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Abstract The “Midas Touch” problem has long been a
difficult problem existing in gesture-based interaction. This
paper proposes a visual attention-based method to address
this problem from the perspective of cognitive psychology.
There are three main contributions in this paper: (1) a visual
attention-based parallel perception model is constructed by
combining top-down and bottom-up attention, (2) a frame-
work is proposed for dynamic gesture spotting and recog-
nition simultaneously, and (3) a gesture toolkit is created
to facilitate gesture design and development. Experimental
results show that the proposed method has a good perfor-
mance for both isolated and continuous gesture recognition
tasks. Finally, we highlight the implications of this work for
the design and development of all gesture-based applications.

Keywords Gesture-based interaction · Dynamic gesture ·
Visual attention · Midas Touch problem

1 Introduction

With the rapid development of human–computer interaction
(HCI), there has been a surge of interests in research on free-
hand gesture as an input modal in mobile, immersive and
ubiquitous computing environments. Compared with regu-
lar mouse and keyboard inputs, freehand gesture inputs pro-
vide end users with more space, more freedom, and more
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lifelike interactive experiences. Therefore, freehand gestures
are widely used by HCI practitioners to accomplish a vari-
ety of interactive tasks instead of traditional mouse or key-
board, including pointing and drawing [2,19,35], manipu-
lating virtual objects [5,6,20,22,29], interacting with large
displays [26,34].Outside the scope of PC-based applications,
freehand gestures have also been exploited in some specific
domains like controlling home electronic devices, such as
TV and CD player [33].

Although great progress has been made in recent years,
gesture-based inputs have long been suffering from a diffi-
cult problem called the “Midas Touch” [9]. With direct sens-
ing, the user’s actions could potentially always be “active”,
i.e., everything the user does is interpreted as an interaction.
To deal with this problem, many researches have been done
by practitioners in HCI. However, traditional approaches,
such as hiddenMarkovmodel (HMM), neural network (NN),
and dynamic time warping (DTW), generally use a bottom-
up or data-driven paradigm. Systems developed based on
these methods lack the guidance of higher level modules
and cannot tolerate inaccurate inputs from lower level mod-
ules. Therefore, the recognition accuracy will dramatically
decrease due to incorrect spatiotemporal spotting result in a
real setting.

To address this problem, this paper proposes a visual atten-
tion model that combines top-down and bottom-up attention
using “what” and “where” information from the perspective
of cognitive psychology. The primary contributions of our
work are: (1) a visual attention model based on the combina-
tion of top-down and bottom-up attention, (2) a framework
for dynamicgesture spotting and recognition, and (3) a toolkit
for gesture design and development.

The rest of this paper is structured as follows: Sect. 2
reviews related work, Sect. 3 introduces the visual attention
model, Sect. 4 presents the framework for gesture spotting
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and recognition, Sect. 5 provides the toolkit and discusses the
experimental results. After the discussion of the implications
and limitations of our research, we conclude the paper with
future research directions.

2 Related work

Despite advances in gesture-based interaction techniques,
gesture spotting and recognition remains a challenging task in
most of real-world scenarios. For example, system designers
must avoid what is often called the “Midas Touch” prob-
lem, which refers to the phenomenon that every “active”
hand action, even unintentional, could be recognized as a
command by vision-based technology. Existing methods to
address this problem can be roughly divided into two cate-
gories: (1) methods based on bottom-up visual cues reason-
ing, and (2)methods basedon top-down semantic constraints.

2.1 Methods based on bottom-up visual cues reasoning

Some methods were adopted to address the Midas Touch
problem based on bottom-up visual cues reasoning. For
example, [16] proposed an HMM-based threshold model
(i.e., garbage model or non-gesture model) for gesture spot-
ting and recognition. Although good performance is reported
on isolated gesture recognition tasks, their method is limited
to off-line gesture recognition and sensitive to complex envi-
ronmental conditions. Systems presented by Kölsch et al.
[14] and Shen et al. [28] can recognize on-line gestures in
unconstrained environments, but their systems only focused
on static gesture recognition. In comparison, Yang et al.
[37] proposed a method based on time-delay neural network,
which can be used to recognize 2D dynamic gestures. Peder-
soli et al. [23] developed an open-source package for recogni-
tion of both static hand postures and dynamic hand gestures.
Similar to Lee et al.’s method [16], Yang et al. [36] and Peng
and Qian [24] categorized gestures into communicative ges-
tures and non-communicative gestures (garbage-gesture) and
then used an HMM network for gesture spotting from live
video feeds.

