
Vis Comput (2016) 32:653–662
DOI 10.1007/s00371-015-1081-3

ORIGINAL ARTICLE

Adaptive transmission compensation via human visual system
for efficient single image dehazing

Zhigang Ling1 · Shutao Li1 · Yaonan Wang1 · He Shen2 · Xiao Lu1

Published online: 2 April 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Dark channel prior has been used widely in sin-
gle image haze removal because of its simple implementation
and satisfactory performance. However, it often results in
halo artifacts, noise amplification, over-darking, and/or over-
saturation for some images containing heavy fog or large
sky patches where dark channel prior is not established. To
resolve this issue, this paper proposes an efficient single
dehazing algorithm via adaptive transmission compensation
based on human visual system (HVS). The key contributions
of this paper are made as follows: firstly, two boundary con-
straints on transmission are deduced to preserve the intensity
of the defogged image and suppress halo artifacts or noise
via the minimum intensity constraint and the just-noticeable
distortion model, respectively. Secondly, an improved HVS
segmentation algorithm is employed to detect the saturation
areas in the input image. Finally, an adaptive transmission
compensation strategy is presented to remove the haze and
simultaneously suppress the halo artifacts or noise in the satu-
ration areas. Experimental results indicate that this proposed
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method can efficiently improve the visibility of the foggy
images in the challenging condition.
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1 Introduction

In the past decades, the restoration of images taken in foggy
weather conditions has caught much attention due to the
increasing outdoor applications, such as smart camera, video
surveillance, remote sensing, intelligent vehicles and object
recognition and so on. In foggy weather conditions, the
reflected light from these objects is attenuated in the air and
further blended with the atmospheric light scattered by some
aerosols (e.g., dust and water-droplets) before it reaches the
camera, and for this reason, the colors of these objects get
faded and become similar to the fog, which severely degrades
the visibility of the captured scene.

Generally speaking, the haze is highly related to the scene
depth which is hardly estimated from a single image; early
methods usually rely on the additional depth information or
multiple images of the same scene for the haze removal.
Schechner et al. [1] discovered that the airlight scattered by
atmospheric particles was partially polarized. Based on this
observation, they developed a quick method to reduce the
haze using two images taken through a polarizer at differ-
ent angles. Narasimhan et al. [2,3] proposed a physics-based
scattering model; by this model, the scene structure can be
recovered from two or more weather images. Kopf et al. [4]
adopted the scene depth information directly accessible in
the georeferenced digital terrain or the city models to remove
the fog. However, additional depth information or multiple
images are not available in many situations.
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Recently, single image dehazing algorithms, which adopt
strong assumptions or constraints, have been developed to
overcome the limitation of the above-mentioned methods.
For example, Fattal [5] proposed a refined image formation
model that the two functions are locally statistically uncor-
related, to account for the surface shading and the scene
transmission, and then estimated the scene transmission and
scene radiance via independent component analysis (ICA);
this method can remove haze locally but cannot restore the
dense hazy images. Tan [6] assumed that a haze-free image
had a higher contrast ratio than the hazy image and max-
imized the local contrast of the restored image to remove
haze from the input image. This method can generate the sat-
isfying results, especially in the regions with the dense haze.
However, it often suffers from distorted colors and halos arti-
facts since it is not a physics-based method. Xiao and Gan
[7] firstly adopted the median filtering to obtain an initial
atmosphere scattering light, and then refined it to generate a
new atmosphere veil. Finally, the scene radiance was solved
using the atmosphere attenuation model.

He et al. [8] discovered an interesting dark channel prior
that at least one color channel of each pixel should have a
small intensity value in a haze-free image. Take into account
this prior, the transmission can be simply estimated to remove
the haze. Due to the simple implementation and satisfac-
tory performance of the dark channel prior, many improved
methods based on dark channel prior have been proposed
for different application [9–13]. For example, Zhang et al.
[13] estimated an initial depth for each frame of a video
sequence using the dark channel prior, and then refined the
initial depth by exploiting spatial and temporal similarities
for the video dehazing. Tripathi and Mukhopadhyay [14]
applied anisotropic diffusion to refine the airlight map esti-
mated by dark channel prior for the restoration of the scene
contrast. However, dark channel prior is often unavailable
in some saturation regions of the images, such as the sky
or heavy foggy patches; as a result, these methods based on
dark channel priors may suffer from the following problems:
Firstly, the halo artifacts will be introduced or image noise
will be amplified in these areas where the estimated trans-
mission value is very small, which will severely degraded
the quality of the defogged image. Secondly, because dark
channel prior assumes that at least one color channel has a
small pixel value in a haze-free image, the defogged image
often has the dark looking, which results in that some details
cannot be discriminated.

