rightmost pulldown
bar denoted by a green arrow helps the user to survey the retrieved
results

for the extracted edges around the hole, and quantize it to
be words, with which the matched images are looked up
from the dataset, and ranked using the tf-idf weighting as in
[11,29].

To well exploit the image resources in the internet, we
built a dataset covering 250 common object categories as
in [10]. For each object category, we downloaded about 5000
images from the internet and made a collection of 1.25 mil-
lion images.

Figure 2 shows our interface for displaying the retrieved
images, amongwhich the user chooses one ormore for image
completion. In general, we display the top 500 retrieved
images, and resize these images each into 200 × 150 pix-
els to display so that the user can watch more in the limited
screen space.

4 Structure restoration

After the reference image with plausible structures is chosen
by the user, we first localize the region that contains the struc-
tures which are able to match with the boundary structures,
called the reference structures. Then, the reference structures
are used for structure restoration.

For localizing the reference structures, we resort to the
directional chamfer matching technique in [21]. It takes

the boundary structures as the query template, where edge
orientation information is considered in computing the cham-
fer distance to improve the matching accuracy.

In placing the reference structures for quality structure
restoration, it should be carefully considered the differences
between the reference structures and the boundary struc-
tures on scales, edge orientations, edge lengthens and so
on. With regard to this, we take a two-step algorithm, as
illustrated in Fig. 3, where a global optimization process
is first used to adjust the reference structures as a whole,
and then the unmatched edges of the reference structures
are adjusted locally to consistently connect with their corre-
sponding edges in the boundary structures. These two steps
are discussed in the following two subsections.

4.1 Global optimization

In global optimization, we first initialize the placement of
the reference structures using the shape registration method
in [16],which estimates the differences between the reference
structures and the boundary structure to derive an affine trans-
formation for aligning the reference structureswith boundary
structures. Then, the placement is iteratively optimized using
an Iterative Closest Point (ICP)-based method [4,5]. ICP
is an algorithm often employed to minimize the difference
between two clouds of points. Here, we use the algorithm
to iteratively revise the transformation (translation and rota-
tion) to reduce the differences between reference structures
and boundary structures on alignment.

In the alignment, it is very important to have the endpoints
of the edges in the boundary structures, called docking points,
connected consistently with the endpoints of the edges in the
reference structures, called anchoring points, as illustrated
in Fig. 4. Clearly, docking points and anchoring points can
be extracted automatically, and for each docking point, its
anchoring point is the nearest point to it in the reference
structures. However, docking points and anchoring points
may not be matched very well in general. Thus, we apply
affine transformations to deform the reference structures to
improve connection of these endpoints. If the alignment after

(a) (b) (c) (d)

Fig. 3 Structure restoration in two steps. After the reference structures
are initially placed inside the hole (a), the placement of the structures
is optimized as a whole iteratively (b) and (c). Afterwards, local refine-

ment is taken to well align the reference structures with the boundary
structures, as marked in the green windows
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Fig. 4 Illustration of docking
points and anchoring points,
where the image hole is in gray

affine transformations is still not good, we iteratively apply
affine transformations to further deform the reference struc-
tures for better alignment. Formally, this is by minimizing
the following energy function:

∑

qi∈Q
min

L ,p j∈P
wi (‖L(p j ) − qi‖2 + λ‖L(φ(p j )) − φ(qi )‖2)

(1)

with wi = minpk∈P ‖pk − qi‖ where Q is the set of the
docking points, P is the set of the anchoring points, λ is a
weight and set to 1 in all our experiments, L(x) is the affine
transformation consisting of a linear transformation matrix
M and a translation T , represented as L(x) = Mx + T ,
φ(x) is the edge orientation at point x , L(x) and L(φ(x))
represent the position and edge orientation at pixel x after
the affine transformation is applied to all points on the edges
in the reference structures.

Let SP be the set of all points on edges of reference struc-
tures, we list the pseudo-code of our optimization algorithm
in Algorithm 1. In line 3 of Algorithm 1, we exhaustively
examine every anchoring point in P to find the nearest point
for each docking point, and this strategy is relatively fast
since the set P is generally small. In each iteration, the
transformation L is derived using the standard least square
method.