In summary, all the systems mentioned above adopt data-
driven or bottom-up methods for gesture analysis and infor-
mation reasoning, and lack effective top-down modules to
accommodate inaccurate and ambiguous inputs frombottom-
up modules.

2.2 Methods based on top-down semantic constraints

Other methods were proposed to overcome the Midas Touch
problem using a mouse or keyboard button combined with
top-down semantic constrains to initiate actions. The Cam-
era Mouse [1], for example, used a combination of physical
button and a dwell time threshold strategy to select items on

the screen. However, the input speed will be mitigated if the
dwell time is too long. On the contrary, the error rate will
increase due to unintentional selection if the dwell time is
too short. Compared with the strategy based on dwell time,
the strategy based on spatial proximity was used for selec-
tion by other systems. The Shared Space [11], for example,
supports virtual object manipulation based on object prox-
imity and spatial relations. However, similar limitation exists
in the Shared Space. Because the distance between the phys-
ical prop and the intended object is difficult to measure, a
nearby unintended object is easy to be selected if the dis-
tance is too short. On the contrary, the intended object is
difficult to select if the distance is too long. Recently, Liang
et al. [17] exploited both temporal constraints and spatial
features of input stream for gesture recognition. Different
from the dwell time- and spatial proximity-based strategies,
Kjeldsen et al. [12] designed some interface widgets to help
the user perform different types of interactive tasks. A wid-
get is related to some kind of interaction technique, such as
trigger a command or adjust a parameter value. However,
the number of widgets on the interface increases as the num-
ber of system commands and parameter values increases.
Consequently, the increased number of widgets increases the
system’s space requirements and the user’s cognition bur-
den. Recently, a probability statistical method similar to the
one presented in this paper is proposed by Kristensson and
Nicholson [15]. Using a probabilistic reasoning algorithm in
their system, the user’s intended gestures are incrementally
predictedwhile they are still being articulated.However, their
system does not support continuous gesture recognition.

In summary, “Midas Touch” is a common problem exist-
ing in human–computer interaction. Conventional methods
based on lower level data-driven or high-level semantic con-
straints primarily focus on improving the performance of
algorithms from the perspective of data identification. Com-
pared with human–computer interaction, the “Midas Touch”
problem rarely appears in human–human interaction. Cog-
nitive psychology studies have shown that we human beings
have a visual processing system existing in our brains. Under
the control of visual attention, the processing resources are
distributed to key informationwhile ignoring irrelevant infor-
mation. This paper attempts to find a solution for the “Midas
Touch” problem from a perspective of cognitive psychology.
In contrast to previous work, we emphasize the hierarchi-
cal parallel perception model constructed by combining top-
down and bottom-up visual attention.

3 The visual attention model

Attention is the behavioral and cognitive process of selec-
tively focusing on one thing while ignoring others. It also
refers to the allocation of processing resources. Generally
speaking, visual attention is thought to operate as a two-stage
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Fig. 1 “What” and “where” pathways

process [10,31]. In the first stage, attention is distributed uni-
formly over the external visual scene and visual information
is processed in parallel. In the second stage, attention is con-
centrated on a specific area of the visual scene. According
to [32], visual information is gathered through two types
of pathways as being complementary, namely “what” and
“where” pathways. The “what” pathway is thought to oper-
ate as a data-driven or bottom-up processing of information
[13], and the “where” pathway is thought to operate as a goal-
driven or top-down processing of information [8]. Visual
information transferred through the two pathways indicat-
ing what objects in visual scene and where they are (Fig. 1).
This theory of visual system shares the same opinion with
Marr’s [18].

Based on the “what–where” information pathways’ the-
ory, we propose a hierarchical parallel perception model that
integrates top-down and bottom-up inference for visual infor-
mation (Fig. 2).

As shown in Fig. 2, visual information flows both top-
down and bottom-up. In the bottom-up direction, static fea-
tures such as color, brightness, and shape are extracted for
hand detection (“what” information) from the video input.
Then the features are fed into the subsequent hand tracker for
spatial localization (lower level “where” information). In the
top-down direction, priori knowledge provided by the ges-
ture and non-gesture models is used as a guidance for gesture
spotting, i.e., when a dynamic gesture starts and ends (higher
level “where” information). Finally, the dynamic gesture tra-
jectory is fed into the pattern recognition module for gesture
classification.

