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Abstract Nonrigid or deformable 3D objects are common
in many application domains. Retrieval of such objects in
large databases based on shape similarity is still a chal-
lenging problem. In this paper, we take advantages of func-
tional operators as characterizations of shape deformation,
and further propose a framework to design novel shape sig-
natures for encoding nonrigid geometries. Our approach con-
structs a context-aware integral kernel operator on a mani-
fold, then applies modal analysis to map this operator into
a low-frequency functional representation, called fast func-
tional transform, and finally computes its spectrum as the
shape signature. In a nutshell, our method is fast, isometry-
invariant, discriminative, smooth and numerically stablewith
respect to multiple types of perturbations. Experimental
results demonstrate that our new shape signature for non-
rigid objects can outperform all methods participating in the
nonrigid track of the SHREC’11 contest. It is also the sec-
ond best performing method in the real human model track
of SHREC’14.

Keywords Content-based object retrieval · Shape
retrieval · Biharmonic distance · Functional map ·
Shape signature

1 Introduction

Content-based 3D object retrieval facilitates the search for
desired objects within a large 3D object repository. It has
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become increasingly popular due to the rapid development
of 3D scanning technologies and the emergence of large 3D
object databases. Content-based object retrieval is useful in
many application domains, including CAD/CAM, medicine,
molecular biology, 3D computer games and virtual worlds.

Since many 3D object models, such as avatars, creatures
and biomedical objects, can take various types of deforma-
tions, it is much desired for an object retrieval technique
to be able to recognize deformed versions of an object.
Nonetheless, nonrigid object retrieval is a very challenging
task because a deformed object may not be visually similar
to the original one any more. In the following, we summa-
rize a few criteria for measuring the performance of nonrigid
object retrieval techniques.

• Isometry invariance There exist a large variety of non-
rigid deformations. In theory, one can always work out a
deformation that transforms one object into another com-
pletely different object. Therefore, it is very important to
define a subclass of deformations that usually do not alter
the identity of an object, and then develop nonrigid object
retrieval methods that are invariant or at least insensitive
to this subclass of deformations. In the literature, isomet-
ric deformations are commonly adopted for this purpose.

• Discrimination power In most retrieval techniques, an
object is representedwith a relatively short shape descrip-
tor or signature. It is important for the shape descrip-
tor or signature to encode the intrinsic characteristics of
an object while discarding unimportant details so that it
can distinguish two different objects even when they are
visually very similar, and accurately measure the degree
of dissimilarity between them. Such a capability makes
it possible for a retrieval technique to return a ranked
list of objects with decreasing similarity with a query
object.
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• Efficiency Computation of shape signatures or descrip-
tors contains offline and online stages. Many methods
often requires significant amount of time to process a
single mesh in offline stage, which prohibits their use
in large database (say if a PC takes 10 min to process
a mesh, it would take tens of years to process an entire
database in size of amillion). In online stage, comparison
of shape is also often time critical, such that signature-
based approaches are still favored over shape matching
approaches in a typical retrieval system.

• Smoothness and stability Although isometric modeling
provides a state-of-the-art theoretical base for nonrigid
object retrieval, numerical stability of isometry-invariant
shape descriptors or signatures has not been sufficiently
explored. It is much desired that a shape descriptor only
changes slightly when a small amount of non-isometric
deformation is introduced to the original object. Like-
wise, it is also desired that the shape descriptor is stable
when other types of defects, such as noise and holes, are
introduced to the original object. Stable shape descrip-
tors and signatures give rise to robust retrieval results.
Mathematical definitions with respect to the smoothness
of shape perturbations and the stability of descriptors are
still missing.

In addition to the above four criteria, there exist other consid-
erations, including extensibility, applicability and complexity
of implementation (e.g., parameter free).

1.1 Related work

Among extensive work on 3D object retrieval, most tech-
niques are devoted to rigid objects and are based on extrin-
sic geometry such as Euclidean distance, curvatures and
snapshots of 3D canonical views. Nevertheless, nonrigid
models have gained increasing popularity. Their extrinsic
geometry often varies under nonrigid deformations. Isomet-
ric shape deformation was initially addressed in [13], where
researchers began to consider bending invariant or insensi-
tive 3D shape recognition. Recently, more extensive classes
of invariance have been studied, such as elastic deformations
[19] and affine transformations [33].

To our knowledge, two major classes of approaches are
proposed for nonrigid shape retrieval during the last decade.
The first class includes all local feature-based approaches
(such as earlier work [17,29,40,48]). Inspired by the success
of the SIFT feature descriptor in image retrieval, researchers
proposed local descriptors, such as meshSIFT [29], Mesh-
HOG [48], covariance descriptor [43], and descriptors based
on the spectral graph wavelet transform [23], for represent-
ing features on mesh surfaces. ShapeGoogle [8] emphasizes
the robustness of association and classification, especially
for objects with missing parts and topological noises. It inte-

grates the local heat kernel signature (HKS) [40] with the
bag-of-word framework [21]. By extracting isometrically
invariant dense point descriptors and quantizing them into
binary codes, shapes are registered for efficient indexing,
comparison and association. A more recent method [15]
also endeavors to characterize 3D surfaces by measuring
the likelihood of points in the 3D space being local cen-
ters of radial symmetry at selected scales. It could be useful
in domain-specific 3D object retrieval, where the scale is
known.

The second class emphasizes coarser-scale or global
shape of a 3D nonrigid model. The skeleton-based method
(e.g., [2]) encodes the geometric and topological informa-
tion in the form of a skeleton graph and uses graph matching
to retrieve similar skeletons. An approach for matching 3D
objects in the presence of nonrigid transformations and par-
tially similar models is presented in [42], which uses 3D
curves extracted around feature points to represent surfaces.
Another method based on distributions of diffusion distances
has been proposed in [9] for matching nonrigid shapes. Tech-
niques, such as histograms, D2 distributions [36] and spa-
tial pyramids [22], are also popular in designing descrip-
tors in respect of coarse-scale shapes. Some of them are
“context-aware”: the term “context-aware” refers to depen-
dencies between geometric characteristics not within each
other’s immediate neighborhoods, distinguishing itself from
“bag-of-words” approaches that focus on local geometric
neighborhoods. Laga et al. [20] model the context of a shape
part as a set of walks in the graph of specific length orig-
inating from the part’s node. In particular, they construct
a context-aware similarity measure by relating their model
of contexts to semantic correspondences. In our paper, we
merely consider the context as a purely geometric prop-
erty, aka the context of a point given a shape domain, and
therefore, do not intend to recognize functionalities of shape
parts. As other global shape descriptors, we do not gener-
ate an exact signature for contexts, yet our proposed sig-
nature is sensitive to any changes of such geometric con-
texts.

Among those methods concerning global shapes, spectr-
um-based techniques became popular in recent years. Shape-
DNA [35] proposes to use the spectrum of the Laplace–
Beltrami operator as an isometry-invariant shape descriptor.
Another similar method, SD-GDM [38] proposes to compute
a singular value decomposition (spectrum) for the geodesic
distance matrix, which seems to outperform shape-DNA
[24]. However, compared to shape-DNA, matrix assembly
in SD-GDM requires all-pairs geodesic distances, which are
computationally prohibitive to obtain even with the latest
developments in fast geodesic distance computation [47],
and a uniform mesh decimation is typically employed in
practice to speed up this process. Utilizing spectral analy-
sis is often effective for extracting isometric information.
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For example, spectral multidimensional scaling [1] has used
the spectral projection of geodesic distances for better MDS
embedding of data points. An efficient method for comput-
ing a robust spectrum-based shape descriptor insensitive to
noises and small topological changes is presented in [46],
which achieves efficiency and robustness by performing a
modal space transform. This paper is an extended version of
[46].

Local features, such as SIFT [28] and its variants, have
been successfully adopted in image retrieval. However, in
the context of 3Dnonrigid shape retrieval, local feature-based
methods have often been outperformed by shape descriptors
emphasizing coarser-scale shapes. The reason for this phe-
nomenon is twofold. First, pixel values captured by a camera
are related to high-frequency surface properties, such as tex-
tures, of real scenes and objects. Given such high-frequency
signals, it is possible for a local feature descriptor to encode
sufficiently discriminative visual information for recognition
or retrieval tasks. Second, 3D scanning techniques are not as
mature as digital photography. Even when a 3D surface does
have high-frequency details, such as pores and wrinkles on
skin, it is unlikely for them to be accurately captured by a 3D
scanner. Very often, such high-frequency details are buried in
noises. Therefore, high-frequency geometry over a 3D sur-
face tend to be inaccurate and unreliable (see [31] for related
discussions).