To resolve the two aforementioned problems, this paper
proposes an efficient single image dehazing method via
transmission compensation based on human visual system
(HVS), which firstly decides the saturated areas in the input
images via HVS. To suppress the halo artifacts and noise
amplification, the just-noticeable distortion (JND) of HVS
is introduced to decide the adaptive transmission compensa-

tion. Meanwhile, the boundary constraint on transmission is
determined to avoid the dark defogged images. The exper-
imental results show that this proposed image dehazing
algorithm can efficiently both remove the haze and simulta-
neously suppress the halo artifacts and noise in the saturation
patches.

2 Related works

Due to the absorption and scattering, the radiance from the
objects through the atmosphere is attenuated and dispersed.
In the hazed weather, dust, smoke, water droplets and other
dry particles in the atmosphere greatly scatter, absorb the
radiance from the objects and blend with the airlight, and
only a percentage of the reflected light reaches the observer,
which yields low contrast, obscure the clarity of the sky [15]
and causes poor visibility in such degraded scenes. Accord-
ing to the Koschmieder’s law [16], the radiance that reaches
the observer is composed of two main additive components:
direct attenuation and veiling light [2,17]:

I(x) = L(x)e−βd(x) + A
(
1 − e−βd(x)

)
(1)

whereL is the scene radiance, I is the observed radiance, x is
the pixel position in the observed image, and A is the global
airlight constant. The first component, direct attenuationD =
L(x)t (x), represents how the scene radiance is attenuated
due to medium properties. The veiling light component is
the main cause of the color shifting and can be expressed as:

V = A
(
1 − e−βd(x)

)
= A(1 − t (x)) (2)

where t (x) = e−βd(x) ≤ 1 is the transmission along the cone
of vision andβ is the homogeneousmediumattenuation coef-
ficient due to the scattering, while d represents the distance
between the observer and the considered scene. The value
of t (x) depicts the amount of light which has been transmit-
ted between the observer and the scene surface. Image hazing
aims to recover t,L andA for each pixel x in the input image.
Practically, while no additional information about depth and
airlight is given, haze removal is an ill-posed problem.

He et al. [8] discovered an interesting dark channel prior
that at least one color channel of some pixels in most of the
non-sky patches of the haze-free image has very low intensity
at some pixels and defined the dark channel Ldark of image
L as follows:

Ldark = min
y∈�(x)

(
min

c∈{r,g,b}(Lc(y))
)

(3)

where Lc is a color channel of L and �(x) is a local patch
centered at x. The dark channel operation is taken to the
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Fig. 1 Comparison with the method of He’s work [8], a input image Street, b the result of He’s work, c the transmission estimated by He’s work,
d the result of our method, e the transmission estimated by our method

degraded model described in Eq. (1).

min
y∈�(x)

(
min

c∈{r,g,b}

(
Ic(y)
Ac

))

= min
y∈�(x)

(
min

c∈{r,g,b}

(
Lc(y)
Ac

))
t (x) + (1 − t (x)) (4)

Then, the real transmission t (x) can be described as follows:

t (x) =
1 − min

y∈�(x)

(
min

c∈{r,g,b}

(
Ic(y)
Ac

))

1 − min
y∈�(x)

(
min

c∈{r,g,b}

(
Lc(y)
Ac

)) (5)

According to dark channel prior, for an outdoor haze-free
image L, its dark channel tends to be zero and Ac is posi-
tive constant, thus the estimated transmission can be simply
determined by

t0(x) = 1 − min
y∈�(x)

(
min

c∈{r,g,b}

(
Ic(y)
Ac

))
(6)

Lastly, He et al. [8] used the soft matting to refine the
estimated transmission and recover the clean image. How-
ever, this method cannot effectively suppress image noise
and halo artifacts. Based on the degraded model, the gradi-
ent magnitude of the hazy image and the restored image has
the following relationship [5,18]:

∇Ic(x) = ∇Lc(x)t (x) + ∇Ac(1 − t (x)) = ∇Lc(x)t (x)

(7)

where ∇ denotes the gradient magnitude operator. Eq. (7)
illustrates that the gradient magnitude in the defogged image
is related to the transmission.