Accordingly, selective attention, pre-attention, and sus-
tained attention modules are defined to constitute such a
visual information processing system by integrating the the-
ory of “what–where” pathways with visual attention mecha-
nism:

• The selective attention module consists of color detector
and position detector. The idea in selective attention is
that not all objects in the visual scene give us information
and focusing only on the relevant parts of the scene while
ignoring other irrelevant stimuli. The selective attention
procedure is performed with feature extraction and feature
integration modules. Similar to the V1 region in the human
brain’s visual information processing system (Fig. 1), the

Fig. 2 Architecture of the visual attention model
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feature extraction module primarily extracts lower level
visual cues such as skin color, brightness, shape, edge,
location and orientation using relevant machine vision
algorithms (e.g., Gaussian mixture model). Similar to the
V2–V3 regions, the feature integration module identifies
the hand from the background based on the reasoning of
different visual cues using appropriate heuristic algorithm
or inference rule (e.g., a “Winner-Take-All” strategy).

• The pre-attention module is responsible for task- or goal-
relevant information extraction. It can be used to guide
bottom-up attention and direct attention to the sustained
attention region. Heuristic algorithms are commonly used
by the pre-attention module to mimic task-driven or top-
down attention mechanism. In this study, a garbage model
is constructed in the pre-attention module to guide higher
level “where” information extraction.

• The sustained module consists of spatiotemporal spot-
ting and pattern recognition modules for higher level
“where” information processing. In the spatiotemporal
spotting module, predictive information provided by the
pre-attention module is used for both spatial and tempo-
ral gesture spotting. Spatial gesture spotting refers to the
detection of where a dynamic gesture occurs, and tempo-
ral gesture spotting determines when a dynamic gesture
starts and ends. Once a start point is detected, the seg-
mented part is incrementally sent to the pattern recognition
module until an end signal is received. The final gesture
classification result is determined using appropriate pat-
tern recognition algorithm (e.g., HMM, DTW, or NN).

We apply the Bayes’ rule to construct the visual attention
model. Let G be a dynamic gesture, T is the gesture type,
L = (Ls, Le) denotes the higher level “where” information,
where Ls and Le is the start and end point, respectively.Given
the environment context information E , the conditional prob-
ability of the dynamic gesture G is computed as:

P(G|E) = P(L|T, E)P(T |E) (1)

where, the likelihood functions P(T |E) and P(L|T, E) cor-
respond to the pre-attention and sustained attention stage,
respectively. Given environmental context information E ,
the likelihood function P(T |E) provides a priori knowledge
for the most likely gesture type T . If the estimated value
of P(T |E) is greater than a threshold value ξ , then acti-
vate the sustained attention module and distribute process-
ing resources to the sustained attention region that is most
likely to contain the dynamic gesture (higher level “where”
information). Otherwise, stop sustained attention. P(T |E) is
computed as follows:

P(T |E) = P(E |T )P(T )

P(E |T ) + P(E |¬T )P(¬T )
(2)

Given environmental context information E and gesture type
T , the likelihood function P(L|T, E) denotes the probability
of a dynamic gesture articulated along the path L . Under the
influence of P(L|T, E) the higher level “where” informa-
tion (i.e., dynamic gesture trajectory) is extracted from the
lower level “where” information and fed into the recognition
module. P(L|T, E) is computed as follows:

P(L|T, E) = P(L , E |T )

P(E |T )
(3)

4 The framework for gesture spotting and recognition

4.1 Selective attention module

Selective attention module consists of a color detector and a
position detector. The color detector is responsible for skin
color detection using the Gaussian mixture model in YCrCb

color space. To reduce the negative impact caused by chang-
ing lighting conditions, we use only the chrominance compo-
nents CrCb while ignoring the brightness component Y . Let
γ = [Cr ,Cb]T be the chrominance component of an input
pixel, u0 be the mean (Cr ,Cb) of the input pixel, and k0 be
the covariance of the input pixel’s distribution. Then, each
pixel is classified as skin or non-skin by using the Gaussian
mixture model based on a large database of skin and non-
skin pixels, respectively. The K-means clustering algorithm
is used for model training. Given a m dimensional observa-
tion vector X , the Gaussian density model is established as
follows:

P(X) =
exp

[
− 1

2 (X − u0)Tk
−1
0 (X − u0)

]

(2π)
m
2 |k0| 12

(4)

The position detector is used to extract the spatial location
information of an input pixel. Combining the color informa-
tion and the position information, an input pixel is described
as a six-tuple 〈Y,Cb,Cr , x, y, z〉. In real settings, there may
be n candidate regions in the same frame, such as a hand,
a face or other kind of skin color distractors. Feature vec-
tor Qi j = (color, position, velocity) denotes the candidate
region j in frame i , where, color denotes skin color charac-
teristic, position = (xi j , yi j , zi j ) denotes the centroid of the
candidate region j , and velocity = (ui j , vi j , wi j ) denotes the
motion speed of the centroid in the world coordinate system.

