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Abstract The evaluation of 3D medical image segmen-
tation quality requires a reliable detailed comparison of a
reference segmentation with an automatic segmentation. It
should be able to measure the quality accurately and, thus,
to reveal problematic regions. While several (global) mea-
sures, providing a single quality value, are available, the
only widely used local measure is the Surface Distance (i.e.,
point-to-surface distance). This measure, however, has sig-
nificant drawbacks such as asymmetry and underestimation
in distant and differently formed regions. Other available
measures have limited suitability for 3D medical segmenta-
tion evaluation. We present a more reliable distance measure
for assessing and analyzing local differences between auto-
matic and reference (i.e., ground truth) 3D segmentations.
We identify and overcome Surface Distance drawbacks,
esp. in regions with larger dissimilarities. We evaluated our
approach on four real medical image datasets. The results
indicate that our measure provides more accurate local dis-
tance values.
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1 Introduction

Evaluating 3D medical image segmentations is important
for the development of high-quality automatic segmentation
algorithms. Although sophisticated algorithms have been
developed (e.g., using deformable M-Reps [23] or statistical
shape models [12,15,17,21]), wrongly segmented regions
still occur in difficult cases. Algorithm evaluation compares
reference (i.e., ground truth) and automatic segmentations,
which can be in form of meshes (see Fig. 1). Local (per ver-
tex) quality analysis may reveal regions of bad segmentation
within the anatomical structure. This, in turn, indicates the
need for local algorithm improvement such as local appear-
ance model adjustment. However, the detailed evaluation on
a local level is currently not precise enough.

Themostly used localmeasure is the so-called surface dis-
tance (SD) (i.e., point-to-surface distance, see also Sect. 3).
Although other evaluationmethods exist (see Sect. 2), the SD
is the most versatile measure since it has no general restric-
tions. We investigated possible measurement error cases of
the SD (see Sect. 3). It has several drawbacks, which we
discovered (see Sect. 4). For example, it may provide low
distance values underestimating the difference of themeshes,
especially in locally distant parts of the mesh (see Fig. 1
within the red rectangles). This drawback can be serious in
3D medical image segmentation, as such cases can occur in
pathological organs.

We developed an extended surface distance (ESD), which
overcomes the problems of the SD. It provides more accurate
results in more distant organ areas and reduces the asymme-
try. We evaluated the new measure on liver, nervus facialis,
semicircular canals and cochlea datasets (see Sect. 5). It indi-
cates the robustness and flexibility of our measure.

The accompanying program for exploration of segmen-
tation quality (i.e., mesh comparison) using our measure
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Fig. 1 The widely used surface distance (SD) compared to our
extended surface distance (ESD). The measures are used for the local
comparison of a (ground truth) reference segmentation mesh and an

automatic segmentation mesh of a 3D medical image. The SD is asym-
metric and underestimates the distances. The newmeasure shows better
results

is provided at: http://www.gris.tu-darmstadt.de/research/
vissearch/projects/esd/. As we work with meshes, our app-
roach can be applied to other domains, such as 3D recon-
struction.

2 Related work

Several distance measures are used in medical image seg-
mentation evaluation [11] and in mesh comparison [9].
Distance measures can be divided into global and local.
Global measures provide a single distance value. Local mea-
sures determine values per mesh vertex. We focus on local
measures and global measures transformable into local.

2.1 Transformability of global measures

Many global measures are based on the SD, e.g., [1,9]. They
aggregate (maximum or average) the local SD values. Their
basis SD can be used for local mesh comparing. We base our
work on it.

Volume comparing measures include the Volumetric
Overlap Error [27] and the Relative Volume Difference [11].
They measure a ratio of the shared part to the non-shared
parts of the two meshes. They could possibly be calculated
for smaller regions, but they cannot be transformed to a local
per vertex measure.

Other global measures focus on curvature and form dif-
ferences of the meshes using, e.g., normal fields [7] or the
energymetric [13]. The result can only be compared permesh
and not per vertex.

