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Abstract This article presents a framework for natural tex-
ture synthesis and processing. This framework is motivated
by the observation that given examples captured in natural
scene, texture synthesis addresses a critical problem, namely,
that synthesis quality can be affected adversely if the texture
elements in an example display spatially varied patterns, such
as perspective distortion, the composition of different sub-
textures, and variations in global color pattern as a result of
complex illumination. This issue is common in natural tex-
tures and is a fundamental challenge for previously devel-
oped methods. Thus, we address it from a feature point of
view and propose a feature-aware approach to synthesize
natural textures. The synthesis process is guided by a feature
map that represents the visual characteristics of the input
texture. Moreover, we present a novel adaptive initialization
algorithm that can effectively avoid the repeat and verbatim
copying artifacts. Our approach improves texture synthesis
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in many images that cannot be handled effectively with tra-
ditional technologies.
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1 Introduction

Image textures can either be artificially created or observed
in the natural scenes captured in an image. Natural tex-
tures usually include the textures created without mechan-
ical influence or embossed rolls. Realistic textures must be
synthesized to decorate objects in virtual scenes in numerous
applications.

Texture synthesis is defined in [1] as “a method that starts
from a sample image and attempts to produce a texture with
a visual appearance similar to that sample”. Most previous
example-based techniques [24] focus on handling and gen-
erating isotropic textures; however, the real world exhibits
many anisotropic examples of natural texture, which con-
tain TEXture Elements (texels) of varying shapes, color pat-
terns, and materials. These textures are useful in many image
editing applications, such as image compositing and texture
replacement in natural scenes. One such example is shown
in Fig. 1a. The sizes of the flowers and leaves are varied
spatially as a result of perspective distortion, and the scene
contains complex patterns of distributed flowers. Previous
techniques synthesize textures without requiring the preser-
vation of global visual effect. Consequently, clear artifacts
are generated, such as content loss and damaged perspec-
tives (e.g., Fig. 1d, e). Therefore, we must recover the infor-
mation regarding the perspective and texel size of the input
texture and use it to guide the synthesis process and generate
a good synthesis result. However, this scheme may strongly

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-014-1054-y&domain=pdf
http://dx.doi.org/10.1007/s00371-014-1054-y


44 F. Wu et al.

(a) (b) (c) (d) (e)

Fig. 1 Synthesis of natural texture, which is not captured by ortho-
graphic projection. The results of previous methods display repeat and
verbatim copying artifacts [e.g., (c)], or eliminate the perspective visual
effect [e.g., (d) and (e)]. Our result reproduces the global visual appear-

ance of the input and is more random visually. a Input. b Our result.
c Perspective- aware [3]. d Texture optimization [11]. e Parallel syn-
thesis [14]

(a) (b) (c) (d) (e)

Fig. 2 Synthesis of natural texture, which is composed of three types
of sub-textures. Our method preserves the spatial composition of sub-
textures and the perspective characteristic. The image in c depicts only

the perspective characteristic, whereas c, d, and e lose the composition
characteristics of the sub-textures. a Input. b Our result. c Perspective
aware [3]. d Texture optimization [11]. e Parallel synthesis [14]

restrict the search space during synthesis and induce obvious
artifacts, such as repeat copying a single patch and verbatim
copying parts of the sample image (e.g., Fig. 1c). Moreover,
the example may involve multiple sub-textures of different
materials (referred as composite texture [28], e.g., Fig. 2a).
The sub-textures should be synthesized separately to main-
tain the layout structure. However, the boundary between two
sub-textures may be indistinct in some cases; thus, the result
is expected to display a transition area.

These examples are not unique and exhibit a common
problem, that is, synthesis can fail in general as a result
of content complexity when texture images are not cap-
tured from orthographic projection (causing perspective dis-
tortion), contain small, salient distributed objects (generat-
ing complex patterns), involve multiple sub-textures, or dis-
play spatially varied color patterns. This problem cannot be
avoided given the anisotropic visual characteristics of many
natural textures. Therefore, the vivid global visual effects of
the sample input are easily lost in the results.