Algorithm 1 GlobalOptimization()
Require: Docking points set Q and edge points set SP of the reference

structures
Ensure: Global optimized SP
1: Initialize P
2: for iteration n = 0 → N do
3: pi = argminpk∈P ‖pk − qi‖, for any qi ∈ Q
4: L=argminL

∑
qi∈Q wi (‖L(pi )−qi‖2+λ‖L(φ(pi ))−φ(qi )‖2)

5: if p == L(p) for any point p ∈ SP then
6: Return SP
7: else
8: p = L(p) for any point p ∈ SP
9: end if
10: recompute P
11: end for
12: Return SP

4.2 Local refinement

With global optimization, the reference structures can be
placed well in the image hole as a whole, but it cannot be
guaranteed that every anchoring point is matched well with a
docking point, which may lead to serious artifacts. As illus-
trated in the green window in Fig. 3c, some anchoring points
are not connected to docking points.

To remove such artifacts, we locally deform some edges
near anchoring points tomake all anchoring points connected
well with their corresponding docking points, respectively.
With regard to this, we define an M × M window with
an unmatched anchoring point as the center, and apply our
ICP-based global optimization method to the structures in
this window. Note that the deformed structures in this local
window should be aligned well not only with the bound-
ary structures, but also with the reference structures near
this window. As a result, the new docking points set Q con-
tains both original docking points in this local window and
the intersection points between the edges of the reference
structures and the boundary of the window. We add higher
weights to the intersection points to enforce that the dis-
tortion near the window boundary is small. In general, we
set M = 21, and can get good results in our tests. As illus-
trated in the greenwindow in Fig. 3d, the reference structures
are better aligned with the boundary structures after local
refinement.

5 Image completion

After the structures are restored in the hole, the hole is filled
under their guidance. As suggested in [30], we may synthe-
size images along restored structure information first, and
then complete other subregions [15]. Though such a com-
pletion is helpful to preserve consistent appearances in the
image hole, it is generally expensive, especially when the
predicted structures are complex or the hole is large. Consid-
ering this, when the reference image has similar appearance
with the input image, we adopt Poisson cloning [25] to fast
fill the hole, which directly pastes the image patch whose
structures can be aligned with the boundary structures, to
blend with the surroundings of the hole seamlessly. In the
following two subsections, we introduce how to implement
these two methods, respectively, in our system.

5.1 Completion via statistics of patch offsets

Using the contents in the image itself to complete the hole,
it is helpful to preserve consistent appearances. Here, we
adopt the fast and effective algorithm [15] which utilizes
dominant patch offsets for image completion. As discussed
in [30], the restored structures in the hole separate the hole

123
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Fig. 5 Illustration of the
subregions that are separated by
restored structures, where the
image hole is in gray. Each
labeled smaller hole could be
filled by the pixels from the
known regions labeled in the
same number

into smaller holes, and every smaller hole could be filled
in similar appearance as their related surroundings of the
hole. Thus, the possible pixels for filling the smaller holes
could be confined in a smaller region in the image, as illus-
trated in Fig. 5. In this way, the algorithm can be further
accelerated.

5.2 Completion via Poisson cloning

Poisson image cloning [25] has been demonstrated an effec-
tive approach for seamless image composition.

It is fast and used in [13,14] for image completion. Unlike
them to directly cut a region of the reference image to paste
onto the target image, we choose to use the image region
not only having similar appearances but also having struc-
tures able to align well with the boundary structures, because
structure differences between the input and reference images
would lead to evident artifacts with Poisson cloning. Here
the appearance distance is computed by the χ2 distance of
color histograms.

To get image regions with plausible structures and similar
appearance, we first use the techniques described in Sect. 3 to
get many images whose structures could be alignedwell with
the boundary structures (i.e., top 1000 results), and then rank
up these images by SIFT descriptors as suggested in [26],
because SIFT descriptors are very effective to represent the
image contents, by which the appearance difference is well
measured. Afterwards, the top ranked images are used as
candidates to fill the image hole.

Figure 6 shows some completion results with Poisson
cloning. When the reference image patch has similar appear-
ancewith the target image, the completion result will bemore
plausible, e.g., the result in b seems better than the result in c.