Content-based multimedia retrieval is known as a prob-
lem-/scenario-dependent task. If one is interested in retriev-
ing objects that share similar parts with the query object,
methods based on point signatures should be more useful.
However, if one is interested in finding globally similar non-
rigid objects with potentially different poses and deforma-
tions, a global shape signature can more effectively prune
the list of candidates. Even when a state-of-the-art point
signature, such as the one in [23], is used in global shape
retrieval, a spatial aggregation and matching scheme, such
as histogram matching and spatial pyramid matching, still
needs to be employed. Inevitably, such aggregation partially
loses relative spatial information among point features. On
the other hand, a global signature is capable of encoding the
complete geometric shape up to an invariant class, and thus
is a more powerful global shape representation. Therefore,
global and local shape signatures are complementary to each
other.

1.2 Overview and contributions

In this paper, we analyze functional operators over modal
space and further introduce spectrum-based shape signatures
to encode the shape of a nonrigid model. The basic idea
underlying our shape signature is to compute the spectrum of
the newly proposed functional operator, which is constructed
from an intrinsic, context-aware integral kernel operator by

projecting it to the linear space spanned by low-frequency
modes defined over an object surface, while the integral ker-
nel operator is itself based on a modal-based pairwise dis-
tance.The resulting transformationmatrix canbe analytically
written in a succinct form. Our method is isometry-invariant
and stable with respect to noise, holes and non-isometric
deformations. The implementation of our shape signature is
based on linear FEM. The signature itself can be efficiently
computed for meshes in a wide range of resolutions and
topologies.

The main contribution of this paper is the introduction of
a substantially improved global shape signature, which has
been experimentally validated to meet most of the aforemen-
tioned criteria. Our experiments demonstrate that our new
shape signature for nonrigid objects can outperform all meth-
ods participating in the nonrigid track of the SHREC 2011
contest [24], including the best performingmethod. In partic-
ular, our method achieves obviously higher precision than all
other methods when recall is above 50%. Comparisons were
performed on two representative datasets, the dataset used in
the nonrigid track of SHREC’11 and a more challenging one
created by ourselves. We have also tested our method on the
more recent SHREC 2014 dataset for the retrieval of non-
rigid human models [31], which have two tracks (synthetic
and real). Our method is among the best performing methods
in the real human model track.

The rest of the paper is organized as follows. In Sect. 2, we
discuss the fundamental mathematics behind our signature
design. In Sect. 3, we discuss our numerical implementation.
In Sect. 4, we present experimental results to validate our
shape signature. Section 5 concludes our paper.

2 Our approach

2.1 Laplace–Beltrami operator

Shape-DNA [35] exploits eigenvalues to achieve an impres-
sive shape retrieval performance, while there are a number
of other methods, such as [36,40], utilizing eigenvectors.
All these methods compute the spectrum of the Laplace–
Beltrami operator �M , where M is the underlying manifold
embedded in the 3D Euclidean space as a surface, by solving
the following eigenvalue problem,

− �Mu = λu. (1)

The Laplace–Beltrami operator is a generalized operator for
functions defined on Riemannian manifolds. By solving the
above equation, we obtain a complete set of modal bases
{φi }∞i=0 over a manifold, where each φi corresponds to a
normalized eigenvector with eigenvalue λi in an ascending
order.

123



556 J. Ye, Y. Yu

Table 1 Differences between integral kernel operators before and after modal space restriction

Space Inner product Numerics Representation Numerical convergence

Before L2(M) 〈 f, g〉 = ∫
M f g Finite element Pointwise Weak convergence in Sobolev space Wk,2

After �2 〈 f, g〉�2 = ∑∞
i=1 〈 f, φi 〉 〈φi , g〉 Truncated modes Coefficient series Weak convergence in L2

2.2 Functional operator

The eigenvectors of Laplace–Beltrami operator intrinsically
span a low-frequency functional space � which is useful in
modal analysis. For example, in [30], the authors construct
intrinsic flexible maps between two shapes by solving for a
linear transform matrix between their modal spaces �1 �→
�2 subject to certain constraints.

We instead focus on intrinsic functional transforms, i.e.,
maps between � and itself. Of course, Laplace–Beltrami
operator is itself a functional transform that maps φi �→
−λiφi , which is isometry-invariant. We in this section intro-
duce a new set of functional transforms whose spectra are
more robust than the spectrum of the Laplace–Beltrami oper-
ator.

Given a symmetric function, k(·, ·), let us consider the
following integral kernel operator,

K f (y) =
∫

M
k(x, y) f (x)dx . (2)

If k(·, ·) is isometry-invariant, the spectrum of K is also
isometry-invariant. For example, in the nonrigid track of
the 2011 3D shape retrieval contest (SHREC’11) [24], the
retrieval performance of SD-GDM [38], a method based on
geodesic distance matrices (GDM), is ranked first. It out-
performs shape-DNA. GDMs are in fact a class of integral
kernel operators. If we set k(x, y) as the geodesic distance
between x and y, the spectrum of K is the mathematically
precise form of SD-GDMand is provable isometry-invariant.
More importantly, we show in Appendix 6 that an integral
kernel operator defines a family of “smooth” deformations,
and the total deviation of the spectral signature of the inte-
gral kernel operator is finitely bounded under ε-deformation
no matter how many dimensions the signature has. Such a
property is important for spectral signatures, as their perfor-
mance should improve rather than degrade with an increas-
ing number of eigenvalues. A theoretical justification for the
use of integral kernel operators is as follows. If the intended
invariant class (typically larger than the isometric class) of
shape perturbations is the family of deformations character-
ized by an integral kernel operatorKwhose perturbed kernel
Kε

1 admits certain spatial smoothness condition, the distance
measure based on its spectral signature with a varying num-
ber of dimensions stably changes with respect to the amount

1 See Appendix 6 for the definition of perturbed kernel.

of perturbation. That is to say, in nonrigid shape retrieval,
integral kernel operators can typically tolerate a larger class
of smooth deformations than isometric deformations.

The major contribution of our approach is instead of
naively computing a transform matrix in the complexity of
the original geometry (i.e., pairwise values k(xi , x j ) for all
xi , x j ∈ M), we restrict the kernel to modal space � (i.e.,
applying the kernel to functions in �, the space spanned by
the lower eigenvectors, and then projecting the solution back
into �). We can write the transform matrix as

K̃ = �TK�, (3)

where � = [φ0, φ1, . . . , φm, . . .].
It is worth noting that this restriction is not a simple effi-

cient approximation, the functional transforms before and
after restriction are different in the numerical aspects. Pre-
cisely speaking, the original functional space before restric-
tion is a vector space endowed with an inner product;
while the functional space � in restriction is an infinite-
dimensional separable Hilbert space (and is numerically
approximated by truncated lower eigenvectors, which con-
verge in a weak sense) spanned by themodes. These two vec-
tor spaces are endowed with the same inner product structure
in the limit. However, their numerical convergence properties
are different. Table 1 summarizes their differences.

There exists a theoretical issue when we work with inte-
gral kernel operators numerically without modal restriction:
numerical convergence is only guaranteed in the weak sense,
while the underlying representation is pointwise. Thus the
numerically estimated eigenvector of an operator may con-
verge, but it is not guaranteed for the estimation to converge
pointwise to the true eigenvector as the resolution of themesh
goes to the infinity. On the other hand, by restricting the
functions of interest in the modal space, we make them have
required smoothness that implicitly guarantee pointwise con-
vergence. In our experiments (see comparison of BiHDM
and R-BiHDM in Sect. 4.2), it has been observed that spec-
tra computed by modal space restriction can better tolerate
manifold deformations, and outperform the spectrum of a
pairwise kernel in retrieval tasks.

2.3 Distance map using modes

Computing the geodesic distance matrix is very computa-
tionally expensive for large meshes. We choose to com-
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pute (squared) biharmonic distance [26] instead because it
exhibits multiple nice properties while being more efficient
to compute, and can be restricted in modal space analytically
in a succinct way.

In the continuous case, the (squared) biharmonic distance
is defined as follows,

d2(x, y) =
∞∑

i=1

(φi (x) − φi (y))2

λ2i
, (4)

where φi and λi are the eigenfunctions and eigenvalues
(resp.) of the semi-positive definite Laplace–Beltrami oper-
ator, −�φi (x) = λiφi (x), where 0 = λ0 < λ1 ≤ λ2 ≤ · · ·
and

∫
M |φi |2 = 1. The distance is a metric, and is smooth,

locally isotropic, globally “shape aware”, isometry-invariant,
insensitive to noise and small topology changes, parameter
free, and practical to compute on a discrete mesh. In [26],
these two types of distances have been extensively com-
pared in detail. Biharmonic distance provides a nice trade-off
between being nearly geodesic for small distances and global
shape-awareness for large distances.

2.4 Functional biharmonic distance map

Combining previous two sections together, i.e., let k(x, y) =
d2(x, y), we formulate K̃ explicitly as follows.