To solve this notorious and universal problem, we pro-
pose a novel, feature-aware framework of texture synthe-
sis. This framework analyzes the visual characteristics of an
anisotropic natural texture from multiple aspects and then
integrates these characteristics to guide the synthesis process
in reproducing the global visual characteristics of the sample
and generating the final result. This result is visually similar

to the input texture. In addition, we present a new initial-
ization algorithm based on poisson disc sampling [23,27] to
replace the traditional random initialization scheme and to
avoid producing the repeat and verbatim copying artifacts
that limit the randomness in the output texture.

Our algorithm improves the texture optimization frame-
work [11] by preserving the global visual characteristics of
the sample input during synthesis. Our automatic framework
is easy to use and can be extended to user-assisted texture
design. Our major contributions are as follows:

– An automatic and effective scheme to extract the size
variation of texels as a result of perspective distortion,
which is common in most natural scenes.

– A novel initialization scheme to solve problems with
repeat and verbatim copying. This scheme can maintain
the random distribution of texels in the result and effec-
tively enhances the visual quality of the synthesis result.

2 Related work

Texture synthesis Texture synthesis is a general example-
based methodology to synthesize similar phenomena, as
explored in [24].Most common texture synthesis approaches
are based on Markov random fields (MRF). However, the
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current scheme models a texture as the realization of a
local and stationary random process by assuming that pixels
with similar neighborhoods should be similarly colored. Per-
pixel algorithms develop texture pixel by pixel [1,2,6,25],
whereas patch-based algorithms [5,11,12,16,26] cut and
paste selected source regions together to form a new texture.
Efficient GPU-based techniques of texture synthesis [13,14]
have also been proposed, which achieve spatial determinism
and good controllability. Ma et al. [18] present a data-driven
method to synthesize repetitive elements. Kim et al. [10]
describe the spatial patterns of real-world textures in sym-
metry space and have utilized these representations of partial
and approximate symmetries to guide texture synthesis and
manipulation.

Anisotropic and inhomogeneous synthesis The basic
MRF-based scheme in most existing methods of texture syn-
thesis cannot adequately address the global visual variation of
texels with semantic meanings. Zalesny et al. [28] propose a
hierarchical approach to texture synthesis that considers tex-
tures to be composites of simple sub-textures. Han et al. [8]
use a few low-resolution exemplars as inputs to produce inho-
mogeneous textures that span large or infinite ranges of scale.
However, the two methods above cannot handle the problem
of perspective distortion in the sample input. Eisenacher et
al. [7] apply distorted textures as inputs and synthesized tex-
tures under new distortions. This method is limited in that
user interactions are required to define a Jacobian field for
use as an input in the synthesis involving distorted space
algorithms. Nonetheless, it is effective for structured textures
(e.g., bricks and stones), although it cannot address the sto-
chastic textures that are popular in natural scenes (e.g., grass,
flowers, and water). Dong et al. [3] establish a perspective-
aware texture synthesis algorithm by analyzing the size vari-
ation of a texel. This framework can preserve the perspective
characteristic of the sample input in the outputted result, but
most examples must generate the control maps manually (to
indicate the size of the texels). Thus, the results often display
repeat and verbatim copying artifacts. Dong et al. [4] present
an interactive method to synthesize plant scenes from natural
texture samples. Controlmaps aremanually generated to pre-
serve the global appearance of the examples in the results.
Image quilting [5] is adapted as the texture synthesis frame-
work. However, this method also suffers from repeat copy-
ing and verbatim copying artifacts, as in [3]. Rosenberger
et al. [20] propose an example-based method to synthesize
control maps suitable for non-stationary textures, such as
rusted metal and marble. This method is unfit for natural tex-
tures that cannot extract feasible layer maps, such as grass
and sand. Ma et al. [17] report on dynamic element textures
that aim to produce controllable repetitions by combining
constrained optimization and data-driven computation. Park
et al. [19] develop a framework for the semi-automatic syn-
thesis of inhomogeneous textures froma theoretically infinite

number of input exemplars. However, this method requires
the input examples to be somewhat homogeneous.Moreover,
it cannot handle perspective distortions.