Due to the refraction or reflection of the water droplets
in the atmosphere, the captured images often more or less
suffer from the halo artifacts or noise, especially in the sky
regions. In the foggy weather, these halo artifacts or noises

in the foggy images almost cannot be perceived by human
eyes because of the absorption and reflection of the parti-
cles. However, after the fog removal, these imperceptible
gray differences in the hazy image will be greatly boosted
while the transmission is close to zero, and then the halo arti-
facts are introduced into the restored images. As shown in
Fig. 1b, some halo artifacts and image noise are introduced in
the sky regions, which severely degrade the restored images.
Moreover, dark channel prior assumes that at least one color
channel of the haze-free image L should tend to be zero,
which will darken the restored images. Although Yan et al.
[19] presented the non-local structure-aware regularization to
properly estimate the transmission and suppress the halo arti-
facts, they increased the high computation burden.Moreover,
it hardly suppresses the halo artifacts in the images containing
large sky patches. To deal with the aforementioned problems,
we propose an efficient single image dehazing method via
adaptive transmission compensation in this paper. Figure 1
illustrates an example of our dehazing result.

3 The proposed method

3.1 Boundary constraint on transmission

Geometrically, according to Eq. (1), a pixel I(x) contam-
inated by the haze will be “pushed” towards the global
atmospheric light A [20]. As a result, the clean pixel L(x)
can be recovered by a linear extrapolation from A to I(x).
Consider that the scene radiance of a given image is always
bounded, i.e.,

L(x) ≥ L0(x) (8)

where L0 is the lower bound vector that is relevant to a given
image. Consequently, for any pixel x, a natural requirement
is that the extrapolation of L(x) must be larger than the
lowest intensity bounded by L0. In turn, given the global
atmospheric light A and the lower bound vector L0(x), a
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boundary constraint on the transmission t (x) can be deter-
mined by the lowest intensity as follows:

t (x) ≥ tb(x) =
1 − min

y∈�(x)

(
min

c∈{r,g,b}

(
Ic(y)
Ac

))

1 − min
y∈�(x)

(
min

c∈{r,g,b}

(
L0
c (y)
Ac

))

≥ t0(x) (9)

where tb(x) is the lower bound of t (x).
According to Eq. (7), halo artifacts in the sky patches

come from the enlarged gray difference between the neigh-
boring pixels in the hazy image. Therefore, another constraint
for the halo artifacts and image noise suppression should
be imposed on the transmission so that the amplified lumi-
nance variation also cannot be perceived in the restored image
if it cannot be perceived in the hazy image. In this paper,
the just-noticeable difference or distortion (JND) model of
the HVS is introduced to adaptively decide the boundary
constraint on transmission. JNDmodel is a quantitative mea-
sure for distinguishing the luminance change perceived by
the HVS [21,22]. In other words, JND gives the maximum
luminance variation values which cannot be perceived by
human eyes, and the perceptual function for evaluating the
visibility threshold of the JND model can be described as
follows:

JND(k) =
{
T0

[
1 − (k/127)0.5

] + 3 k < 127
γ (k − 127) + 3 otherwise

(10)

where k is the background luminance within [0, 255]. T0
denotes the visibility threshold when the background gray
level is 0, and γ denotes the slope of the line that models
the JND visibility threshold function at higher background
luminance; they depend on the viewing distance between
the objects and the observer. In this paper, T0 and γ are
set to be 17 and 3/128 based on the subjective experi-
ments conducted by Chou and Li [21]. It is easy to verify
that the HVS perceives the luminance variation best in
the situation where the background luminance is 127. In
other words, if the HVS cannot perceive the luminance
variation where the background luminance is 127, it can-
not perceive the luminance variation in the other situations
either.