Kφ0(y) =
∞∑

i=1

∫

M

(φi (x) − φi (y))2

λ2i
φ0(x)dx

= 1√
A

∞∑

i=1

1

λ2i
+ √

A
∞∑

i=1

φ2
i (y)

λ2i

where A is the total area of M , and note φ0 = 1/
√
A. Let

〈·, ·〉 be the standard inner product of L2 functions, we have

a0 = 〈φ0,Kφ0〉 =
∞∑

i=1

2

λ2i
,

a j = 〈
φ j ,Kφ0

〉 = √
A

∫

M

∞∑

i=1

φ2
i

λ2i
φ j j > 0.

(5)

We also have

Kφ j (y) =
∞∑

i=1

∫

M

(φi (x) − φi (y))2

λ2i
φ j (x)dx

=
∫

M

∞∑

i=1

φ2
i

λ2i
φ j − 2φ j (y)

λ2j
j > 0,

where
〈
φ0,Kφ j

〉 = a j and
〈
φi ,Kφ j

〉 = − 2

λ2j
δi j . Thus we

have obtained the projected matrix K̃ , called reduced bihar-
monic distance matrix (R-BiHDM),

K̃ =

⎡

⎢
⎢
⎢
⎣

a0 a1 a2 . . .

a1 −2/λ21
a2 −2/λ22
...

. . .

⎤

⎥
⎥
⎥
⎦

. (6)

The above matrix is infinite. We first define K̃m,n be an
(n + 1) × (n + 1) matrix

K̃m,n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(m)
0 a(m)

1 a(m)
2 . . . a(m)

n

a(m)
1

−2
(λ

(m)
1 )2

0

a(m)
2

−2
(λ

(m)
2 )2

0

...
. . .

...

a(m)
n 0 0 . . . −2

(λ
(m)
n )2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

which is formed by the following two steps: (i) take the first
n + 1 rows and first n + 1 columns of K̃ ; (ii) set λ(m)

i := λi

for i ≤ m and λ
(m)
i := ∞ if i > m in Eq. (7), thus when

calculating each a(m)
j in this truncated matrix K̃m,n , every

infinite summation in (5) is approximated by thefirstm terms.
The spectrum of K̃m,n can converge in two ways:

BiHDM: lim
m→∞ spectrum( lim

n→∞ K̃m,n), (8)

and

R-BiHDM: lim
m→∞ spectrum(K̃m,m). (9)

The first scheme corresponds to the case where no modal
space restriction is used. That is, n → ∞ already before
the spectrum is estimated. The second scheme is our method
based onmodal space restriction. The spectra under these two
schemes are different asymptotically. For a finitem, BiHDM
computes the spectrum of K̃m,∞, which still includes the
high-frequency components in the first row and the first col-
umn, i.e., a(m)

j 
= 0 for j > m. On the other hand, R-BiHDM

computes the spectrum of K̃m,m without any high-frequency
components. In general, the scheme with high-frequency
components removed is not guaranteed to outperform the
onewithout. But we remark that our proposed signature has a
close connection with the traditional Fourier descriptor [49],
where coefficients corresponding to low-frequency compo-
nents of a contour signal are used for constructing informative
shape signatures. Since high-frequency components aremore
likely to be contaminated with noises, which are typically
high-frequency signals themselves, high-frequency compo-
nents are less reliable in characterizing geometric shapes.
Our approach extends a similar spirit to integral kernel oper-
ators on a manifold: the “low-frequency representation” of
an integral kernel operator ismore useful and reliable in char-
acterizing its shape domains.

We call K̃m := K̃m,m empirical R-BiHDM. As m → ∞,
the largest tens of eigenvalues of K̃m enjoy a fast convergence
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rate. Figure 7 shows the maximum error of the first 30 eigen-
values versus m, the number of eigenpairs of the Laplace–
Beltrami operator. It has been observed that the asymptotic
eigenvalues converge linearly.

Theorem 2.1 (Spectral convergence of empirical R-BiH-
DM) If M is a two-dimensional Riemannian manifold and is

compact, then
∑∞

i=1
φ2
i

λ2i
is bounded both pointwise and in the

form of the L2 norm. Furthermore, the leading eigenvalues
of K̃m converge to that of K̃ as m → ∞.

Proof See Appendix 7 for a proof with a more general con-
dition.

Note that tr(K̃ ) = 0. We denote all eigenvalues of K̃ in a
magnitude descending order as {μ j }Lj=0. We have observed
that μ0 > 0 and μ j < 0 ∀ j > 0. (Such matrix has a single
positive eigenvalue, and the rest are negative. See [3] and
references therein) Hence a scale-invariant spectrum can be
defined as

μ̄ j = ∣
∣μ j/μ0

∣
∣ . (10)

Our shape signature is defined as a vector S = [μ̄1, μ̄2, . . . ,

μ̄L ]T , which in theory is also isometric invariant. In practice,
we select L ranging from 10–30, and m > max{60, 2L}.

To compare two shape signatures, S p and Sq , one can ref-
erence the dissimilarity measures in [38]. In particular, let us
mention two useful ones here, mean normalized Manhattan
distance,

D1 =
L∑

j=1

∣
∣
∣
∣
∣

S p
j − Sqj

S p
j + Sqj

∣
∣
∣
∣
∣
,

which is used in SD-GDM, and normalized Euclidean dis-
tance

D2
2 =

L∑

j=1

(S p
j − Sqj )

2

S p
j S

q
j

, (11)

which performs slightly better for our approach by experi-
ments.

Computational efficiency A clear advantage of working with
functionally transformed biharmonic distance is significantly
reduced size and complexity of the kernel matrix. The
computation of the original kernel matrix (either geodes-
ics or biharmonic distance) has a much higher complexity,
O(Cn2), than that of the reduced one (6), whose complex-
ity is O(nm). Here n is the number of sample points on the
surface, m � n, and C is the time for computing a distance
between two sample points, e.g., C = O(m) for biharmonic
distance. Also, computing the eigenvalues of the original ker-
nel matrix could be evenmore expensive because it is usually
a large-scale n×n dense matrix, while computing the eigen-
values of the reduced one takes much less time.

3 Implementation

To compute the eigenspace of the Laplace–Beltrami operator
on a manifold, we use finite elements [50] to formulate the
eigenfunction space as in [35]. Although solving PDEs with
FEM is sampling invariant, mesh quality during discretiza-
tion is an important factor affecting numerical accuracy. For-
tunately, there is already considerable amount of work [5,12]
in mesh generation, repairing and quality improvement. Our
method only assumes that the mesh is properly refined to at
least a few thousand triangles and has no (near) degenerated
faces. In our implementation, we use Neumann boundary
condition whenever a mesh has boundaries.

Following the standard setup of FEM,we need to solve the
following sparse symmetric generalized eigenvalue problem
that has efficient solvers, such as IRAM [4] and Krylov–
Schur [39],

Lu = λDu,

where L is the stiff matrix and D is the mass matrix.
They are defined as follows. Li j = ∫

M ∇ϕi · ∇ϕ j , and
Di j = ∫

M ϕiϕ j , where Li j and Di j are analytically cal-
culated from the geometry of the elements, andϕi is chosen to
be a piecewise polynomial in each element. See Appendix 8
for a detailed implementation of linear and cubic triangular
FEMs.

Once L and D have been assembled, the inner products
between two functions f and g, discretely represented by
finite elements over a mesh domain, are given as

∫

M
f g =

N∑

i, j=1

Di j fi g j ,

∫

M
∇ f · ∇g =

N∑

i, j=1

Li j fi g j ,

∫

M
f 2g =

N∑

i, j=1

f 2i Di j g j or
N∑

i, j=1

fi Di j f j g j .

Once eigenfunctions of the Laplace–Beltrami operator have
been computed, we are able to use the above equations to
compute ai in (6).

4 Experimental results

4.1 Efficiency

Efficiency is usually important for shape retrieval techniques
to be practical on large datasets. Computational intensity is
a major limitation of methods based on optimization, geo-
desic computation, and per-node-based quantization. In con-
trast, our approach can always compute shape signatures in
an efficient manner. Because our approach is directly based
on computing lower eigenvalues/eigenvectors of Laplace–
Beltrami operator and requires very little extra cost of assem-
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Table 2 Timings for
constructing shape signatures or
descriptors

Our shape signature can be
computed much more efficiently
than most successful methods in
the literature. For a mesh with
10k vertices, we can compute its
signature within seconds

Model #Vert. Time Model #Vert. Time

R-BiHDM: linear FEM SD-GDM

gmm_prisms 969 0.5 s gmm_prisms 969 14.8 s

Abstract 4096 1.7 s ant_dec 2502 2 m 28 s

Nonrigid ant 9501 4 s Abstract 4096 12 m 13 s

Human meta 13,336 5.8 s MeshSIFT

Helicopter 22,664 9.8 s ant_dec 2502 1 m 31 s

bimba_cvd 74,764 41 s Abstract 4096 2 m 5 s

Desktop 106,961 1 m 20 s Nonrigid ant 9501 13 m 5 s

bly R-BiHDM [see Eq. (6)] and solving for its eigenval-
ues. The eigensolver of Laplace–Beltrami operator contains
a sparse direct preconditioner in complexity O(n2) and a
dimensional-free iterative eigensolver in complexity O(n).