In the selective attention module, we associate each can-
didate region in the visual field with a value that is a func-
tion of the response of the color and position detectors and
the relative importance of the particular feature to the target
task being solved. When the system attempts to determine
whether an object is a hand, it runs through all existing can-
didate regions, and then find the strongest of these responses
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Table 1 A truth table for identifying a hand

Candidate region Color Position Velocity

ID #1 + Ambiguous +

ID #2 − Ambiguous +

ID #3 + − Ambiguous

ID #4 Ambiguous − Ambiguous

and this region becomes the focus of attention using a “truth
table” and the “Winner-Take-All” strategy. In addition to the
proposed method, the reader can also refer to other propos-
als for selective attention processing in computer vision, such
as the saliency map used by Treisman and Gelade [31], Itti
[8], Salah et al. [27], and Tian [30], and some competitive
schemes adopted by Koch and Ullman [13], and Itti [7].

In the example shown inTable 1,when the color character-
istic is compared, #2 is rejected and #1, #3 and #4 are left as
candidates. Comparing the position characteristic, #3 and #4
are eliminated. And now #1 is still left as an option, because
a positive response is still missing. Therefore, the process
continues until #1 has a positive response by comparing the
velocity characteristic. Since it is the only positive response
left in the candidate set, #1 is identified as a hand. Conse-
quently, feature vector Q∗ = max[Qi j] is computed as the
“what” information and lower level “where” information of
the hand.

Once a hand is successfully identified, a blob is produced
to analyze the edge, bounding box, and centroid of the hand
region. Each blob has a detailed representation of its appear-
ance and shape. In the tracking phase, the hand region is re-
estimated and the centroid point is calculated in a new image
using the Kalman filter in conjunction with the Camshift
algorithm. Consequently, connecting all the centroid points
produces thehandmotion trajectory in thevisual scene (lower
level “where” information).

4.2 Sustained attention module

Compared with Lee et al.’s method [16], a forward spotting
strategy is used in this paper. Under the guidance of the pre-
attention module, the sustained attention module focuses on
pattern recognition of the dynamic gesture trajectory seg-
mented from the lower level “where” information.

Location, velocity, and orientation are three basic features
for a dynamic gesture. Among them, the orientation feature
is proved to be the best feature in terms of recognition accu-
racy [4,16,21]. Therefore, we use the orientation feature as
a main local feature in this study. The orientation of hand
movement is determined by the angle θ between two con-
secutive points Pt = (x, y) and Pt+1 = (x ′, y′) of the hand
motion trajectory:

θ = tan−1
(
y′ − y

x ′ − x

)
(5)

Fig. 3 Directional codewords

Consequently, a feature vector is produced by converting the
orientation to one of the 18 directional codewords (Fig. 3),
and then fed into the gesture HMM.

Considering the strong sequential relationship between
two consecutive strokes in a dynamic gesture, the HMM
based on left–right banded (LRB) topology is used for ges-
turemodeling (Fig. 4). A state in a gestureHMMcorresponds
to a stroke in a dynamic gesture. Each state can move to the
next state or stay unchanged as time increases. The transi-
tion between two states represents the sequential relationship
between two strokes of a gesture. Thenumber of the states in a
gesture HMM is determined by the complexity of the gesture
shape. All gesture HMMs are trained using the Baum-Welch
algorithm.

When the system is running, an observation sequence
O = O1O2O3 . . . OT is obtained by extracting feature infor-
mation from the input video. The Viterbi algorithm [25] is
used for gesture recognition:

Step 1. Initialization (t = 1; 1 ≤ i ≤ N ):

δ1(i) =
∏

i
bi (O1)

ψ1(i) = 0

Step 2. Recursion (2 ≤ t ≤ T ; 1 ≤ j ≤ N ):

δt ( j) = max
i

δt−1(i)ai j b j (Ot )

ψt ( j) = argmax δt−1
i

(i)ai j

Step 3. Termination:

p(O|λk) = max
i

δT (i)

q∗
T = argmax δT

i
(i)
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Fig. 4 The gesture HMMs

Fig. 5 The garbage model

where, 	i is the initial probability distribution, ai j is the
transition probability between state i and j , b j (Ot ) is the
observation probability of state j at time t , δt ( j) is the max-
imum likelihood value of state j at time t , N is the sum of
states of all gesture HMMs.