3 Overview

In this study, we investigate feature-aware texture synthe-
sis and manipulation. We mainly specify the visual char-
acteristics of natural textures in feature constraints and use
an objective function that has been optimized according to
these constraints to guide texture synthesis. To construct
the framework, we first analyze the content of the input
texture to extract its visual characteristics, including per-
spective direction (Sect. 4.1), texel sizes (Sect. 4.2), and
texel types (a composite texture contains several types of
sub-textures, Sect. 4.3). We integrate the characteristics of
texel sizes and texel types into a size and a type map sepa-
rately. Using these characteristics as feature constraints, we
develop a new approach to optimize the synthesis process
for natural textures (Sect. 5). We also use the size map
to control the locations of differently sized texels in the
output texture to maintain the perspective effect. We uti-
lize the type map of a composite texture to control which
sub-texture appears in which location. Furthermore, we
propose a novel initialization algorithm based on poisson
disc sampling to enhance visual randomness in the synthe-
sized texture (Sect. 5.1). This operation is crucial in solv-
ing the problems of repeat and verbatim copying caused
by the limitation in searching space when synthesizing an
example with perspective effect. In addition, we propose
the new neighborhood metric to preserve the global visual
appearance of the input texture during synthesis (Sect. 5.2).
Finally, we adapt the expectation–maximization (EM)-like
optimization framework to synthesize the output texture
(Sect. 5.3).

4 Analysis of texture content

4.1 Detection of perspective direction

The variation of texel sizes in natural textures is strongly
related to perspective direction. Given a sample input texture
I, we denote the texel size at position p as S(p) and assume
that S(p) varies monotonously from large to small in a fixed
direction. This assumption is reasonable for many natural
scenes according to the common photographic custom. If we
segment the image into two parts using a line of the perspec-
tive direction in accordance with this assumption, then we
can expect their contents to be similar. Thus, we simplify
the calculation of perspective direction to determine the best
“reflection symmetry axis.” In this study, we refer to this axis
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(a) (f)

(g)(c) (d) (e)

(b)

Fig. 3 Estimation of perspective direction and texel sizes. We apply blue color in g to illustrate large texels. a Input. b Perspective directions/lines
for testing. c Patch distance. d Local energy. e Rough size map. f Fitting texel size curve. g Final size map

as the perspective line of a natural texture. In our approach,
we check the 8 axes that include 16 perspective directions
(i.e., i · 22.5◦, i = 0, 1, . . . , 15), as shown in Fig. 3b. Each
axis represents two opposite directions that form the same
line and can be treated by the same operation during texel
size estimation (detailed in Sect. 4.2). This scheme usually
estimates the texel sizes adequately because we typically do
not require a highly accurate size variation map. The varying
direction is the most important variable.

We get the perspective line by comparing the content sim-
ilarities of the two “symmetric regions”.Without loss of gen-
erality, we use the test of vertical bisector as an illustration,
as depicted in Fig. 3c. First, we divide the two image regions
into multiple equally sized patches of equal size (32× 32 in
all our experiments). We denote P1 and P2 as the patch sets
of these two regions. The metric is defined as:

d(P1,P2) = min
φ

N∑

i=1

de(P1(φ(i)),P2(i)), (1)

where φ belongs to the set of permutations of {1, . . . , N } and
N is the number of patches in each region. We adopt Earth
Mover’s Distance (EMD) [21] to optimize the mapping cost
in Eq. (1). Each patch is assigned the same weight in our
implementation. The computation of EMD is then reduced
to an assignment problem. Therefore, each patch in the left
region is assigned to exactly one patch in the right region.
We apply an exponential distance to compute the distance
between two patches P(p) (in the left region) and P(q) (in
the right region):

de = exp

( ||p′ − q||2
δs

)
· exp

(
D(P(p), P(q))

δc

)
, (2)

where p is the center coordinate of P(p); q is the center
coordinate of P(q); p′ is the symmetric coordinate of p, ||.||
denotes the l2 norm; D is the sum of squared distances (SSD)
of the pixel colors between P(p) and P(q); and δs and δc are
the parameters used to control the contributions of geometric
location and color information, respectively (δs = 0.6 and
δc = 1.0 in our experiments). Thus, we calculate the “sym-
metry distance” of each axis. The axis with the minimum
distance is the perspective line along which the texel sizes
are varied. For example, the vertical axis that has the mini-
mum symmetry distance is the perspective line in Fig. 3b.