Moreover, the background luminance is approximately
linear to the luminance variation since the pixel luminance is
linear to the background luminance. Let Ib be the ideal back-
ground luminance of the defogged image (Each channel has
the same ideal background luminance). To suppress the halo
artifacts or noise, the luminance variation �Lc(x) and the
corresponding background intensity of the defogged image
Lc(x) often meet the following condition:

�Lc(x)
Lc(x)

= �Ic(x)/t (x)
(Ic(x) − Ac)/t (x) + Ac

= �Ic(x)
Ic(x) − A + Act (x)

≤ JND(Ib)

Ib
(11)

where �Lc(x) is the difference between the itself and the
low-pass filtered value of the pixel luminance Lc(x), and
JND() is the visibility threshold defined in Eq. (10). In turn,
integrating each channel and local region information of a
color image with Eq. (11), the transmission t (x) for a color
image should meet the following constraint:

t (x) ≥ 1 − min
y∈�(x)

min
c∈{r,g,b}

(
Ic(y)
Ac

)

+ Ib
JND(Ib)

max
y∈�(x)

max
c∈{r,g,b}

(
�Ic(y)
Ac

)

≥ 1 − min
y∈�(x)

min
c∈{r,g,b}

(
Ic(y)
Ac

− Ib × �Ic(y)
JND(Ib) × Ac

)

(12)

Thus, as for the sky regions, the compensation value to the
estimated transmission t0(x) for the halo artifacts or noise
suppression should be given by

�t (x) = Ib
JND(Ib)

max
y∈�(x)

max
c∈{r,g,b}

(
�Ic(y)
Ac

)

= Ib
JND(Ib)

Gbright(x) (13)

whereGbright(x) is the bright channel of the normalized vari-
ation and expressed as follows:

Gbright(x) = max
y∈�(x)

max
c∈{r,g,b}

(
�Ic(y)
Ac

)
(14)

Obviously, while the ideal background luminance Ib and
threshold JND(Ib) are given, the larger the luminance vari-
ation, the more compensation is needed to suppress halo
artifacts or noises in the distant sky region. According to
JND model, HVS perceives the maximum luminance varia-
tion when the background luminance is 127. Moreover, the
variable Ib/JND(Ib) keeps the similar value while the ideal
background luminance Ib is larger than or equal to 127, as
shown in the Fig. 2. Therefore, the ideal background lumi-
nance Ib is set as 127 in this paper.

On the contrary, as for the non-sky regions, image dehaz-
ing method aims to remove haze as clean as possible so that
the defogged image has high contrast and the details can be
clearly discriminated, thus, no transmission compensation is
needed. Because different transmission compensation strate-
gies are implemented in different regions to suppress halo
artifacts and remove haze, the problem left is to segment the
saturation and non-saturation regions. In Sect. 3.2, this paper
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Fig. 2 The mapping function map for the variable Ib/JND(Ib) based
on JND model

will introduce a saturation regions detection method based
on the HVS.

3.2 Saturation regions detection based on HVS

In fact, fog or haze has the similar qualities with human
visual areas including Devries-Rose, Weber, saturation and
low contrast areas [23]. Specifically, the heavy hazy image
has high brightness, the concentrated gray distribution in
the saturation regions, and these pixels with the thin haze
tend to be concentrated in the Devries-Rose regions and
these pixels with the moderate haze are concentrated in the
Weber regions. In a word, three areas of the HVS, Devries-
Rose, Weber and saturation areas, correspond to different
thickness of haze: thin, moderate and heavy haze, respec-
tively. Based on this property, we introduce the HVS to
divide the hazy image into the saturation and non-saturation
regions.

According toRef. [23], image enhancement basedonHVS
performs the image region segmentation using the back-
ground intensity and the rate of change information. The
background intensity is calculated as a weighted local mean,
and the rate of change is calculated as a gradient measure-
ment. The background intensity at each pixel x is derived by
the following formula:

B(x) = m ⊗
⎡
⎣m ⊗

⎛
⎝m

2
⊗

∑
y∈Q(x)

I(y) ⊕ n

2

∑

y∈QD(x)

I(y)

⎞
⎠ ⊕ I(x)

⎤
⎦

(15)

whereB(x) is the background intensity of the luminance com-
ponent for a pixel x in the input image, I(x) is the luminance
component of input image,Q(x) is the set of the pixels which
are directly up, down, left, and right from the pixel x,QD(x)
is all of the pixels diagonally one pixel away, and m and n

are some constant. ⊕ and ⊗ is the PLIP model operator and
can be summarized as follows:

a ⊕ b = a + b − ab

M
(16)

c ⊗ a = M − M ×
(
1 − a

M

)c
(17)

where M is the maximum value of the range. Finally, these
thresholds for the different regions segmentation by HVS are
given as follows:

B1 = α1BT B2 = α2BT B3 = α3BT (18)

where α1, α2 is the lower contrast level, Devries-Rose and
Weber level, respectively. α3 is the saturation level and BT

is the maximum difference value and is denoted as BT =
255(max(B) − min(B))/(255 − min(B)).