2.2 General local measures

Medical image segmentation often employs 2Dmeasures for
comparing 2D slices of the segmented 3D structures [6,8,
26,32]. However, this depends on the slicing and disregards
intra-slice dependencies. Therefore, they are not suitable for
our case.

In 3D mesh comparison, ray casting-based measures
[6,25] calculate a relative error by casting rays from inside
or outside the mesh. These measures are highly dependent
on the form of the meshes. For example, the radial distance
[6] is suitable only for sphere-like formmeshes. The distance
by Strecha et al. [25] casts rays from rather randomly cho-
sen points. These rays disregard surface orientation, thus are
problematic in distant and differently formed regions.

Local measures based on a surface parametrization relate
surface points with the same parameters, e.g., The Fréchet
distance [29]. The distance can then be measured between
related points. A consistent parametrization depends on the
mesh form. For every case, a different suitable parametriza-
tion method is needed. This excludes parametrizations for
our measure, since we need a robust and flexible measure for
varying object forms.

2.3 Local measures based on correspondence

Various local distance measurements rely on matching two
surface points of both meshes. This problem is related to
finding point-to-point mesh correspondences [28]. So, we
also review correspondence methods.
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Often a dense point correspondence is computed from
several corresponding feature points, which must be known
in advance [28]. Kraevoy et al. [16] require user-defined
basic corresponding points. A fully automatic method is not
present. Cates et al. [5] move particles along the surface for
finding corresponding points. It is restricted to smooth sur-
faces allowing for free particle movement.

Another concept is to deform one mesh into the other,
so that the points lying on top of each other can be marked
as corresponding. However, one cannot allow arbitrary sur-
face deformations. Therefore, non-rigid registrations often
focused only on small local deformations [4]. Other meth-
ods use additional registered scan data for global deformation
[10,19], which are unavailable to us.

Other methods include shape context [3] and spin images
[14]. A corresponding point is detected by matching point
neighborhood descriptions, e.g., [20]. However, these meth-
ods cannot measure the distance between dissimilar regions,
as no similar neighborhoods exist in these regions. Analo-
gously, many other methods are not suitable for our purpose
[22,24,30,31].

We note that correspondence is a difficult problem, which
is solvedmainly for specific cases, where it may provide very
good results. However, it is difficult to identify one algorithm
for arbitrary comparisons irrespective of the specific case
(see also the discussion in Sect. 5.4). Therefore, we do not
consider it for our problem.

3 Problematic cases of the surface distance

We describe the three main and two combined error cases
of the SD, which we identified during our work. The order
of the three main cases expresses their severity, with case-
3 being the most severe. We explain the error cases on two
meshes M1 (orange) and M2 (blue) in a 2D view for easier
understanding (see Fig. 2a).

We show the SD as a distance vector pointing from one
vertex on one surface to its nearest vertex on the other surface.
We show the SD for the blue surfaceM2 in Fig. 2b and the SD
for the orange surface M1 in Fig. 2c. The distance vectors
pointing into the same direction of the surface normal of
the vertex are colored in dark green, while the others are
colored in light green. Note that we only show the vertices
and distance vectors for the interesting part of the example
and omit the rest.

In the examples, the SD is calculated by taking a discrete
amount of vertices of the two surfaces (e.g., the vertices of a
mesh). The distance of each vertex v1i ∈ M1 is determined
by its nearest vertex in M2 (see Fig. 2). Note, the exact SD
considers every possible point of the surface represented by
the mesh. Taking a discrete amount of vertices provides a
good approximation for meshes with dense vertex coverage.

(a)

(b)

(c)

Fig. 2 Example meshes and SD distance vectors. a Vertices on the
surfaces M1 and M2. b SD distance vectors of M2 (from blue vertices).
c SD distance vectors of M1 (from orange vertices)

Case-1: Wrong distance in one comparison direction This
problem of the SD results from the strong asymmetry (see
P1 in Fig. 2). The distance vectors are correct in one of the
two directions: from the blue to the orange surface. But, we
see that the distance vectors are erroneous from the orange
surface in the same region.