4.2 Estimation of texel size

We estimate the variation characteristics of the texel sizes
along this line after obtaining the perspective direction (the
perspective line). For each pixel in I we calculate its gra-
dient in both X and Y directions (normalized to [0, 1]) and
select the maximum value E(p) = max( ∂ f

∂x ,
∂ f
∂y ) as the local

energy, as displayed in the form in Fig. 3(d).We calculate the
number of pixels (denoted as NE (p)) whose energy value is
larger than a threshold at each location p in a 20× 20window.
NE (p) is used to estimate the complexity of local content.
We consider the NE (p) value at this position to also be large
if a local region contains a large number of texels because
many texels usually increase the frequency of energy vari-
ations. Therefore, texel size S(p) is inversely proportional
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Fig. 4 Examples of composite natural textures

to NE (p). NE (p) is visualized as a noisy texel size estima-
tion, as exhibited in Fig. 3e. The pixels in dark areas have
large texels. However, such size maps are unfit to guide the
texture synthesis process because of the following two rea-
sons: first, some areas experience errors caused by the unpre-
dictably complex content or by the low quality/resolution of
the example; second, the discrete distribution of size values
may enhance unexpected seams and texel discontinuity in the
result. In fact, the use of a continuous and smooth size map
such as Fig. 3g in our experiments generates high-quality
results.

To produce a continuously varied size map, we first cal-
culate the sum of NE (p) (denoted as SE (x)) along every
line, which is perpendicular to the perspective line. For the
example in Fig. 3a, we simply calculate SE (x) along each
row. By setting the line position as the X coordinate and the
normalized SE (x) value as the Y coordinate, we obtain the
red circles in Fig. 3f. We then determine the longest monoto-
nous sub-sequence (the green triangles in Fig. 3f) and apply
these values to this sub-curve to fit a cubic polynomial curve
(the black curve in Fig. 3f). Finally, we use this polynomial
to re-generate the size value of each line and to generate the
continuous varied size map in Fig. 3g.

4.3 Sub-textures of composite texture

We display standard composite natural textures in Fig. 4.
Each composite texture contains several sub-textures of dif-
ferent materials. To synthesize a composite texture, we first
segment the sample input into separate sub-textures. Many
texture segmentation techniques [9,15] can be used in this
process. The segmentation may need to be adjusted manu-
ally if it is inaccurate. The segmentation results of the four

textures in the first row of Fig. 4 are provided in the sec-
ond row. Different intensities represent various types of sub-
textures.

5 Synthesis approach

5.1 Initialization

We employ patch-based approach in our framework for tex-
ture synthesis. However, the normal initialization scheme
that typically copies patches from the sample into the output
domain randomly is unsuitable for our synthesis requirement.
The synthesized results obtained with purely random initial-
ization easily generates repeat copying artifacts and loses
the perspective effects in the output images, as indicated in
Fig. 5e. To address these problems, we present a new initial-
ization method for natural texture synthesis that considers
the visual characteristics of the sample input.

Artifacts may be produced if we use fixed-size patches
to initialize the output of a texture under perspective effect,
as in previous methods. For instance, areas with small ele-
ments are subject to repeat copying if we use large patches,
whereas areas with large elements may contain incomplete
elements if we use small patches. Therefore, we develop a
novel scheme to adaptively determine the size of an initial-
izing patch at each location. We first cluster the pixels in the
size map according to the texel sizes through the k-means
method (k = 10 in all our experiments) and calculate the
average size value of each clustered set (e.g., Fig. 5c). We
then re-sample the clustered input size map CI in relation to
the size of the output to generate output control map CO and
to denote the texel size component of CO as CS

O . We begin

123



48 F. Wu et al.

(a) (b) (c) (d) (e) (f)

Fig. 5 Comparison of texture synthesis results using our initialization and random initialization methods. a Input. b Control map. c Clustered.
d Our result. e Ours with random init. f Texture Optimization [11]

(a) (b) (c) (d) (e)

Fig. 6 Initialization of the output image with patches of adaptively variant sizes. a Input. b Patch grid. c Initialized output image. d Our synthesis
result. e Texture optimization [11]

the initialization by placing patches side by side on the out-
put domain in scan-line order. We calculate the patch size
of the first patch in the left-top corner of the output using
the texel size CS

O(0, 0). We then calculate the size of another
patch in the row according to the CS value of the right-top
pixel of the patch on its left. We determine the minimum
patch size wmin of the first row of patches after initializa-
tion and apply the next row of patches from (0, wmin). The
size of the first patch in this row is computed according to
CS
O(0, wmin). We then position the other patches according to

the scheme used on the first row.We continuously place rows
of patches with adaptively variant sizes based on the scheme
of the second row until the output domain is filled. Fig. 6b
shows a sample patch grid wherein patch sizes are adaptively
variant.