4.3 Pre-attention module

In Eq. 2, the likelihood function P(T |E) is computed based
on a training process. The output is used as a priori knowledge
for the determination ofwhat types of gestures aremost likely
to appear in such environmental context E . The training set
for P(E |T ) consists of a large number of video clips that
contain the complete dynamic gesture trajectory. Therefore,
we approximate the priori probability by P(T ) = P(¬T ) =
50 %.

In this study, a fully connected garbage model is con-
structed to represent all the meaningless motion trajecto-

ries (e.g., the transition motion trajectory before or after a
dynamic gesture). In the garbage model, each state can be
reached from all other states [16,36]. The procedure for con-
structing the garbage model is given as follows:

Step 1. Copy all states i from all gesture HMMs, each with
its observation probability bi (k). Then use a Gaussian filter
to smooth the observation probabilities.

Step 2. Define two dummy states, named Start state (S) and
End state (E). Then connect the two states with the other
states produced in Step 1, see Fig. 5.

Step 3. Set the self-transition probability of each state to be
the same as in the gesture HMMs.

Step 4.Compute the transition probability between a dummy
state and a non-dummy state as follows:

aSi = 1

N
aiE = 1 − aii (6)
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where, aSi is the transition probability from the dummy state
S to non-dummy state i , ai E is the transition probability from
non-dummy state i to the dummy state E , aii is the self-
transition probability of state i , N is the sum of states of all
gesture HMMs.

Step 5. The transition probability between two non-dummy
states i and j is computed as:

−→ai j = 1 − ai j
N − 1

, where i �= j (7)

where −→ai j is the transition probability of the garbage model
from state i to j , ai j is the transition probability of the gesture
HMMs from state i to j , N is the sum of states of all gesture
HMMs.

As shown in Fig. 5, the number of states of the garbage
model increases as the number of the gesture HMMs
increases. Since there are many states with similar distrib-
ution in the garbage model, the increase of the number of
states will cause noting but a waste of time and space [16].
Therefore, the relative entropy measure [3] is used to reduce
the states in the garbage model. Let M = {M(k)|k ∈ ℵ} and
N = {N (k)|k ∈ ℵ} be two discrete probability distributions,
where ℵ is the set of observation symbols, the symmetric
relative entropy D(M ||N ) is defined as:

D(M ||N ) = 1

2

∑
k

(
M(k) log

M(k)

N (k)
+N (k) log

N (k)

M(k)

)

(8)

Then the state-reduction procedure is given as follows:

Step 1. Initialization.
Compute the symmetric relative entropy for each pair of

observation probability distributions M (i) and N ( j)of state i
and j .

D(M
(i) ||N ( j)) = 1

2

∑
k

(
M(k)

(i)
log

M(k)
(i)

N (k)( j)

+N (k)( j) log
N (k)( j)

M(k)(i)

)
(9)

Step 2. Comparison and selection.
Compare all state pairs and find (i, j) = argmin D(M (i)||

N ( j)), i �= j

Step 3. Merging and update.
Merge state i and j and update the probability distribution.

M (i)
k = M(i)

k +N ( j)
k

2

Step 4. Loop until N < δ, where N is the sum of states in
the garbage model, δ is a threshold value.

Comparedwith the gesture HMMs, the garbagemodel is a
weakmodel due to the smaller forward transition probability.

Therefore, the garbage model provides a lower threshold to
the model likelihood for a given hand motion trajectory to
be accepted as a dynamic gesture. For gesture spotting, the
garbage model and the gesture HMMs satisfy the following
conditions:

P(Og|λg)P(g) > P(Og|λgarbage-gesture)P(Ôk)

P(Ôk |λg)P(g) < P(Ôk |λgarbage-gesture)P(Ôk)
(10)

where, Og denotes the observation sequence of a gesture pat-
tern, λg denotes the gesture HMM, Ôk denotes the observa-
tion sequence of a non-gesture pattern, λgarbage-gesture denotes
the garbagemodel.As can be seen from inEq. 10, the garbage
model provides a confidence limit for rejecting or accepting
a non-gesture pattern.

The sliding window technique is used to calculate the
observation probability of the gestureHMMsand the garbage
model. The procedure is given as follows:

Step1. Initialize S =δ , t =1.

Where, S is the sliding window size, δ is an experience threshold.