On an Intel Core2 Duo CPU E8400@3.00 GHz, running
times required for the methods used in the subsequent Sect.
4.2 are reported in Table 2. Such running times are based on
our implementation of R-BiHDM and SD-GDM [38],2 and
the original authors’ implementation of meshSIFT [29].3

It is seen from the timing table that, computations of SD-
GDM and meshSIFT are expensive even for a mesh with
only thousands vertices and grow super linearly, while our
method is much faster at the same resolutions (see timing of
model “abstract”). Some ofmore recent leading performance
methods, such as ShapeGoogle [8], Supervised DL [27] and
ISPM [22,23], also suffer from the prohibitive long running
time [27,31].

4.2 Signature-based retrieval

We have tested the nonrigid shape retrieval performance of
our method on two representative datasets. One is provided
by the nonrigid track of SHREC’11 [24] (Fig. 1), which
has 600 watertight triangle meshes that were derived from
30 original models. The second dataset mixes the nonrigid
dataset from SHREC’11 with a dataset custom built by our-
selves. The SHREC’11 nonrigid track dataset serves as a
background dataset. The custom-built dataset contains 200
deformed meshes derived from 4 biped models, 3 dinosaur
models and 3 quadruped models (Fig. 2a) and 40 back-
ground meshes (other biped, dinosaur and quadruped mod-
els, see Fig. 2b). The second dataset was designed to be
more challenging and practical than the first one because
it contains multiple similar meshes from each category of
models, such as bipeds, dinosaurs and quadrupeds. Distin-

2 Geodesic distance is computed using the fast marching Matlab tool-
box, http://www.mathworks.com/matlabcentral/fileexchange/6110.
3 This code can be downloaded at https://mirc.uzleuven.be/MedicalI
mageComputing/downloads/meshSIFT.php.

Fig. 1 30 classes of nonrigid models in the nonrigid track of
SHREC’11

guishing similar models from the same category requires a
retrieval technique to be more discriminative and stable. In
the second dataset, we have performed retrieval tests on the
200 deformed meshes in a repository with a total of 840
(200 + 40 + 600) meshes.4

We applied the same evaluation methodology of the
SHREC’11 contest to evaluate our method. It is based on the
precision–recall curve and five quantitative measures: near-
est neighbor (NN), first tier (FT), second tier (ST), E-measure
(E), and discounted cumulative gain (DCG). We refer to [37]
for detailed definitions. In our method, we use normalized
Euclidean distance to measure similarity among R-BiHDM
signatures [see Eq. (10)].

We have compared the retrieval performance of our
method with that of Shape-DNA (OrigM-n12-norm1) [35],
meshSIFT [29], and SD-GDM [38]. These are the best
state-of-art performing methods in the nonrigid track of
the SHREC’11 contest.5 The parameters in these methods
were set empirically to produce best performance. We also
compare our method, i.e., R-BiHDM, with pairwise bihar-
monic distance matrix (BiHDM) and report its performance.
Detailed comparison results on the SHREC’11 nonrigid track
dataset are shown in Table 3 and Fig. 3a. Detailed compar-
ison results on the second dataset are shown in Table 4 and
Fig. 3b.

4 This dataset can be downloaded at https://code.google.com/p/
tri-mesh-toolkit/.
5 A hybrid track combining SD-GDMandmeshSIFT in SHREC’11 did
achieve a better performance, but it falls out of scope in our state-of-art
evaluation.
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(a) Representative query meshes, including 4 bipeds, 3 dinosaurs and 3
quadrupeds, from the second dateset

(b) Ambiguous meshes, including 13 bipeds, 13 dinosaurs and 14 quadrupeds,
from the second dataset

Fig. 2 Examples from our second dataset

Table 3 Retrieval performance evaluated using five standard measures
on the SHREC’11 dataset

Method NN FT ST E DCG

Shape-DNA 0.998 0.890 0.952 0.696 0.975

MDS-CM-BoF 0.995 0.913 0.969 0.717 0.982

MeshSIFT 0.998 0.800 0.851 0.627 0.944

SD-GDM 1.000 0.956 0.982 0.728 0.992

BiHDM-L25 0.990 0.915 0.979 0.719 0.984

R-BiHDM-L30 0.998 0.969 0.981 0.729 0.993

R-BiHDM-L25 0.998 0.971 0.982 0.729 0.994

R-BiHDM-L23 1.000 0.971 0.983 0.730 0.994

R-BiHDM-L20 1.000 0.964 0.982 0.728 0.993

R-BiHDM-L15 0.998 0.955 0.981 0.726 0.991

The performance of MDS-CM-BoF is cited from the SHREC’11
report
Bold values indicate the best performance

According to the statistics, ourmethod achieves better per-
formance than all of thesemethods on both datasets. In partic-
ular, our method has obvious improvements in the 1-tier pre-
cision. And according to the PR curves, our method achieves
higher precision when recall is above 50%. Furthermore, the
retrieval performance is stable when the number of chosen
eigenvalues ranges from 15 to 30. The changes of NN, ST,
E and DCG measures are not larger than 0.5 % (absolutely)
on both datasets, while the changes of 1-tier precisions on
the original SHREC’11 dataset and the second dataset are
smaller than 2 and 1 %, respectively. The best performance
is achieved when L = 23 on both datasets simultaneously,
further indicating that different datasets could share the same
parameter setting. The primary goal of ShapeGoogle [8]
is to achieve a high level of robustness in the presence of
partial shapes and topological noises. However, it does not
address the identical problem as ours. In our experiments
(based on implementation provided by authors), its retrieval

(a) SHREC’11 nonrigid dataset

(b) the second dataset

Fig. 3 Precision–recall curves of R-BiHDM, BiHDM, SD-GDM and
shape-DNA on two retrieval tasks

performance on our two datasets is not comparable to the
performance of our method.

Note that the performance gap between our method and
the other methods becomes larger on the second dataset. As
discussed earlier, the second dataset is more challengingwith
similar shape instances from the same categories. The results
indicate that our method exhibits more discriminative power
on datasets with very similar shape instances.

4.3 Nonrigid retrieval of human models

Wehave also tested our proposed signature on theSHREC’14
nonrigid dataset for retrieving human models. There are two
tracks, one uses synthetic data, and the other uses real data
built from point clouds. These two datasets exhibit substan-
tially different properties. The synthetic dataset consists of
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Table 4 Retrieval performance evaluated using five standard measures
on the second dataset

Method NN FT ST E DCG

Shape-DNA 0.985 0.841 0.906 0.666 0.954

MeshSIFT 0.995 0.790 0.890 0.650 0.950

SD-GDM 1.000 0.929 0.986 0.731 0.991

BiHDM-L25 1.000 0.930 0.983 0.722 0.990

R-BiHDM-L30 1.000 0.970 0.996 0.739 0.997

R-BiHDM-L25 1.000 0.975 0.997 0.742 0.998

R-BiHDM-L23 1.000 0.976 0.997 0.742 0.998

R-BiHDM-L20 1.000 0.975 0.997 0.742 0.998

R-BiHDM-L15 1.000 0.970 0.994 0.739 0.997

Bold values indicate the best performance

15 different human models, each with its own unique body
shape, which is determined by a parametric model. The real
dataset is composed of 400 meshes, made up of 40 human
subjects in 10 different poses. This real dataset is noisy and
inaccurate in that certain body features cannot be accurately
captured and human poses cannot be precisely controlled.
As a participating method, detailed performance statistics of
our method have been reported as the R-BiHDM-s method
in [31] and more recently in [27], from which we only quote
relevant results in this paper (Table 5).

On the synthetic dataset, our method does not perform
as well as others which gather statistics from local features.
This is perhaps because our proposed signature is a geomet-
ric descriptor that captures smooth and global deformations.
It has no intention to distinguish between different types of
localized deformation, such as pose-driven muscle deforma-
tion. Overall, this dataset is relatively easy because a sim-
plistic baseline method, such as the total area of a mesh, can
already achieve decent performance [31].