Case-2: Nearest vertex in an unrelated region This error
occurs when the nearest vertex is found in a region repre-
senting a “semantically” different part of the other mesh (see
P2 in Fig. 2). The distance vectors from the blue surface are
pointing to the wrong side of the other surface.

Case-3: Wrong distance in both comparison directions
The error of case-3 is shown in P3 (see Fig. 2). Since the sur-
faces differ only in the direction of the deformation (inward
and outward), we can expect that the distance vectors con-
nect these regions. However, the distance vectors from both
sides only point to the border of the deformations. Note that
in this case the distance vectors of both meshes are wrong in
the erroneous region.

Case-2 errors overlaying case-3 or case-1 errors It is pos-
sible that case-2 errors overlay case-3 or case-1 errors (see
P4 and P5 in Fig. 2). The distance vectors from the blue
surface M2 show an erroneous behavior of case-2 (pointing
to an unrelated region). Case-2 error of P4 (formed like P3)
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overlays the case-3 error in this region. Analogously, P5 is
formed like P1. In P5, the errors of case-2 overlay the errors
of case-1. These overlaying errors imply thatwe have to solve
the errors of case-2 before identifying the residual errors.

4 Methodology

We now describe our algorithm for calculating the new dis-
tance measure. It is based on the surface distance (SD),
therefore, we refer to it as extended surface distance (ESD).
We first present assumptions and the notations used in the
paper. We then explain the concepts used in our algorithm.
The algorithm is explained step-by-step in the last subsection.
We also provide a detailed pseudocode of the algorithm and
a program enabling to analyze the results quantitatively and
visually. Both are available at http://www.gris.tu-darmstadt.
de/research/vissearch/projects/esd/.

4.1 Assumptions

Our assumptions stem from the 3D medical image segmen-
tation quality assessment.

We assume two triangular meshes: a reference mesh (RS,
i.e., ground truth) and an automatic segmentation (AS). They
can be either a direct output of the algorithm (e.g., result of
statistical shape model) or can be a result of a pre-processing
of the volumetric data. We pose no constraints on mesh size
and the number of mesh faces. The two meshes can differ
in these properties. We assume that point correspondences
between the RS and AS meshes are unknown.

Depending on the used segmentation method the result-
ing meshes have several favorable properties, which we
assume: mesh closeness and 2-manifoldness as well as spa-
tial alignment. These properties can also be established by
pre-processing, e.g., 3D-registration [18].

4.2 Notations

We assume a comparison of two meshes M1 and M2. For
clarifying that several calculations are done for both com-
parison directions M1 → M2 and M2 → M1 we also use
the notation Ma and Mb with ∀a, b ∈ {1, 2} and a �= b.

The vertices of Ma can lie inside or outside Mb. vai ∈ Ma

is an inner vertex if the vertex lies inside the surface of Mb.
Otherwise, vai is outside. Every vertex v

a
k connected to v

a
i via

an edge is in the set of neighbors nb(vai ). We define a region
Ra as a set of vertices Ra = ⋃

vai ∈ Ma . A region pair Pi
is a tuple (R1

i , R
2
i ) with R1

i ⊂ M1 and R2
i ⊂ M2

A vertex vai has exactly one distance vector d(vai ) target-
ing a vertex vbj ∈ Mb. Several distance vectors can end in the

same vertex vbj . The vertex’s distance value is the Euclidean
length of its distance vector.

(a)

(b)

Fig. 3 Uncovered vertices: not targeted by any distance vector.
a Uncovered vertices of M1 (red points). b Uncovered vertices of M2

(red points)

4.3 Concepts

The input for our algorithm are twomeshesM1 andM2 (e.g.,
automatic and reference segmentations).

In our approach, we identify and correct cases inwhich the
Surface Distance (SD) measure is erroneous (see Sect. 3).
The identification uses the results of initial SD calculation. It
uses concepts of Surface-Vertex-Sets, uncovered vertices,
erroneous region, and region pairs.We explain thembefore
we detail on the algorithm.