Step2. Compute ζ = P(O| $λ ) – P(O|λgarbage-gesture).

Where, $λ is the most likely gesture model.

Step3. if ζ < 0

Move the sliding window to the next unit;

t+=1;

goto Step2;

Step4. if ζ > 0

Merge all gesture segments into x ;

Compute ( | , )p y x λ and output the classification results;

Move the sliding window to the next unit;

t+=1;

goto Step2;

5 System prototype and experimental evaluation

5.1 System prototype

Based on the visual attention model, we developed a toolkit
for dynamic gesture training and recognition. We provide no
detail about the implementation of the system in this paper,
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Fig. 6 Off-line gesture training
based on the toolkit

because of our focus on this paper on the visual attention
model, rather than the development of the system. Technical
details of system implementation can be found in Wu et al.
[38].

In the training part, the selective attention model, pre-
attention model, and sustained attention model are off-
line trained using the toolkit based on a large database of
video clips collected from seventy subjects from a university
(Fig. 6).

In the recognition part, the user’s gestures are on-line
recognized. The recognition results are encapsulated into
higher level gesture events. A dynamic gesture event (GE) is
defined as follows:

GE = 〈I D, T ype, “name”, start Pt, endPt, t, r, data,

sampleRate〉

where ID is the unique identification of a dynamic gesture,
Type is the gesture type, “name” is the name of a dynamic
gesture, usually defined by the user, startPt and endPt are the
start point and end point of the gesture trajectory determined
by the pre-attentionmodel, t is the duration of a dynamic ges-
ture, which can be used to distinguish between short gestures
and long gestures, r is a flag indicating whether a gesture is
successfully recognized, data is a float array used to store
the dynamic gesture trajectory, sampleRate is the sampling
rate.

5.2 Experimental evaluation

An experiment was conducted to justify the proposed
method. The test environment had a 42-in. LCD display, a
depth camera, and a PC which hosted the system to process
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Fig. 7 Gesture vocabulary. The
beginning of a gesture is
indicated by a solid dot

gesture inputs from the camera and deliver contents to the
LCD display. The PC had a 2.9 GHz CPU, 8 GB memory,
and a 2T hard disk. The experiment consisted of two parts:
off-line test and on-line test.

We tested the off-line recognition accuracy on two gesture
sets: the set of one-handed gestures used in Kristensson et
al.’s study, and the gesture set used in Lee et al.’s study. After
excluding five duplicate gestures that appeared in both sets,
we defined 48 gestures in the final gesture set (Fig. 7). For
each gesture, seventy isolated gesture sampleswere collected
using the toolkit shown in Fig. 6. Using a cross-validation
method, the first 45 input samples were used for training and
the last 25 input sampleswere used for testing. Therefore, our
database contained 70×48 = 3,360 gesture samples, where
2,160 samples were used for training and 1,200 sampleswere
used for testing.

Next, the on-line test was conducted based on the same
gesture vocabulary. But different from the off-line test, con-
tinuous gesture samples were collected in this test (e.g.,
Fig. 8).

As shown in Fig. 8, the non-gesture (N-G) pattern has the
greatest probability from frame80 to 99, therefore, all gesture
patterns are rejected by the system. To take a closer look at
the input stream, a transition stroke (garbage-gesture) before
the gesture “S” is performed in this stage. From frame 99 to
145, the probability of the non-gesture pattern nearly drops to
zero and there comes the gesture “S”. Next, the above curve
from frame 145 to 163 indicates a transition stroke between
two continuous gestures “S” and “T”, the above curve from

frame 163 to 184 indicates the gesture “T”, and the above
curve from frame 184 to 200 indicates a non-gesture pattern.

To test the performance of the spotting algorithm for con-
tinuous gestures, we defined three types of errors: insertion
error (detect a non-existent gesture), deletion error (fail to
detect a gesture), and substitution error (falsely classify a
gesture). Following the convention, the system performance
was measured in terms of the three types of errors and the
reliability. The average recognition accuracy is 93.47 %, as
shown in the bottom row of Table 2.