The real dataset is much more challenging than the syn-
thetic one. The performance of our proposed signature is
ranked second. The only participating method that outper-
forms ours is supervised DL, which is a supervised data-
driven method that requires an extra labeled dataset to train

Table 5 Comparison with different retrieval methods in terms of mean
averageprecision (mAP, in%)on theSHREC’14HumanModel datasets
(selected results from [27])

Method Synthetic Real

ISPM [22,23] 90.2 25.8

HAPT [15] 81.7 63.7

Unsupervised DL [27] 84.2 53.3

Supervised DL [27] 95.4 79.1

ShapeGoogle(VQ) [8] 81.3 51.4

R-BiHDM-s 64.2 64.0

Bold value indicates the best performance

the model. Because of this, supervised methods have clear
advantages over unsupervised ones, such as ours, in terms
of retrieval performance. Nevertheless, our method achieves
the best performance among unsupervised methods, includ-
ing unsupervisedDL (the unsupervised version of supervised
DL), and even performs better than HAPT, another partic-
ipating method that requires parameter optimization w.r.t.
working datasets [31].

4.4 Continuity and stability

Continuity analysis examines the range or level of shape
deformation that a descriptor can capture. Ideally, retrieved
objects should be ranked according to their similarity to the
query. Note that retrieval performance on a relatively small
nonrigid dataset (typically with hundreds of objects) can
often be sensitive to particular attributes of the dataset [31],
such as the mesh resolution and total surface areas that are
largely uninteresting regarding a benchmark study.As a com-
plementary qualitative example,we showour shape signature
has a good performance with respect to varied 2D shapes.
Compared to 3D shapes, 2D shapes have less geometric fea-
tures (wherewe empirically choose less dimensions for shape
signatures in experiments) and their boundary can be very
noisy, hence global shapes play a key role in similarity-based
retrieval.We gathered the dataset of 2D contour shapes6 used
in [44], which contains four subsets (fighter planes, vehi-
cles and two subsets of MPEG-7 CE Shape-1 Part-B, 590
images in total). We used existing software to triangulate
these contour shapes, have them cleaned as connected man-
ifold meshes with at least 6k vertices. Then we performed
query-based shape retrieval. Note that class labels of these
2D shapes were not used. A comparative example between
our method and shape-DNA [35] is given in Fig. 4, which
shows a ranked list of retrieved shapes when the first shape
is used as the query shape. It is observed from such results
that our method is able to retrieve shapes according to their
global shapes, and the similarity between the query shape and
a retrieved shape in the ranked list continuously decreases
when we move towards the end of the list.

As for stability analysis,wewill show the stability of shape
retrieval results when the query shape undergoes deforma-
tions. Here we show by examples (Fig. 5) that in addition to
deformations, ourmethod is also stable when noise and small
holes are added to the shape instances. In our experiments,
varying degrees of zero mean white noise (0.1–0.5 average
edge length) were added to vertex positions along their nor-
mal direction and a certain percentage (1–3 %) of faces was
removed from the query meshes. The retrieval results turned
out to be even more stable than those under deformations.

6 This dataset can be downloaded at http://visionlab.uta.edu/shape_
data.htm.
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(a) Retrieval results by shapeDNA, with 8 eigenvalues

(b) Retrieval results by R-BiHDM, with L ,m= 15 = 60

Fig. 4 The result of a query (the first shape) in a 2D shape dataset,
which contains similar shapes under several types of deformations,
including bending, torsion, and partial scaling

4.5 Isospectral vs isometric

Shape-DNA is known to be identical on isospectral mani-
folds, which is a family theoretically larger than isometrics.
In fact, it has already been proven that one cannot “hear the
shape of drum”.There aremany examples of isospectralman-
ifolds which are not isometric. The first example was given
in 1964, and later mathematicians proposed several general
construction techniques [41] to find non-isometric isospec-
tral manifolds in two and three dimensions. Perhaps the sim-
plest non-isometric isospectral shapes are GWWprisms [16]
(Fig. 6). Shape-DNA has self-intersections in the spectral
spacewhen a shape undergoes non-isometric shape deforma-
tions, therefore may not be sufficiently discriminative near
those intersections. In contrast, spectra of the reduced bihar-
monic distance matrices are clearly different for those non-
isometric but isospectral pairs [10]. It is of interest to ask if it
indicates an isometry that two 2D/3D manifolds have iden-
tical R-BiHDM, i.e., not only their λi , but also a j in Eq. (5)
are the same.

4.6 Limitations

Our method has a few limitations that need further inves-
tigation. Although it has strength in identifying global non-
rigid shapes, how to enhance ourmethod for retrievingmean-
ingful partial shapes still remains unknown. Furthermore, it

(a) Original retrieval result

(b) Retrieval result on meshes corrupted with noise(.5) and holes(2%)

Fig. 5 Stability test (the first shape is the query). Our retrieval results
remain stable even when the meshes are corrupted with noise and holes.
(Set L = 23, m = 60)

shape-DNA R-BiHDM
0 3.39832620 3.39691613 2.16530711e-1 2.20749059e-1
1 13.0603602 13.0625695 -1.75187585e-1 -1.75999207e-1
2 16.9851450 16.9743079 -2.23163050e-2 -2.96890457e-2
3 29.8711391 29.8533596 -1.12679120e-2 -7.17493004e-3
4 39.6051131 39.6049419 -2.24496696e-3 -2.25092504e-3
5 43.8536891 43.8563295 -1.27777594e-3 -1.28146228e-3
6 54.7970492 54.6495812 -1.04506137e-3 -1.15918545e-3
7 70.9875083 71.0145921 -6.95901459e-4 -6.89618397e-4
8 79.7177678 79.7141696 -3.98584355e-4 -4.10728542e-4
9 91.4966416 91.7588846 -3.67194501e-4 -3.62850271e-4

Fig. 6 Shape-DNA and R-BiHDM spectra computed with linear FEM
for GWW prisms (∼1k vertices)

assumes the surface, which is a 2Dmanifold, is connected. It
is unclear how to extend ourmethod formatching and retriev-
ing complicated models with many disconnected parts.

5 Conclusions

In this paper, we have first given a brief introduction to exist-
ing methods for nonrigid 3D shape retrieval. Our method
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uses biharmonic distance to construct a context-aware inte-
gral kernel operator on a manifold, then applies modal space
restriction to project this operator into a low-frequency rep-
resentation, and finally computes its spectrum. Our method
is simple to implement, isometry-invariant, discriminative,
and numerically stable with respect to multiple types of per-
turbations. Our current implementation is based on FEM.
We have evaluated our proposed method on representative
datasets, including both the nonrigid track of SHREC’11 and
the nonrigid human track of SHREC’14. Evaluation results
demonstrate that our shape signature is highly effective in
nonrigid shape retrieval.

Acknowledgments The authorswould like to thankMaksOvsjanikov
and Dirk Smeets for sharing their software implementations.

6 Appendix A: Error bounds under deformation

In this section, we investigate error bounds of the spec-
tral signature of integral kernel operators in the presence
of “smooth” manifold deformations using perturbation the-
ory [14,18]. The general result, intuitively speaking, is that
the total deviation of a spectral signature with an arbitrary
number of dimensions is finitely bounded under smooth
deformations. Given a general matrix A and a perturbation
parameter ε within a neighborhood of zero, the perturbed
matrix is written as A + εB, where B is an arbitrary matrix.
In this situation, each eigenvalue or eigenvectors of A + εB
admits an expansion in fractional powers of ε, and the zeroth
order term of this expansion is an eigenvalue or eigenvector
of the unperturbed matrix A (Lidskii theorem, 1965 [25]).
This is a well-known result in regular perturbation theory.
In particular, one can actually derive a Lipschitz condition
number for this continuity:

Theorem 6.1 (A special case of Lidskii theorem [18])
Assuming μ(ε) is an eigenvalue of the perturbed matrix
A+εB for a sufficiently small ε, it admits a first-order expan-
sion

μ(ε) = μ +
∥
∥
∥�T B�

∥
∥
∥
max

ε + o(ε),

where � is the eigenvector of A corresponding to eigen-
value μ, A and B are conjugated matrices, ‖·‖max repre-
sents the largest singular value. The first-order coefficient∥
∥�T B�

∥
∥
max is called the Lipschitz condition number.

For the rest of this section, A is called characterization, and B
is called perturbation. The Lipschitz condition number char-
acterizes the total amount of deviation in a signature with
respect to a certain amount of perturbation. In the ideal case
of isometric perturbation, where A is isometric and B is zero,
the Lipschitz condition number is degenerated. Let M and
M ′ be two compact manifold domains, and H and H ′ be the

spaces of bounded and continuous linear functionals defined
on M and M ′. In the current context, we consider M ′ as a
“gently” deformed version of M . We assume that implicitly
there exists a matching (or registration) between these two
domains such that it induces a mapping between H and H ′,
which is a closed and densely defined operator D from H
to H ′. The characterization of this mapping is a self-adjoint
operatorO. SupposeO′(ε) has a first-order approximate per-
turbed (infinitely dimensional) matrix representation A+εB
with respect to an underlying domain deformation Dε .