6 Results and discussion

We implemented our method, and made comparison with
some well-known methods, including the method for scene
completion with image retrieval [14], the Shift-map method
for implicitly propagating structures [27], and three methods
for explicitly treating structures in image completion, the
exemplar-based method by Criminisi et al. [8], the method
by tele-registration [18] and the tool of Content-Aware Fill in
Adobe Photoshop CS6. Here the tool of Content-Aware Fill
is developed based onmany techniques [2,31,32], especially
the PatchMatch technique [2] for treating structure informa-
tion in image completion. Our tests were performed on a
personnel computer installed with an Intel core i7 3.4 GHz
CPU and 4G RAM. In the following subsections, we will
discuss our approach on its effectiveness, its efficiency and
its potential to treat large holes and to enrich the variation
of structures in image completion, which is very helpful for
creativity design.

6.1 Effectiveness

We made tests on restoring simple structures and complex
structures, as illustrated in Figs. 7 and 8, respectively.
From the results, it is clear that plausible structure restora-
tion is very important to quality image completion, and our
approach can achieve this. As for the compared methods,
they cannot produce plausible structures in filling the hole,
and so making image completion unsuccessful. In particu-
lar, the methods for treating structures explicitly in image
completion, the method by Criminisi et al. [8] and the tool
of Content-Aware Fill, both failed in generating plausible
results. Those methods completed images only using struc-

(a) (b) (c) (d)

Fig. 6 Image completions with different reference images. a is the input target image with a hole in blue, b and c are two completions using the
first and fifth reference image in d (from left to right, and from top to down), respectively. a Input image, b completion I, c completion II and d
reference images

123



Effective structure restoration for image completion... 1119

(a) (b) (c) (d) (e) (f)

Fig. 7 Comparison on restoring simple structures between the method
of Criminisi et al. [8], Shift-map [27], Content-Aware Fill and our
method, which shows that plausible structure restoration is very impor-
tant for high-quality image completion. Here, no matter whether the
structures are restored implicitly by the Shift-map method or explicitly

by the methods of Criminisi et al. and Content-Aware Fill, they did not
generate plausible structures in image completion. a Input image, b ref-
erence image, cCriminisi et al.’s [8],d Shift-map [27], eContent-Aware
Fill and f our result

(a) (b) (c) (d) (e) (f)

Fig. 8 Both reference structures and structure restoration are essential
for plausible image completions. Without structure restoration, scene
completion method [14] cannot match structures well (c). Content-
Aware Fill may be hard to predict plausible structures in the image

hole without reference images (d). Method [18] cannot align structures
well (e). Our method can produce satisfactory results. a Input image, b
reference image, c scene completion, d Content-Aware Fill, e result of
[18] and f our result

tures in source image,when the source images cannot provide
enough information to keep suitable structure propagation,
those methods may fail. This is also one of the reasons why
it is a hot topic recently to use manually drawn strokes or
sketches to specify structures explicitly in the hole for image
completion.

When images have complex structures, we argue both ref-
erence structures and structure propagation are essential for
plausible image completions, as shown in Fig. 8. Without
reference structures, Content-Aware Fill and method [18]
cannot align the structures well. This is because it is gen-
erally difficult to predict plausible structures to blend well
with the complex surrounding structures in the hole. Though
Scene Completion [14] used reference images to complete
scene images, it cannot guarantee that structures are aligned
well, which may cause artifacts, as shown in Fig. 8c. Our
method use reference structures for more useful information
and apply structure propagation for effective structure align-
ment, thus get better results.

Generally speaking, the methods with manually drawn
strokes or sketches to specify structures in the hole can well
restore plausible structures.But it is time consumingondraw-

ing, not helpful for efficient image completion, which will be
discussed in the following subsection. As for our method, in
some sense, we explicitly copy some structures to fill the
hole, which takes the same effect of the specified structures
by strokes or sketches. Thus it is guaranteed that we can
restore structures plausibly in image completion.

6.2 Large holes

It is always a challenge to fill a large hole, as it is generally
difficult to get large structures. For this, we take the following
strategy for filling a large hole, partitioning the large hole
into smaller ones, and filling the smaller holes gradually. In
general, we initially divide a hole into two smaller ones, with
one about one-third of the entire hole, and the other about
two-thirds, and they share a small band region for blending.
When a smaller hole cannot be completed effectively, it will
be partitioned and treated iteratively in the samemanner until
the obtained small holes can be well filled.