Given a pixel x in the saturation regions of the hazy image,
its intensity B(x) is close to the airlight and also is larger
than the threshold B3 as defined in Ref. [23], and its corre-
sponding transmission tends to be close to zero. Moreover,
no halo artifacts and image noise can be perceived in the orig-
inal images, which means that the corresponding luminance
variation is smaller than the visibility threshold defined in
Eq. (12). Therefore, unlike to Ref. [23], this paper defines
the condition of the saturation areas or sky patches as fol-
lows:

x ∈
⎧⎨
⎩
S if : (t0(x) ≤ Th) ∩ (B(x) ≥ B3)

∩ (�I(x) < Jnd)
Other otherwise

(19)

where S denotes the saturation regions, Th and Jnd are the
transmission and the visibility threshold, respectively. Based
on Eq. (19), the hazy image is firstly divided into the satura-
tion and non-saturation regions. Some segmentation results
are shown inFig. 3,which indicates that the improvedmethod
can efficiently segment the saturation regions.

3.3 Adaptive compensation strategy for transmission

Equation (13) gives the transmission compensation constrain
to suppress the halo artifacts or noise for these pixels in
the saturation regions, but, as for these pixels in the non-
saturation patches, no transmission compensation is needed
so that the haze can be removed as cleanly as possible. To
maintain the continuity of the transmission compensation,we
rewrite the transmission compensation defined in Eq. (13) for
each pixel x as follows:

�t1(x) = Ib
Vh + [JND(Ib) − Vh]

[
Idark(x)/Idarkmax

]Gbright
0 (x)

(20)
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Fig. 3 Image segmentation results by our method for the haze images Canon, New York, Sam and Traffic (the original images are shown in Figs. 4,
5 and 6)

where Vh is the high visibility threshold, Idarkmax is the
maximum value of dark channel image Idark. Thus, Eq. (20)
has the same meaning with the Eq.(13) while Idark is equal
to Idarkmax . G

bright
0 (x) is the modified bright channel of the nor-

malized variation Gbright(x), and described as follows.

Gbright
0 (x)=

{ Jmax
Adark Gbright(x)> Jmax

Adark ∩x ∈ S
Jmin
Adark

(
Gbright(x)< Jmin

Adark ∩x∈S
)
∪(x /∈ S)

(21)

where Jmax and Jmin are the maximum and minimum per-
ceptual threshold, respectively, because all pixels in the input
image have different intensity variation. For example, due
to the influence of the image noise, some pixels in the sky
patches have the large intensity variation, but some have very
small values. Hence, Jmax and Jmin are used to confine the
intensity variation of the pixels so that little transmission
compensation is exerted to the pixels in the non-saturation
regions and much transmission compensation is applied to
these pixels in the saturation regions for halo artifacts or noise
suppression.

Moreover, the brighter the dark channel, the more com-
pensation is needed and vice versa. Thus, we define another
transmission compensation for each pixel in other areas as
the follows:

�t2(x) = w(x)�T = exp

(
I dark(x) − Imax

σ2

)
�T (22)

where Imax is the upper bound of the gray value and
is set to 255 in this paper and �T is the maximum
transmission compensation value and given by �T =
Ib Jmax/(JND(Ib)Adark), σ2 is suggested be 0.2Imax. Thus,
the transmission compensation can be made by the follow-
ing function:

�t (x) = max(�t1(x),�t2(x)) (23)

At the same time, in order to avoid the transmission value
which is larger than one, the compensated transmission is
redefined as follows:

t1(x) = t0(x) + min(�t (x), 1 − t0(x)) (24)

Furthermore, the transmission also should meet this con-
dition given by Eq. (11) to avoid the dark-looking images.
Therefore, the last estimated transmission is given by

t (x) = max(tb(x), t1(x)) (25)

Lastly, this paper adopts the guided filter [24] to refine the
last estimated transmissionmap and restore the clear images.