Definition 6.1 (Perturbated (α, p)-smoothness) Consider a
perturbated matrix A + εB with a spectral family {μi (ε)}
admitting first-order expansions: μi (ε) = μi +

∣
∣φT

i Bφi
∣
∣ ε +

o(ε). A + εB is perturbated (α, p)-smooth if

∥
∥
∥A− α

2 B p A− α
2

∥
∥
∥
1

=:
∞∑

i=1

|μi |−α
∥
∥
∥φT

i Bφi

∥
∥
∥
p

< C(α, p),

for some α ≥ 0 and p > 0, where ‖·‖1 is Schatten p-norms.

Perturbed smoothness actually admits a substantially
larger class of deformations of practical interest. It allows
the characterization to be varied with respect to the domain
deformation, but it bounds the amount of deviation.

Theorem 6.2 (Error bound of spectral signature) Consider
a discrepancy function for a pair of original and perturbed
spectra

dn(μ,μ′;α, p) :=
n∑

i=1

|μi |−α
∣
∣μi − μ′

i

∣
∣p ,

and two Hilbert spaces H and H ′ admitting a perturbation
path Dε for ε ∈ [0, 1]. If the perturbation path is uniformly
perturbed (α, p)-smooth with a bound C(α, p) with respect
to a characterization operator O(ε), and order preserving,
aka μi ≥ μ j ⇐⇒ μ′

i ≥ μ′
j for any i, j , we have

dn(μ,μ′;α, p) ≤ κ−αC(α, p), ∀n
where κ = max

i
{
∣
∣
∣ μi
μi+1

∣
∣
∣ ,

∣
∣
∣μi+1

μi

∣
∣
∣}.

Proof (Sketch) Take the integralw.r.t ε:μ′
i−μi = ∫ 1

0 dμi (ε)

and use the condition of perturbated (α, p)-smoothness (Def-
inition 6.1). ��

Integral kernel operator Experimental evidences suggest that
distance maps/matrices, more generally, integral operators,
could be a useful source for shape descriptor construction,
and are potentially better than differential operators (e.g.,
LBO). As a rigorous treatment justifying the capability of
integral kernel operators, we establish another definition for
the smoothness of perturbations:
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Definition 6.2 (α-Hölder class of perturbed kernel) Con-
sider integral kernel operator kε(·, ·) with perturbation para-
meter ε, and define the perturbed kernel

γε(x, y; k) = 1

ε
(kε(x̃, ỹ) − k(x, y)),

where (x̃, ỹ) ∈ M ′(ε) is the perturbed version of (x, y) ∈ M .
Let dM be the geodesic distance on M . If there exists C > 0
such that

|γε(x, y; k) − γε(x, z; k)| ≤ Cα · dM (y, z)α,

and

|γε(x, y; k)| ≤ Cα,

∀x ∈ M and any ε > 0 in a sufficiently small neighborhood
of zero.

Remark If k(·, ·) = dM (·, ·), the infimum of bound Cα that
makes kε’s perturbed kernel belong to α-Hölder class, aka

C∗
α := sup

x,y,z,ε

{ |γε(x, y; k) − γε(x, z; k)|
dα
M (·, ·) , |γε(x, y; k)|

}

,

is a “natural” quantity indicator of deformations.

In the sequel, we connect α-Hölder class of perturbed kernel
with perturbed smoothness.

Theorem 6.3 (Main result) Given an integral kernel opera-
tor K as described in Sect. 2.2, we assume the distance map
is in accordance with the geodesics of power q, aka, there
exist positive constants C1, C2 and some δ ≥ 0 such that

C1/n
1+q+δ ≤ λn(k) ≤ C2/n

1+q , ∀n, (12)

for some integer q ≥ 1.
If its perturbed kernels with respect to a class of deforma-

tions, i.e., γε(·, ·; k), are of ε-Hölder class (Definition 6.2) for
some 1 ≥ ε > 0,K or the transformed operator K̃ = �TK�

(Sect. 2.2, Eq. 3), as a characterization of the deformed man-
ifold M ′(ε), is perturbed (α, p)-smooth (Definition 6.1) as
long as
(
1

2
+ ε

)

p > (1 + q + δ)α + 1.

Thus, spectral signatures (with an arbitrary number of
dimensions) of both K and K̃ have finite error bounds under
smooth manifold deformations (Theorem 6.2).

Proof For a general Hilbert–Schmidt operator k satisfying
uniformly ε-Hölder condition, it has already been shown in
[34] that the decay rate of eigenvalues of k(x, y) is at least
O(n−1/2−ε). And if k is positive definite, the decay rate is
improved to at least O(n−1−ε). It immediately follows that
for ε > 1

2 , ε-Hölder continuous kernel γε is perturbed (0, 1)-
smooth.

For α > 0, we require the eigenvalues of the characteri-
zation kernel that have lower bounds on its decay rate. It is
generally not true, for example if k(x, y) = dM (x, y)2, the
resulting Gram matrix has a finite number of nonzero eigen-
values if sample points are uniformly drawn from the Euclid-
ean space. But it is typically tangible, as preliminarywork has
shown examples where condition (12) holds when k(x, y) =
dM (x, y) (e.g., see [7,11] examples). Then following the
main result on Hölder condition and the decay of eigenval-

ues [34], one has
|λn(γε)|p
|λn(k)|α ∼ O(n−( 12+ε)p+α(1+q+δ)).

7 Appendix B: Spectral convergence of R-BiHDM

Sincewe knoweigenvalues of the Laplace–Beltrami operator
follow λm ∼ 4π

A m for surfaces (Weyl-asymptotic growth of
eigenvalue [45]), we can therefore deduce the convergence of
a spectral sequenceunderweak assumptions.Note‖·‖ always
denotes the L2-norm of a vector, a function or a matrix, by
default.

Lemma 1 Let A ∈ C
n×n be an Hermitian matrix, and

let (λ̂, x̂) be the computed approximation of an eigen-
value/eigenvector pair (λ, x) of A. By defining the residual

r̂ = Ax̂ − λ̂x̂, x̂ 
= 0,

it follows that

min
λi∈σ(A)

∣
∣
∣λ̂ − λi

∣
∣
∣ ≤

∥
∥r̂

∥
∥
2∥

∥x̂
∥
∥
2

.

Proof See [32] page 195. ��

Theorem 7.1 (Spectral convergence)Let K̃m bean (m+1)×
(m+1) square matrix formed by the following steps: (i) take
the first m + 1 rows and first m + 1 columns of K̃ ; (ii) when
calculating each a j in this truncated matrix, every infinite
summation in (5) is approximated by the first m terms. Set
μ

(m)
i be the i-th eigenvalue of K̃m, for i ≤ m+1 andμi (m) =

0, for any i > m + 1. Let fm = √
A

∑m
i=1 φ2

i /λ
2
i converge

(pointwisely) to f . If f is bounded and square integrable,
i.e., eigenpairs {(λi , φi )}∞i=1 satisfy

∞∑

i=1

∥
∥φ2

i

∥
∥2

λ4i
< ∞, (13)

it then follows that for any i ,

μ
(m)
i → μi , as m → ∞.
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Proof By definition, we have K̃m+n − K̃m−1 =

m+n∑

k=m

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
λ2k

Ck,1

λ2k
. . .

Ck,m−1

λ2k
0 . . . a(m+n)

k . . .

Ck,1

λ2k
0

...
. . .

Ck,m−1

λ2k
0

0 0
...

. . .

a(m+n)
k − 2

λ2k
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where extra rows and columns of zeros are padded to K̃m−1,
and

Cm, j = √
A

∫

M
φ2
mφ j ,

which is the Fourier coefficient of
√
Aφ2

m w.r.t series
{φ j }m−1

j=1 . By Bessel’s inequality we have 1+∑m−1
j=1 C2

m, j ≤
A

∥
∥φ2

m

∥
∥2, and we also have

m+n∑

k=m

∣
∣
∣a(m+n)

k

∣
∣
∣
2 ≤

∞∑

k=m

∣
∣
∣
∣

∫

M
fm+nφk

∣
∣
∣
∣

2

≤ ‖ fm+n − f ‖2 +
∞∑

k=m

∣
∣
∣
∣

∫

M
f φk

∣
∣
∣
∣

2

.

By assumptions about f and the norm convergence of
Fourier series (as shown for example in [1]), we know that
‖ fm+n − f ‖2 → 0 and

∑∞
k=m

∣
∣
∫
M f φk

∣
∣2 → 0 as m → ∞.