The SD distance vectors of a vertex vai ∈ Ma are calcu-
lated as a vector pointing from vai to the nearest vertex of
Mb. A more dense vertex distribution on the surface of the
meshes lead to more accurate results. Therefore, we intro-
duce the surface-vertex-sets.

A surface-vertex-set MEa is a set of vertices lying on
the surface of Ma . MEa includes original vertices of Ma and
additional (subdivision) vertices. The calculation is described
in Sect. 4.4 Stage 1. These dense vertex sets are needed for
identification of uncovered vertices (see Fig. 4).

Uncovered vertices in mesh Ma are vertices with no dis-
tance vectors pointing to them from mesh Mb. Figure 3
shows the uncovered vertices of our example as red dots.
The uncovered vertices can only be correctly determined if
enough distance vectors cover the surface of one mesh. We
show this problem in Fig. 4. Therefore, we always calculate
the distance vectors between a surface-vertex-set MEa and
an original mesh Ma . The uncovered vertices result from the
SD asymmetry and thus indicate SD errors.

Erroneous region is a region Ra
i ⊂ Ma composed of

erroneous vertices, i.e., an error case of the SD (see Sect. 3).
Region pair Pi = (R1

i , R
2
i ) is composed of two regions

R1
i ⊂ M1 and R2

i ⊂ M2, which are related. (see Fig. 2,
P1–P5).We need to identify all region pairs Pi for correcting
the erroneous distance vectors of the SD.
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(a) (b)

Fig. 4 The need for surface setsME for vertex coverage.ME1 → M2:
enough distance vectors cover the surface. aM1 → M2. bME1 → M2

4.4 Algorithm for distance calculation

We describe our algorithm for the computation of the
extended distance measure. It consists of 4 stages.

S1: Calculation of the surface-vertex-sets ME1 and ME2.
S2: Construction of region pairs and limitation of distance

vectors within a region pair.
S3: Classification of erroneous vertices.
S4: Final correction of distance vectors.

Stage 1: Calculation of surface-vertex-sets We calculate
surface-vertex-sets ME1,ME2, and the initial SD.

The surface-vertex-sets are constructed by iteratively sub-
dividingmesh triangles. A triangle is divided into 4 triangles.
We use the same scheme as Aspert et al. [1], because it
leads towell distributed vertices. The surface-vertex-setMEa

consists of all vertices of Ma and all additionally obtained
vertices from the subdivision steps.

The number of subdivision iterations depends on the area
of the triangle. Each triangle is subdivided until its area
is smaller than a defined threshold. We propose a thresh-
old heuristic: we set the threshold to one quarter of the
smaller average triangle area of the two meshes. This thresh-
old assures at least one iteration for most triangles.

Afterwards, we compute the SD from a mesh to a surface-
vertex-set and vice versa: Ma → MEb,MEa → Mb.

Stage 2:Construction of region pairsThis stage constructs
region pairs Pi = (R1

i , R
2
i ) using identification of uncovered

vertices and regions. As case-2 errors cause that vertices are
covered by an erroneous distance vector, we need to filter
them out first.

Thedistance vectors not fulfilling the following criteria are
filtered out. Note that these criteria are conservative, which
means that the erroneous case-2 distance vectors are filtered
out correctly but a few correct distance vectors could also be
included. Actually, this does not cause problems since the
correct distance vectors within differently formed regions
are recognized as correct in the next stage. The criteria
are:

(a)

(b)

Fig. 5 Stage 2 identifies region pairs and corrects case-2 errors. aDis-
tance vectors of uncovered vertices, except out-filtered case-2 errors.
b Resulting regions pairs and reoriented distance vectors

1. A distance vector has to point from an inner vertex to an
outer vertex or vice versa.

2. The surface normals of the start and end vertex of a
distance vector should be similarly oriented (the angle
between them is less than 90 degree).

3. A distance vector should not intersect any surface, since
the distance vectors of the SD should mark the shortest
connection between two vertices.