For a comparison with existing methods, we provide the
results by the method proposed by Lee and Kim [16] and
Kristensson et al. [15]. Lee et al. used a backward spotting
algorithm which first detects the end point of a dynamic
gesture and then tracks back to find the start point. Com-
pared with Lee et al.’s work, a forward spotting algorithm
is used for gesture spotting and recognition in this paper.
Table 3 illustrates the difference between the two methods
tested on the same ten gestures used in Lee et al’s experi-
ment. As for the recognition accuracy for isolated gestures
and the spotting accuracy for continuous gestures, no sig-
nificant difference is found between the two methods. How-
ever, the average speed of the forward spotting algorithm
used in our method and the average speed of the back-
ward spotting algorithm used in Lee et al.’s method are
0.33 seconds (SD = 0.10) and 0.71 s (SD = 0.14), respec-
tively. Using a matched-pair t test, we find the difference in
the spotting speed between the two methods is significant,
t25 = −23.047, p < 0.001.
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Fig. 8 Continuous gesture
recognition

In a study with aspects similar to ours, Kristensson et
al. (2012) used a probabilistic algorithm to incrementally
predict the user’s intended gestures while they are still
being articulated. Table 4 shows the difference between
Kristensson et al.’s method and our method tested on the
same 43 one-handed gestures used in Kristensson et al.’s
study.

We discuss the experimental results from the following
four aspects:

(1) For isolated one-handed gestures, our method achieved
higher recognition rate (97.21 %) than that obtained
using Kristensson et al.’s method (92.7 %). For isolated
two-handed gestures, the recognition accuracy is slightly
higher than that obtained for isolated one-handed ges-
tures in Kristensson et al.’s method. The primary reason
is that additional information can be provided by two
simultaneous input gestures to the recognizer under an
appropriate probabilistic model. Our method, by con-
trast, does not support two-handed gesture recognition.

(2) Due to the lack of the guidance of pre-attention mecha-

nism, Kristensson et al.’s method does not support con-
tinuous gesture recognition. In comparison, our method
achieved an average recognition rate of 93.33 %.

(3) The average speed of gesture spotting is 0.35 s using
Kristensson et al.’s method and 0.33 s using our method.
No significant difference is found between the twometh-
ods. Benefited from the use of forward spotting scheme,
bothmethods are faster than themethod proposed by Lee
et al. [16].

(4) Kristensson et al.’s method achieved an average predic-
tion accuracy of 46 and 80%when the complete gestures
had been articulated 20 and 80 %, respectively. In com-
parison, the average prediction accuracy is 60 and 95 %
using our method. But, it is worth noting that the pre-
diction accuracy for some gestures, such as I and J, N
andM,O andQ, and V andW, is well below the average
value due to the sub-gesture problem, i.e., some gestures
are very similar to sub-gestures of other gestures (Fig. 7).
Therefore, the system is prone to makemistakes before a
gesture is completed, for example, falsely matching the
gesture model “V” with a sub-gesture of “W”.
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Table 2 Spotting results with the visual attention model

Gesture Training

Data

Isolated gestures Continuous gestures

Test 

data

Correct Rec.

(%)

Test 

data

Insert

error

Delete

error

Substitute

error

Correct Det.

(%)

Rel.

(%)