Since the L2-normof amatrix is less than itsFrobenius norm,
we have
∥
∥K̃m+n − K̃m−1

∥
∥2
2

≤
m+n∑

k=m

⎛

⎝ 2

λ4k
(4 +

m−1∑

j=1

C2
k, j ) + 2

∣
∣
∣a(m+n)

k

∣
∣
∣
2

⎞

⎠

≤
m+n∑

k=m

(
2

λ4k
(3 + A

∥
∥
∥φ2

k

∥
∥
∥
2
) + 2

∣
∣
∣a(m+n)

k

∣
∣
∣
2
)

→ 0

as m → ∞. By Lemma 1, we have

∣
∣
∣μ(m+n)

i − μ
(m−1)
i

∣
∣
∣ ≤

∥
∥
∥(K̃m+n − K̃m−1)u

(m+n)
i

∥
∥
∥

∥
∥
∥u(m+n)

i

∥
∥
∥

≤ ∥
∥K̃m+n − K̃m−1

∥
∥
2

for any i < m, where u(m)
i is the eigenvector associated with

μ
(m)
i of K̃m . {μ(m)

i }∞m=1 is aCauchy sequence, that converges.
��

Note that the condition, i.e., Eq. (13), used in the spectral
convergence theorem is rather weak. Observe that for two-
dimensional Riemannian manifold M , f (x) is given by the

Fig. 7 A experimental validation: convergence of the first 30 eigen-
values of an R-BiHDM

green functionG(x, y)with f (x) := G(x, x). IfM is a com-
pact manifold (without boundary), it satisfies that G(x, y) is
bounded [6], hence f (x) is also bounded for any x ∈ M .
So is ‖ f ‖2 (square integrable). An experimental validation
is also provided in Fig. 7.

8 Appendix C: Matrices for linear and cubic FEM

Herewe provide elementarymatrices used in linear and cubic
FEM. Every FEM has its own set of nodes. There is a finite
element associated with every node. The finite element at a
specific node is a piecewise polynomial basis function whose

l1(T )

l2(T )

l3(T )

T1

T2

T3

T

l1(T )

l2(T )

l3(T )

T1

T4

T5

T2

T6

T7

T3

T8

T9
T10

T

(a) linear element (b) cubic element

Fig. 8 Node configuration of linear and cubic FEM

Table 6 The four matrices of integrals on the unit triangle for linear
FEM

J1 = 1

8

⎛

⎝
2 −1 −1

−1 0 1
−1 1 0

⎞

⎠ J2 = 1

8

⎛

⎝
0 −1 1

−1 2 −1
1 −1 0

⎞

⎠

J3 = 1

8

⎛

⎝
0 1 −1
1 0 −1

−1 −1 2

⎞

⎠ J4 = 1

12

⎛

⎝
2 1 1
1 2 1
1 1 2

⎞

⎠
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Table 7 The four matrices of
integrals on the unit triangle for
cubic FEM

J1 = 1

320

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 7 −7 57 −24 0 0 24 −57 0
7 0 −7 −24 57 −57 24 0 0 0

−7 −7 68 −6 −6 30 −51 −51 30 0
57 −24 −6 135 54 27 27 27 −135 −162

−24 57 −6 54 135 −135 27 27 27 −162
0 −57 30 27 −135 135 −108 −27 −27 162
0 24 −51 27 27 −108 135 135 −27 −162
24 0 −51 27 27 −27 135 135 −108 −162

−57 0 30 −135 27 −27 −27 −108 135 162
0 0 0 −162 −162 162 −162 −162 162 324

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

J2 = 1

320

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −7 7 −57 24 0 0 −24 57 0
−7 68 −7 30 −51 −51 30 −6 −6 0
7 −7 0 0 0 24 −57 57 −24 0

−57 30 0 135 −108 −27 −27 27 −135 162
24 −51 0 −108 135 135 −27 27 27 −162
0 −51 24 −27 135 135 −108 27 27 −162
0 30 −57 −27 −27 −108 135 −135 27 162

−24 −6 57 27 27 27 −135 135 54 −162
57 −6 −24 −135 27 27 27 54 135 −162
0 0 0 162 −162 −162 162 −162 −162 324

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

J3 = 1

320

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

68 −7 −7 −51 30 −6 −6 30 −51 0
−7 0 7 24 −57 57 −24 0 0 0
−7 7 0 0 0 −24 57 −57 24 0
−51 24 0 135 −108 27 27 −27 135 −162
30 −57 0 −108 135 −135 27 −27 −27 162
−6 57 −24 27 −135 135 54 27 27 −162
−6 −24 57 27 27 54 135 −135 27 −162
30 0 −57 −27 −27 27 −135 135 −108 162

−51 0 24 135 −27 27 27 −108 135 −162
0 0 0 −162 162 −162 −162 162 −162 324

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

J4 = 1

6720

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

76 11 11 18 0 27 27 0 18 36
11 76 11 0 18 18 0 27 27 36
11 11 76 27 27 0 18 18 0 36
18 0 27 540 −189 −135 −54 −135 270 162
0 18 27 −189 540 270 −135 −54 −135 162
27 18 0 −135 270 540 −189 −135 −54 162
27 0 18 −54 −135 −189 540 270 −135 162
0 27 18 −135 −54 −135 270 540 −189 162
18 27 0 270 −135 −54 −135 −189 540 162
36 36 36 162 162 162 162 162 162 1944

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

value is equal to 1 at the node and0 at all other nodes. The sup-
port of a basis function includes all triangle faces surrounding
the node corresponding to the basis function. Consider a tri-
angle face in a mesh with two node configurations shown in
Fig. 8. These node configurations are defined for linear and
cubic FEM, respectively. Each node in either configuration
is associated with a piecewise linear or cubic polynomial
basis function. If we focus on a triangle face, an arbitrary
bivariate polynomial over the triangle face can be defined as
a linear combination of the basis functions associated with
the nodes either inside or on the edges of the triangle. This
polynomial can interpolate arbitrary prescribed values at the
nodes. It reduces to a univariate polynomial along each tri-
angle edge. The two polynomials defined over two adjacent
triangles agree with each other along their shared triangle
edge. The stiff and mass matrices used in FEM are given as
follows.

Li j (T ) = 1

a(T )

(
3∑

k=1

l2k (T )Jk
(
ti , t j

)
)

, i, j ∈ N (T )

Di j (T ) = a(T )J4
(
ti , t j

)
, i, j ∈ N (T )

Li j (T ) = Di j (T ) = 0, i, j /∈ N (T )

and

L =
∑

T

L(T ), D =
∑

T

D(T ),

where T denotes a triangle face, N (T ) denotes the set of
incidence nodes on T , ti denotes the local index (used for
T ) of the i-th node used in the FEM, lk(T ) (k = 1, 2, 3)
denotes the length of the k-th edge of T , a(T ) denotes the
area of T , and Jk(ti , t j ) denotes the entry with indices (ti , t j )
of the matrix Jk . Jk (k = 1, 2, 3, 4) for linear and cubic
FEM are given in Tables 6 and 7, respectively. Details on
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the construction of Jk can be found in [50]. Note that these
matrices are assembled triangle-wise rather than element-
wise in a typical implementation.

References

1. Aflalo, Y., Kimmel, R.: Spectral multidimensional scaling. Proc.
Natl. Acad. Sci. 110(45), 18052–18057 (2013)

2. Agathos, A., Pratikakis, I., Papadakis, P., Perantonis, S., Azariadis,
P., Sapidis, N.S.: 3D articulated object retrieval using a graph-based
representation. Vis Comput. 26(10), 1301–1319 (2010)

3. Alfakih, A.Y.: On the eigenvalues of Euclidean distance matrices.
Comput. Appl. Math. 27(3), 237–250 (2008)

4. Arnoldi, W.E.: The principle of minimized iterations in the solu-
tion of the matrix eigenvalue problem. Q. Appl. Math 9(1), 17–29
(1951)

5. Attene, M., Falcidieno, B.: Remesh: an interactive environment to
edit and repair triangle meshes. In: IEEE International Conference
on Shape Modeling and Applications, 2006. SMI 2006, pp. 41–41.
IEEE (2006)

6. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry.
Springer, Berlin (1998)

7. Bogomolny, E., Bohigas, O., Schmit, C.: Spectral properties of
distance matrices. J. Phys. A: Math. Gen 36(12), 3595 (2003)

8. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.:
ShapeGoogle: geometric words and expressions for invariant shape
retrieval. ACM Trans. Graph. (TOG) 30(1), 1 (2011)

9. Bronstein,M.M., Bronstein, A.M.: Shape recognitionwith spectral
distances. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1065–
1071 (2011)

10. Buser, P., Conway, J., Doyle, P., Semmler, K.D.: Some planar
isospectral domains. Int. Math. Res. Not. 1994(9), 391 (1994)