Then the uncovered vertices are identified as defined in
Sect. 4.3. We construct regions Ra

i on each mesh separately:
neighboring uncovered vertices form a region. We differen-
tiate between inner and outer vertices, leading to inner and
outer regions.A region pair always consists of an inner region
on one mesh and an outer region on the other mesh.

We then construct region pairs Pi . For each region Ra
i ⊂

Ma we need to find its counterpart Rb
i ⊂ Mb,∀a, b ∈

{1, 2}, a �= b. If an uncovered vertex vai ∈ Ra
i has a (non

case-2 erroneous) distance vector, the end vertex vbj is a part

of the searched region Rb
i (see Fig. 5a). If vbj has a neigh-

bor vbk which belongs to a erroneous region Rb
k , then Rb

k
and the vertex vbj is merged to the searched region Rb

i . This
is done iteratively until no neigbouring error vertices exist.
The resulting region pairs are highlighted in Fig. 5b.

We now need to correct the filtered out case-2 erroneous
vertices/regions. The distance vectors of vertices vai ∈ Ra

i ∈
Pi are reoriented, so that they target the nearest vertex in the
counterpart region vbi ∈ Rb

i ∈ Pi (see Fig. 5b). This solves
case-2 errors overlaying case-1 or case-3 errors.

Stage 3: Classification of erroneous verticesWe now clas-
sify the errors of every region pair Pi = (R1

i , R
2
i ) for their

correction in Stage 4. As case-2 errors were already elim-
inated in stage 2, we need to distinguish only case-1 and
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Fig. 6 Stage 3: The vertices in the erroneous regions (red boxes) of
every region pair are classified

case-3 errors. Case-3 errors are identified as residual erro-
neous vertices after case-1 identification.

We first identify case-1 errors (i.e., erroneous in one com-
parison direction). These can be easily identified, because
correct distance vectors are present in one of the two regions
R1
i ∈ Pi or R2

i ∈ Pi . We have to identify which region Ra
i

( a ∈ {1, 2}) of the region pair Pi is the erroneous one. The
other region Rb

i has correct distance vectors. These vectors
can then be used for correcting the case-1 errors in the erro-
neous region (see Stage 4).

The erroneous region is identified by counting the number
ofuncovered vertices. Erroneous regions have less uncovered
vertices, since correct distance vectors always cover more
vertices of the surface than erroneous distance vectors (see
Fig. 6).We count the erroneous vertices of the surface-vertex-
sets MEa and MEb, because they have similar number of
vertices across region pairs. Original meshesMa andMb can
differ much in the number of vertices. As shown in Figure 6
in P3, region pairs of case-3 error can have the same count of
erroneous vertices, in which case we can simply choose one
of the two regions (we take the region in M2) as erroneous,
as both are erroneous and will be identified as case-3 in the
following.

The vertices of the erroneous region Ra
i ∈ Pi are classified

as follows (see Fig. 6 ):

1. The vertex is covered by at least one distance vector from
an uncovered vertex → case-1 error.

2. The vertex is only covered by distance vectors of covered
vertices. This vertex is correct, so it is not classified.

3. The vertex is not covered at all → case-3 error.

Stage 4: Final correction of distance vectorsWe now cor-
rect the distance vectors. We first correct the case-1 errors.
This correction is used for the later correction of case-3
errors. Note that case-2 was corrected in stage 2.

The case-1 erroneous vertices are in the erroneous region
Ra
i ∈ Pi . The other region Rb

i ∈ Pi has correct distance vec-
tors. We will now use the correct distance vectors of Rb

i for
the reorientation of the distance vectors of Ra

i . The classifi-
cation in stage 2 required that every vertex vai ∈ Ra

i of case-1
error has one or more uncovered vbi ∈ Rb

i , whose distance
vector targets vai . One of these correct distance vectors tar-
geting vai should be mirrored by vai . We reorient the distance

(b)

(a)

Fig. 7 In Stage 4 distance vectors of case-1 and case-3 erroneous ver-
tices are reoriented.a case-1 distance vectors are reoriented bymirroring
correct distance vectors. b case-3 distance vectors are reoriented with
the help of rays cast between the erroneous regions. Black arrows are
corrected by rays. Green arrows are corrected by final case-1 adaption

vector of vai so that it points to the furthest vertex of all the
vertices vbi , as defined above. By choosing the furthest ver-
tex we rather slightly overestimate the distance—leading to
a locally maximal distance. Figure 7a shows the result.