As illustrated in Fig. 9, when we want to remove the foot-
baller to complete the net a, we can complete the large hole
by treating its divided smaller holes gradually from b through
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Image completion with large holes filled. Our method filled
smaller holes gradually from b through c to d in the final to complete
the large hole, where we used input image itself as the reference image.
Our result d can better align reference structures than Shift-map [27] (e)

and Content-Aware Fill (f), as shown in the red boxes. a Input image, b
fill the bottom part, c fill the middle part, d our final result, e Shift-map
[27] and f Content-Aware Fill

(a) (b) (c) (d) (e)

Fig. 10 Our system can generate many completions easily. a is the
input image with a hole in blue, b is a reference image for providing
plausible structures, and c, d and e are completion results with reference

structures from the image a and b. a Input image, b reference image, c
completion I, d completion II and e completion III

c to d finally. Compared with the completions of other meth-
ods such as Shift-map and Content-Aware Fill, our result
is much better without evident artifacts, while the others
have unconnected edges or mismatched edges in the restored
structures.

This is an advantage of our approach over the methods
withmanual strokes or sketches to specify structures, because
it is very trouble or time consuming to specify plausible struc-
tures by manually drawing strokes or sketches in the large
hole.

6.3 Structure variation

Clearly, with our system, more plausible structures can be
provided for the user to choose for image completion. This
is benefited from the tremendous image resources on the
internet. Thus, the user has more chances to generate his

desired results, which is very helpful for creativity design.
As illustrated in Fig. 10, the image hole in the image a can
be completed with the structures from the image itself, or
from a reference image b to get the completed images c, d
and e, respectively. Clearly, these adopted structures are all
acceptable for human beings, where the method via statis-
tics of patch offsets [15] was used to fill the other regions
of the hole. We also provided three completions of the mug
example in Figs. 6 and 7.

6.4 Efficiency

With our system to fill a hole, we can save much time on
measuring the consistency between nearby patches, because
we take the reference structures as a whole to fill the hole.
Thus, we can run faster than many patch-based methods. As
illustrated in Table 1, where we list the statistics on time cost
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of all methods, our system is much faster than the method
by Criminisi et al. [8] and the Shift-map method [27] except
that the Shift-map method treating the large hole in Fig. 9,
where our system divided the large hole into smaller holes to
fill progressively, causing our system to run many times.

Here, we did not compare our approach and the methods
with manually drawn strokes [30] or sketches [13] to specify
structures. With a simple thought, it could be known that our
approach ismore efficient in general. This is because drawing
strokes or sketches to specify structures always need at least
several seconds, while we can use at most several seconds
for a simple filling according to the statistics in Table 1.

From the statistics in Table 1, ours is a little slower than
the tool of Content-Aware Fill. The tool is developed in a
system, taking full advantages of the hardware and software.
As for our system, it is just a prototype. To promote the work-
ing efficiency of our system, many works will be done. For
example, the localization step takes the majority of our time
cost in our current implementation, and this can be improved
by running this step in parallel.

6.5 Limitation

Our system depends on the extracted edges for structure
retrieval, which may fail in some cases when the edge infor-
mation is from shadow or something else instead of structure
information. With regard to this, we need further study how
to effectively obtain structure information.

7 Conclusion

Existing image completionmethods oftenproduceunsuitable
structure connection between neighboring regions, mostly
because there are not enough candidates provided. For this,
we design a novel method to conveniently get suitable
structures for hole filling from the internet resources. To
consistently connect the retrieved structures with the struc-
tures around the hole, another aspect for reducing artifacts in
structure restoration, we develop a new energy function for
optimizing the connection, superior to existing techniques.
Thus, we can fill holes well and efficiently, even with com-
plex structures.

As a benefit of our approach, we can easily and fast fill
large holes andhave thepotential of providingmanyplausible
structures for creativity design. This is superior to the meth-
ods using manually drawn strokes or sketches to specify the
structures in the hole, as they are generally time consuming
and not easy to predict many plausible structures, especially
in filling large holes.
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