4 Experimental results

To comprehensively demonstrate the effectiveness of this
proposed algorithm, firstly, this paper qualitatively evaluates
the algorithm on a group of typical images with different size
of sky patches or saturation regions. Secondly, this paper
quantitatively compares the proposed algorithm with sev-
eral state-of-the-art methods. In saturation regions detection
algorithm, m, n, M, α3 and β are set as 0.9, 1.4, 255, 0.9
and 0.2, respectively. The visibility threshold Jnd is set to 3
and the boundary constraint tb(x) is computed by setting the
radiance bounds L0 = (30, 30, 30). The threshold Vh is set
as 80, and the threshold Jmax and Jmin are set as 3 and 1,
respectively. The airlight A is estimated via He’s work [8].

4.1 Qualitative evaluation

Figure 4 shows some examples of our dehazing results and
the recovered transmissionmaps.Obviously, the results show
that our proposed algorithm restores foggy images very well
with acceptable visual quality: the haze in image Canon is
almost completely removed, and no halo artifacts or image
noises are introduced into the recovered image for the image
New York, Sam and Traffic. This good performance benefits
from the reason that the proposed method adaptively com-
pensates the transmission in the sky patches and saturation
regions, which can effectively suppress halo artifacts and
image noises.
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Fig. 4 Image dehazing results by our method. Top row input haze imagesCanon, New York, Sam and Traffic. Middle row the dehazing results.
Bottom row the recovered transmission maps

We also compare our method with several state-of-the-
art methods. Figures 5 and 6 illustrate the comparisons of
our method with He’s [8], Tarel’s [25], Fattal’s, Tripathi’s
[14], Meng’s [20] and Yan’s [19] methods. As for a hazy
image shown in Fig. 5a, Tarel’s method can augment the
image details and enhance the image visual distance, but
some significant artifacts appear around the sharp edges (e.g.,
trees). Fattal’s method darkens some regions of the images
(e.g., trees regions). Meng’s method produces the excessive
saturated color images. The proposed method produces the
similar results with He’s method because it makes a little
compensation to the transmission. Figure 6a depicts a forest
region against a background of bright sky. Tarel’s and Tri-
pathi’s method not only introduces white artifacts around the
sharp edges but also generates some halo artifacts in the sky
patches, and Fattal’s method overenhances the sky. He’s and
Meng’s produce the saturated color and low-lighting images,
meanwhile they introduce the significant halo artifacts in the
sky. Although Yan’s [19] method recovers the clear details in
the non-saturation regions, it still produces the halo artifacts
in some sky patches because it only introduces non-local
structure-aware regularization to smooth the transmission
and the defogged image, and it hardly suppresses halo arti-
facts while the transmission is close to zero. In comparison,
our method not only removes the haze in the hazy image, but

also suppresses the halo artifacts in the sky patches, which
improves the visual quality of the image while restoring the
faithful colors and preserves the structure information and
appropriate brightness of the original image.

4.2 Quantitative evaluation

Because it is difficult to acquire the corresponding ground
truth data for the input foggy images, this paper uses four
quantitative evaluation metrics to quantitatively assess this
proposed algorithm and compare it with these state-of-the-art
algorithms [12,17]. These four evaluation metrics are named
as the new visible edges ratio (e), the percentage of num-
ber of saturated pixels (�), structure similarity (Ss) and the
luminance similarity (Ls). The first two metrics are proposed
by Hautiere et al. [26] for the objective blind assessment of
dehazing effect. The metric � represents the percentage of
pixels which become completely black or completely white
after the restoration, and the metric e evaluates the ability
of the dehazing method to restore the edges which are not
visible in the original image but are visible in the defogged
image; the higher value of e indicates the better performance
of the image dehazing algorithm because the clean images
have more contrast and clear details than the hazy images.
The structure similarity function (Ss) and luminance similar-
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Fig. 5 Comparison with image dehazing results of state-of-the-art algorithms on image house, a input image, b He’s result, c Tarel’s result,
d Fattal’s result, eMeng’s result [20], f Yan’s [19] result and g our result

Fig. 6 Comparison with image dehazing results of state-of-the-art algorithms on image Canberra, a input image, b He’s result, c Tarel’s result,
d Fattal’s result, e Tripathi’s result [14], f Meng’s result [20], g Yan’s[19] result and h our result