We can now correct the possible residual case-3 errors in
Pi . In contrast to case-1 errors, the case-3 errors are located
on both regions of the region pair Pi . We denote the case-3
error regions as Ra

k ⊂ Ra
i ∈ Pi and Rb

k ⊂ Rb
i ∈ Pi . We

already identified the case-3 erroneous vertices of Ra
k within

Ra
i as these are the vertices classified as case-3 in stage 3, but

we now also need to identify the case-3 erroneous vertices
of Rb

k within the counterpart Rb
i .

We use the case-1 correction for the identification of Rb
k ,

as these are closely related (see Fig. 7a, P3 and P4). The dis-
tance vectors of vai ∈ Ra

i of the former case-1 error vertices
now target the case-3 erroneous region Rb

k within Rb
i .

The specific case-3 erroneous region Ra
k is defined as all

neighboring vertices classified as case-3 in Ra
i . We identify

its counterpart case-3 error region Rb
k . Every vertex of Rb

i
which is pointing to one of the former case-1 error vertices
surrounding Ra

k is now labeled as a candidate vertex, i.e., a
candidate for the searched region Rb

k .
We now have to identify which candidate vertices of Rb

i
are related to Ra

k and, therefore, are a part of Rb
k . For this

identification we use a ray casting approach as case-3 regions
can contain arbitrarily dissimilar deformations.

123



Extended surface distance for local. . . 995

We first identify the direction of the rays: we compute
the centroid of Ra

k and the centroid of all candidate vertices
which are target vertices of a distance vector of the former
case-1 error vertices neighbored to Ra

k . Our ray direction
vector points from the first to the second centroid. We cast
a ray from each vertex of Ra

k in this direction. The nearest
candidate vertex of each ray belongs to Rb

k .
As a last step in case-3 region identification, we need to

adapt some of former case-1 error vertices surrounding Ra
k ,

because these are pointing to Rb
k and possibly also belong

to case-3. If a surrounding vertex of Ra
k is only covered by

vertices of Rb
k , then it is only covered by case-3 erroneous

vertices and, therefore, belongs to Ra
k . Otherwise, if the ver-

tex is also covered by a vertex outside of Rb
k , then the distance

vector has to be adapted, so that it targets the furthest covering
vertex, outside of Rb

k .
The final reorientation of the distance vectors uses addi-

tional ray cast between both regions Ra
k and Rb

k . The rays are
aligned as before: every vertex of Ra

k and Rb
k casts a ray. The

nearest vertex to the ray on the other region is the end vertex
of vertex distance vector (see Fig. 7b).

5 Evaluation and discussion

We evaluate our approach on several real medical segmen-
tation datasets. We compare automatic with ground truth
segmentations. The focus of our evaluation is on the assess-
ment of the quality measurement using our distance measure
and using the SD. Note, we do not focus on getting best
segmentation results, as this is the subject of segmentation
algorithm development.

We first describe the datasets and then show the qual-
itative and quantitative evaluation. Finally, we discuss the
advantages and limitations of our approach.

5.1 Data description

We evaluated four datasets consisting of 20 livers, 42 nervus
facialis, 42 semicircular canals and 20 cochleas. The real-
worldmedical image datawere extracted fromCT scans. The
liver segmentation algorithm is [15] and the segmentation of
the other datasets was done using [2].