11. Castro, M., Menegatto, V.: Eigenvalue decay of positive inte-
gral operators on the sphere. Math. Comput. 81(280), 2303–2317
(2012)

12. Cignoni, P., Corsini, M., Ranzuglia, G.: Meshlab: an open-source
3D mesh processing system. ERCIM News 73, 45–46 (2008)

13. Elad, A., Kimmel, R.: Bending invariant representations for sur-
faces. In: Proceedings of the 2001 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2001. CVPR
2001, vol. 1, pp. I–168. IEEE (2001)

14. Friedrichs, K.O.: Perturbation of Spectra in Hilbert Space, vol. 3.
American Mathematical Society, Providence (1965)

15. Giachetti, A., Lovato, C.: Radial symmetry detection and shape
characterization with the multiscale area projection transform.
Comput. Graph. Forum 31(5), 1669–1678 (2012)

16. Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and
surfaces via Riemannian orbifolds. Invent. Math. 110(1), 1–22
(1992)

17. Hu, J., Hua, J.: Salient spectral geometric features for shapematch-
ing and retrieval. Vis Comput 25(5–7), 667–675 (2009)

18. Kato, T.: Perturbation Theory for Linear Operators, vol. 132.
Springer, Berlin (1995)

19. Kurtek, S., Srivastava, A., Klassen, E., Laga, H.: Landmark-guided
elastic shape analysis of spherically-parameterized surfaces. Com-
put. Graph. Forum 32(2pt4), 429–438 (2013)

20. Laga, H., Mortara, M., Spagnuolo, M.: Geometry and context for
semantic correspondences and functionality recognition in man-
made 3D shapes. ACM Trans. Graph. (TOG) 32(5), 150 (2013)

21. Lavoué, G.: Combination of bag-of-words descriptors for
robust partial shape retrieval. Vis. Comput. 28(9), 931–942
(2012)

22. Li, C., Hamza, A.B.: Intrinsic spatial pyramid matching for
deformable 3D shape retrieval. Int. J. Multimed. Inf. Retr. 2(4),
261–271 (2013)

23. Li, C., Hamza, A.B.: A multiresolution descriptor for deformable
3D shape retrieval. Vis. Comput. 29(6–8), 513–524 (2013)

24. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawa-
mura, S., Kurita, Y., Lavoue, G., van Nguyen, H., Ohbuchi, R.,
Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets,
D., Suetens, P., Tabia, H., Vandermeulen, D.: A comparison of
methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1),
449–461 (2013)

25. Lidskii, V.B.: Perturbation theory of non-conjugate operators.
USSR Comput. Math. Math. Phys. 6(1), 73–85 (1966)

26. Lipman, Y., Rustamov, R.M., Funkhouser, T.A.: Biharmonic dis-
tance. In: ACM Transactions on Graphics, ACM 0730–0301//10-
ART (2007)

27. Litman,R.,Bronstein,A.,Bronstein,M.,Castellani,U.: Supervised
learning of bag-of-features shape descriptors using sparse coding.
Comput. Graph. Forum 33(5), 127–136 (2014)

28. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

29. Maes, C., Fabry, T., Keustermans, J., Smeets, D., Suetens, P., Van-
dermeulen, D.: Feature detection on 3D face surfaces for pose
normalisation and recognition. In: 2010 Fourth IEEE Interna-
tional Conference on Biometrics: Theory Applications and Sys-
tems (BTAS), pp. 1–6. IEEE (2010)

30. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas,
L.: Functional maps: a flexible representation of maps between
shapes. ACM Trans. Graph. (TOG) 31(4), 30 (2012)

31. Pickup, D., Sun, X., Rosin, P.L., Martin, R.R., Cheng, Z., Lian,
Z., Aono, M., Hamza, A.B., Bronstein, A., Bronstein, M., et al.:
Shrec’14 track: shape retrieval of non-rigid 3D human models.
Proc. 3DOR 4(7), 8 (2014)

32. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol.
37. Springer, Berlin (2007)

33. Raviv, Dan, Kimmel, Ron: Affine invariant geometry for non-rigid
shapes. Int. J. Comput. Vis. 111(1), 1–11 (2015)

34. Reade, J.B.: Eigenvalues of positive definite kernels. SIAMJ.Math.
Anal. 14(1), 152–157 (1983)

35. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace–Beltrami spectra
as ’shape-DNA’ of surfaces and solids. Comput.-Aided Des. 38(4),
342–366 (2006)

36. Rustamov, R.M.: Laplace–Beltrami eigenfunctions for deforma-
tion invariant shape representation. In: Proceedings of the Fifth
Eurographics Symposium on Geometry Processing, pp. 225–233.
Eurographics Association (2007)

37. Shilane, P.,Min, P., Kazhdan,M.M., Funkhouser, T.A.: The prince-
ton shape benchmark. In: Shape Modeling International, pp. 167–
178. IEEE Computer Society (2004)

38. Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., Suetens, P.:
Isometric deformation modelling for object recognition. In: CAIP
2009, LNCS 5702, pp. 757–765 (2009)

39. Stewart, G.W.:AKrylov–Schur algorithm for large eigenproblems.
SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001)

40. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably
informative multi-scale signature based on heat diffusion. Com-
put. Graph. Forum 28(5), 1383–1392 (2009)

41. Sunada, T.: Riemannian coverings and isospectral manifolds. Ann.
Math. 121(1), 169–186 (1985)

42. Tabia, H., Daoudi, M., Vandeborre, J.-P., Colot, O.: A new 3D-
matching method of nonrigid and partially similar models using
curve analysis. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 852–
858 (2011)

43. Tabia,H., Laga,H., Picard,D.,Gosselin, P.-H.: Covariance descrip-
tors for 3D shapematching and retrieval. In: 2014 IEEEConference

123



568 J. Ye, Y. Yu

on Computer Vision and Pattern Recognition (CVPR), pp. 4185–
4192. IEEE (2014)

44. Thakoor, N., Gao, J., Jung, S.: Hidden Markov model-based
weighted likelihood discriminant for 2-D shape classification.
Image Process. IEEE Trans. 16(11), 2707–2719 (2007)

45. Weyl, H.: Uber die asymptotische verteilung der eigenwerte.
Nachrichten der Königlichen Gesellschaft der Wissenschaften
zu Göttingen. Mathematisch-Naturwissenschaftliche Klasse, pp.
110–117 (1911)

46. Ye, J., Yan, Z., Yu, Y.: Fast nonrigid 3D retrieval using modal space
transform. In: International Conference on Multimedia Retrieval,
pp. 121–126 (2013)

47. Ying, X.,Wang, X., He, Y.: Saddle vertex graph (svg): a novel solu-
tion to the discrete geodesic problem. ACM Trans. Graph. 32(6),
1–170 (2013)

48. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature
detection and description with applications to mesh matching. In:
IEEE Conference on Computer Vision and Pattern Recognition,
2009. CVPR 2009, pp. 373–380. IEEE (2009)

49. Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed
curves. Comput. IEEE Trans. 100(3), 269–281 (1972)

50. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element
Method—itsBasis and Fundamentals, vol. 1. Elsevier Butterworth-
Heinemann, Amsterdam, London (2005)

Jianbo Ye received the BS
degree from the Department of
Mathematics, University of Sci-
ence and Technology of China
in 2011. He is currently a Ph.D.
student at College of Information
Science and Technology, The
Pennsylvania State University.
His research interests include
computer vision, graphics and
machine learning.

Yizhou Yu received the Ph.D.
degree from University of Cali-
fornia at Berkeley in 2000. He is
currently a professor in College
of Computer Science, Zhejiang
University. He has served as an
associate editor of IEEE Trans-
actions on Visualization and
Computer Graphics, Computer
Graphics Forum and the Visual
Computer, and is on the edito-
rial board of International Jour-
nal of Software and Informat-
ics. His current research interests
include computer graphics, com-

puter vision, digital geometry processing, video analytics and biomed-
ical data analysis.

123


	A fast modal space transform for robust nonrigid shape retrieval
	Abstract 
	1 Introduction
	1.1 Related work
	1.2 Overview and contributions

	2 Our approach
	2.1 Laplace--Beltrami operator
	2.2 Functional operator
	2.3 Distance map using modes
	2.4 Functional biharmonic distance map

	3 Implementation
	4 Experimental results
	4.1 Efficiency
	4.2 Signature-based retrieval
	4.3 Nonrigid retrieval of human models
	4.4 Continuity and stability
	4.5 Isospectral vs isometric
	4.6 Limitations

	5 Conclusions
	Acknowledgments
	6 Appendix A: Error bounds under deformation
	7 Appendix B: Spectral convergence of R-BiHDM
	8 Appendix C: Matrices for linear and cubic FEM
	References