Table 1 Quantitative comparisons in e and �

Image Canberra Canon Sam House Traffic Street New York

Method e � e � e � e � e � e � e �

He 1.01 0.00 9.83 0.00 0.96 0.00 0.52 0.00 2.27 0.00 0.83 0.00 0.72 0.00

Fattal 0.60 0.65 13.2 0.00 1.16 0.41 1.10 0.01 −0.01 0.89 0.75 0.37 0.92 0.02

Tarel 1.39 0.00 4.27 0.00 1.23 0.00 0.94 0.00 −1.00 1.00 1.04 0.00 0.66 0.00

Tripathi 3.76 0.00 12.5 0.01 1.28 0.00 1.12 0.01 6.28 0.02 2.12 0.08 1.43 0.07

Meng 1.29 0.01 8.80 0.00 0.78 0.00 0.66 0.01 3.32 0.00 1.15 0.00 0.81 0.00

Yan 1.13 0.00 8.38 0.00 0.97 0.00 0.51 0.00 1.97 0.00 0.78 0.00 0.89 0.00

Our 0.76 0.00 7.42 2.15 0.85 0.00 0.47 0.00 1.45 0.00 0.63 0.00 0.65 0.00

Bold values represent the best metric values

ity function (Ls) presented by Wang et al. [27] are used to
assess the structure and brightness perseveration of the image
dehazing method because the dehazed images should gener-
ally maintain the similar structure information to the original
images, and the low structure similarity often means over-
enhancement and introduction of halo artifacts or noise and
vice versa. Similarly, the higher luminance similarity shows
that the dehazing algorithm has the better performance in the
brightness preservation.

A comparison between our proposed method and other
methods on several typical foggy images is made and shown

in Tables 1 and 2. Tripathi’s method has the highest met-
ric e because it adopts the anisotropic diffusion to refine the
airlight map which can efficiently remove the haze. Tarel’s
method introduces the white artifacts around the sharp edges
and some halo artifacts in the sky patches, which will also
increase the metric e. On the contrary, our proposed algo-
rithm employs the transmission compensation to suppress
halo artifacts or noise, which may reduce image contrast and
the metric e. However, compared with other existing algo-
rithms, our method has the highest structure similarity Ss,
which shows that it has better performance of halo artifacts
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Table 2 Quantitative comparisons in Ls and Ss

Image Canberra Canon Sam House Traffic Street New York

Method Ls Ss Ls Ss Ls Ss Ls Ss Ls Ss Ls Ss Ls Ss

He 0.84 0.83 0.76 0.80 0.91 0.77 0.97 0.94 0.60 0.74 0.82 0.86 0.88 0.88

Fattal 0.87 0.59 0.82 0.53 0.91 0.50 0.91 0.66 0.89 0.77 0.80 0.00 0.85 0.14

Tarel 0.93 0.78 0.98 0.73 0.97 0.74 0.89 0.89 0.00 0.00 0.94 0.79 0.96 0.82

Tripathi 0.77 0.44 0.75 0.46 0.95 0.56 0.91 0.85 0.64 0.27 0.62 0.57 0.77 0.67

Meng 0.89 0.78 0.84 0.80 0.94 0.76 0.98 0.95 0.71 0.64 0.86 0.84 0.89 0.87

Yan 0.81 0.82 0.74 0.73 0.90 0.77 0.93 0.77 0.58 0.76 0.79 0.85 0.89 0.85

Our 0.92 0.87 0.83 0.81 0.94 0.81 0.98 0.95 0.80 0.79 0.91 0.89 0.92 0.89

Bold values represent the best metric values

or noise suppression, and it also has the good ability of bright-
ness preservation. Moreover, the proposed method and He’s
method give the smallest �.

5 Conclusion

This paper develops an efficient single-image dehazing algo-
rithm using adaptive transmission compensation via HVS,
which can remove the haze and simultaneously suppress
the halo artifacts or noise in the sky patches. This paper
firstly employs an improve segmentation method based on
HVS to decompose the hazy image into the saturation and
non-saturation regions. Then, an adaptive transmission com-
pensation method via just-noticeable distortion (JND) of
HVS is presented to suppress the halo artifacts and noise.
Meanwhile, the brightness boundary constraint on trans-
mission is employed to avoid producing too dark restored
images. Experimental results on a variety of haze images
demonstrate that the proposed method can efficiently pro-
duce the high-quality images in various realistic scenes. Note
that the performance of the proposed method is influenced
by the saturation regions detection. Better saturation region
detection methods based on fuzzy theory, Bayesian frame-
work might improve performance of the proposed method.
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