We evaluate various datasets to show the versatility of our
approach. The new distance measure is independent of the
mesh size and number of vertices and faces (see Table 1). It is
able to evaluate the organs of different sizes. The cochleas are
very small, while the livers are rather large. They also differ
in other proprieties, as the Nervus facialis are of genus 0 and
the Semicircular canals are of genus 3. The livers have dif-
ferent genera within the dataset (some livers include tubular
structures inside the organ)

Table 1 Dataset properties

Dataset Count #F : RS #F : AS

Liver 20 8000–20,000 5120

Cochlea 20 5832–12,626 1996

Semicircular canals 42 8162–23,746 4008

Nervus facialis 42 4132–15,386 2996

#F Number of faces in the mesh, RS reference segmentation, AS auto-
matic segmentation

5.2 Qualitative evaluation

We assess how well the measure identifies regions of
bad/good segmentation quality. We visually inspected the
local distances on both automatic and reference segmenta-
tions for every comparison. Owing to space limitations, we
present one example of each data set.

One important benefit of the newmeasure is its symmetry.
Symmetry enables to spot problems on both automatic (AS)
and reference (RS) segmentations. The SD was not symmet-
ric and thus it was not possible to detect all segmentation
errors by analyzing the results on one mesh. In contrast, the
new distance measure recognizes regions of bad segmenta-
tion that were either only identified on one of the two meshes
or could not be identified with the SD at all (see Figs. 1
and 8).

As an example, we look at the Semicircular canals and the
Nervus facialis (seeFig. 8b, c).Both have two large erroneous
regions (see red box). Here, one region is erroneously mea-
sured in the AS and the other region is erroneously measured
in the RS. Thus, for several erroneous regions the correct
distance values can be scattered across both meshes. This
means that there is no single mesh, which identifies correct
distances on all regions. The ESD is able to detect correct
distances for all regions on both meshes.

The Liver (see Fig. 1) and the Cochlea (see Fig. 8a)
examples show errors that are evenmore severe than the sym-
metry problem. Both examples have one large region (see red
box), in which the SD underestimates the difference on both
meshes. Therefore, the correct information is not available
anywhere. The new distance measure indicates better and
more plausible results, even on these very difficult and badly
segmented examples.

5.3 Quantitative evaluation

We quantitatively evaluate the new distance measure. This
evaluation is difficult as there are no ground truth distances
available. This is because the difference of meshes is not well
defined, so that a ground truth could only be constructed with
a similarity measure itself. Despite a thorough review of lit-
erature, we could not find a methodology for assessing the
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Fig. 8 Qualitative comparison of SD (left) andESD (right) for segmen-
tation evaluation (middle). a Cochlea SD shows a region with highly
underestimated distance values on both meshes. b Semicircular Canals.

cNervus Facialis. b, cHigh asymmetry of SD values. ESD shows more
accurate information on both meshes even in these difficult examples
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Fig. 9 Mesh transformation for quantitative evaluation

Fig. 10 Quality of the SD and the ESD for four real datasets. Low
mean—better distance quality. Low standard deviation—robustness.
ESD shows better results

quality of a distance measure in medical image segmenta-
tions. Therefore, we propose a quality assessment method
which uses a symmetric global measure for the comparison
of the local measures.

We transform the two input meshes M1 and M2 to the
deformed meshes MD1 and MD2 by moving each vertex of
themesh to the target vertex of its distance vector (see Fig. 9).
The target vertices of the distance vectors of M1 are on the
surface of M2. Therefore, if the distance vectors are good,
the deformed mesh MD1 should be very similar to the orig-
inal mesh M2. We measure this similarity using symmetric
Hausdorff Distance. The lower this global distance the better
the distance measure (SD or ESD) performs. We note that
this method does not replace ground truth distances. Never-
theless, it provides a quality indicator. Figure 10 shows the
results for all datasets.

– Accuracy The mean value close to zero indicates high
accuracy. Our measure has lower mean values for each

direction in all datasets. ESD is more accurate than
SD.

– Reliability and robustness Low standard deviation indi-
cates robustness (i.e., low measure quality variation).
ESD has lower standard deviations then SD, thus ESD
has lower variability and higher reliability.