45 25 25 100 30 1 0 1 29 96.7 93.5

45 25 24 96 30 0 1 1 28 93.3 93.3

45 25 25 100 30 0 1 0 29 96.7 96.7

45 25 24 96 30 1 1 3 26 86.7 83.8

45 25 25 100 30 0 1 0 29 96.7 96.7

45 25 23 92 30 0 0 3 27 90 90

45 25 24 96 30 0 0 2 28 93.3 93.3

45 25 25 100 30 0 1 0 29 96.7 96.7

45 25 25 100 30 2 3 1 26 86.7 81.3

45 25 25 100 30 1 1 1 28 93.3 90.3

45 25 25 100 30 0 0 1 29 96.7 96.7

45 25 25 100 30 0 2 0 28 93.3 93.3

45 25 24 96 30 0 0 2 28 93.3 93.3

45 25 24 96 30 0 0 2 28 93.3 93.3

45 25 24 96 30 0 1 2 27 90 90

45 25 24 96 30 1 1 2 27 90 87.1

45 25 24 96 30 0 0 2 28 93.3 93.3

45 25 24 96 30 0 1 0 30 100 100

45 25 25 100 30 1 1 3 26 86.7 83.9

45 25 24 96 30 1 2 2 26 86.7 83.9

45 25 23 92 30 1 1 2 27 90 87.1

45 25 23 92 30 0 0 3 27 90 90

45 25 24 96 30 0 1 1 28 93.3 93.3

45 25 25 100 30 0 0 1 29 96.7 96.7

45 25 25 100 30 1 0 0 30 100 96.8

45 25 24 96 30 0 1 1 28 93.3 93.3

45 25 25 100 30 2 3 2 25 83.3 78.1

45 25 25 100 30 0 0 1 29 96.7 96.7

45 25 25 100 30 0 0 1 29 96.7 96.7

45 25 24 96 30 0 1 1 28 93.3 93.3

45 25 25 100 30 0 1 0 29 96.7 96.7

45 25 23 92 30 1 2 3 25 83.3 80.6

45 25 23 92 30 0 0 1 29 96.7 96.7

45 25 24 96 30 1 0 0 30 100 96.8

45 25 23 92 30 1 1 1 28 93.3 90.3

45 25 25 100 30 0 0 1 29 96.7 96.7

45 25 25 100 30 1 0 1 29 96.7 93.5

45 25 23 92 30 2 2 4 24 80 75
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Table 2 continued

45 25 24 96 30 1 1 1 28 93.3 90.3

45 25 25 100 30 0 0 0 30 100 100

45 25 25 100 30 0 0 1 29 96.7 96.7

45 25 25 100 30 0 0 0 30 100 100

45 25 25 100 30 0 0 0 30 100 100

45 25 24 96 30 1 0 1 29 96.7 93.5

45 25 24 96 30 0 1 2 27 90 90

45 25 25 100 30 0 0 1 29 96.7 96.7

45 25 24 96 30 0 1 1 28 93.3 93.3

45 25 24 96 30 1 1 2 27 90 87.1

Total 2160 1200 1167 97.25 1440 21 34 61 1346 93.47 92.13

Rec. = Number of correctly recognized gestures / number of input gestures
Rel. = Number of correctly recognized gestures/(number of input gestures + number of insertion errors)
Det. = Number of correctly recognized gestures/number of input gestures

Table 3 Comparison between Lee et al.’s method and the proposed
method

Lee et al.’s
method

Proposed
method

Recognition accuracy for isolated
gestures (%)

98.19 98.0

Spotting results for continuous gestures

Detection (%) 93.81 94.68

Reliability (%) 93.14 94.07

Speed of gesture spotting (s) 0.71 0.33

Recognition accuracy = number of correctly recognized
gestures/number of input gestures
Reliability accuracy = number of correctly recognized
gestures/(number of input gestures + number of insertion errors)
Detection accuracy = number of correctly recognized gestures/number
of input gestures

Table 4 Comparison between Kristensson et al.’s method and the
proposed method

Kristensson et al.’s
method

Proposed
method

Recognition rate for isolated gestures (%)

One-handed gesture 92.7 97.21

Two-handed gesture 96.2 Unsupported

Continuous gesture recognition Unsupported 93.33

Speed of gesture spotting (s) 0.35 0.33

Prediction accuracy before the gesture is completed (%)

1/5 of the complete gesture 46 60

4/5 of the complete gesture 80 95

6 Conclusion and future work

In gesture-based interaction in the real world, one of the
challenges is to overcome the “Midas Touch” problem. In

this paper, a hierarchical parallel perception model is pro-
posed based on the human brain’s visual attention mecha-
nism.Different from previouswork, visual information flows
both top-down and bottom-up in the proposed model. Based
on the visual attention model, a unified framework is intro-
duced for hand detection, spatiotemporal spotting and pat-
tern recognition using the selective attention module, pre-
attention module, and sustained attention module, respec-
tively. Experimental results show that the proposed method
can achieve a high recognition performance for both isolated
and continuous dynamic gestures.

The main contribution of this paper is the visual attention-
based hand gesture recognition framework to address the
Midas Touch problem existing in most of real-world sce-
narios. Without loss of generality, we provided some basic
methods and techniques based on this framework for system
designers to develop hand gesture-based applications. The
proposed method can also work as a reference framework for
the design and development of various hand gesture-based
applications, such as intelligent household appliances (music
player, air conditioning, etc.), PC-based interactive systems
(computer games, virtual/augmented reality systems), and
robots.

It should be noted that our method offers a general frame-
work for developing hand gesture-based applications. The
methods and techniques we presented here exemplify an
implementation of this framework in design. Other alterna-
tives, hand gesture-based algorithms and tools can also be
used to replace our methods.

Our future work can be extended in the following direc-
tions. First, we will continue improving the performance of
the proposedmethod andmake it more efficient and robust in
real settings. Second, we will extend our method to support
two-handed gesture recognition and bimanual interaction
technologies. Third, wewill explore a reasonablemechanism
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for sub-gesture reasoning. Furthermore, we are also inter-
ested in verifying the performance of the proposed method
for more general applications in real-world scenarios.
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