– Asymmetry The asymmetry of the distance measures can
be assessed by looking at the difference between the first
comparison M1 ↔ MD2 and the second comparison
M2 ↔ MD1. Symmetric measures would have no dif-
ferences. The SD is much more asymmetric than ours as
it has larger differences.

5.4 Discussion

We presented the ESD for comparing two meshes resulting
from medical image segmentations. Our new distance mea-
sure overcomes the shortcomings of the widely used SD. It
provides more accurate and more symmetric distance val-
ues. The new measure does not need any user interaction or
parameter setting. It can deal with various anatomical struc-
tures. It, however, has several limitations.We nowdiscuss the
main aspects of our approach: the assumptions and specifics
of our algorithm.We discuss the relationship of our approach
to finding correspondences. Finally, we touch upon the eval-
uation and runtime of our approach.

Our algorithm has several assumptions on the input data.
The input meshes should be closed 2-manifolds and should
be spatially aligned. These properties can already be ensured
by the results of 3Dmedical image segmentation algorithms.
Alternatively, these properties can also be established by
pre-processing. This, however, can introduce approximations
errors. Therefore, mesh comparison measures (like the ESD)
can be dependent on the quality and accuracy of the surface
representation as mesh.

Although our measure provides generally better results
than the SD, it can still slightly overestimate the distance
values in the differently formed regions (due to the concept of
local maxima). This characteristic, however, ensures a clear
indication, where large differences exist. An underestimation
could lead to false implications of segmentation quality.

The problems of local distancemeasurement and the iden-
tification of point-to-point correspondences are related.
However, the correspondence is generally very difficult to
solve for arbitrarily formed meshes [28]. The algorithms for
calculating correspondences often focus on specific cases.
Therefore, they are also more restrictive concerning the
preconditions and are less flexible and robust concerning
the input meshes. Correspondence algorithms are mostly
restricted to input meshes which fulfill assumptions about
the form and semantic coherence. We aimed for a more gen-
eral solution. In our case, the input meshes can have arbitrary
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formed surfaces and topologies, when our basic assumptions
aremet.Moreover, our algorithmalso does not need any para-
meter setting for different sizes and types of meshes. In case
a well-suited correspondence finding algorithm is available
for a particular case at hand, this might be used by imaging
experts in this case. This could, however, reduce compara-
bility of result quality across organs.

The evaluation of our approach on real data indicates that
the newmeasure provides more expressive and more reliable
results than the SD. It also reduces asymmetry problems.
Thereby it allows for visual inspection of the results solely
on one of the twomeshes. This reduces the evaluation burden
for larger datasets. Nevertheless, We note that these results
are only indicative, as there is no established methodology
for evaluating distance measures, as in our case.

Our work primarily concentrated on the improvement of
comparison quality. Nevertheless, we also assessed the run-
time on the example datasets (ca. 2k–23k faces). We used
a computer with an Intel(R) Core(TM) i7-3930K Processor.
Without parallelization, the calculation took 7–16 sec.

6 Conclusions and future work

We introduced an Extended Surface Distance (ESD) for the
evaluation of medical image segmentations. The new mea-
sure improves the drawbacks of the widely used Surface
Distance (SD). It offers better distance accuracy and relia-
bility as well as it reduces asymmetry.

The ESD is developed for a local evaluation, as it deliv-
ers local meaningful distance values on each vertex of both
meshes. Therefore, the primary usage of our measure is the
visual inspection of the differences of twomeshes. Neverthe-
less, the local difference values can also be aggregated over
the whole mesh leading to a global similarity value. This
global measure can be used together with other established
global measures of medical image segmentation.

We evaluated our measure on several real 3D medical
image segmentations. The new measure detects regions of
bad segmentation quality, which would otherwise be hidden.
Therefore, medical experts can gain more insight into seg-
mentation quality by analyzing the local distances on any of
the two compared meshes.

In the future, we will address the issues stated in Sect. 5.4
and try to ease the assumptions by integrating pre-processing
steps.Wewill also investigate the use of ourmeasure for other
applications such as 3D reconstruction.
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