Two items must be specified for the initialization process
described above. The first item is how the patch size is adap-
tively calculated. Without loss of generality, we take a patch
that is located in the middle of a row as an example and
denote the size value of its left-top corner as CS

O(p). We set
the patch size w as:

w = 16 + 32 · CS
O(p), (3)

which is varied in the interval [16, 48]. The other item
involves the selection of a feasible patch P(q) from the sam-
ple input for a patch P(p), which is initialized in the output.

Both p and q represent the central coordinates of the patch.
Given an w(p) × w(p) output patch P(p), we first locate
the cluster to which P(p) belongs in the clustered input con-
trol map. We then randomly choose a patch P(q) from this
cluster. As presented in Fig. 7, we check the following two
conditions for each existing patch P(p) that intersects with
a 4w(p) × 4w(p) neighborhood around P(p):

|p − p′| < w(p)&|q − q ′| � |p − p′|,
|p − p′| � w(p)&|q − q ′| � 2w(p),

(4)

where q ′ is the central coordinate of P(q ′) in the sample
input, which has been copied to P(p′) as an initialization.
We copy P(q) to P(p) if either of the above conditions is
true. Otherwise, we randomly select a new P(q) if the patch
is consistent with either of the two conditions. An initialized
output image is depicted in Fig. 6c.

The two heuristic conditions in Eq. (4) can ensure that
the same content does not appear very closely and frequently
in the output, which can effectively reduce the presence of
repeat and verbatim copying artifacts in the result.

We re-sample the input type map to output size in the
process of synthesizing a composite texture to obtain the
spatial layout of sub-textures in the resultant image. There-
fore, we still adaptively calculate the patch sizes according to
the size map during initialization, but we select patches from
different sub-textures based on the type map. We check the
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Fig. 7 Illustration of the two
conditions in Eq. (4)

(a) (b) (c) (d)

Fig. 8 Initialization and synthesis of a composite texture. a Input. b Patch Grid. c Initialization. d Result

type value at its central coordinate and initialize the patch by
choosing patches from the corresponding sub-texture given
a patch that crosses the border of two different clusters.
Figure 8 shows the initialization results of a composite tex-
ture. Our algorithm maintains the spatial distribution of sub-
textures in the initialization results. Moreover, we synthe-
size each sub-texture separately. This scheme can ensure the
generation of a texture that is visually similar to the input
example.

5.2 Neighborhood metric

The neighborhood similarity metric is the core component
of example-based texture synthesis algorithms. We denote
Z p as the spatial neighborhood around a sample p, which
is constructed by uniting all of the pixels within its spatial
extent as defined by a user-specified neighborhood size. We
formulate the distance metric between the neighborhoods of
two samples p and q as:

M(Zq; Z p) =
∑

p′∈Z p

‖cq ′ − cp′ ‖2 + α · ‖xq − xp‖2, (5)

where p′ runs through all pixels∈ Z p,q ′ ∈ Zq is the spatially
corresponding sample of p′; c represents the pixel color in
the RGB space; and x is the feature value of a sample pixel
in the feature map. We incorporate the visual characteris-
tic information of the texture content into the neighborhood
metric, unlike in traditional texture synthesis wherein the
neighborhood metric is usually defined as a simple SSD of
the pixel attributes (such as colors and edges). This item can
preserve the global appearance without over-smoothing and
generating clear partial/broken objects (discussed in detail in
Sect. 6).

5.3 Optimization

Therefore, we aim to synthesize an output O that is visually
similar to the original sample texture I in appearance. We
formulate this problemas an optimization problem [11] using
the following energy function:

E(I;O) =
∑

p∈O
M(Zq; Z p), (6)
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where the first term measures the similarity between sample
inputI andO using our local neighborhoodmetric as defined
in Eq. (5). Specifically, we determine the corresponding input
sample q ∈ I according to the most similar neighborhood
[according to Eq. (5)] for each output sample p ∈ O. We
then sum up the squared neighborhood differences. Our goal
is to obtain an output O with a low energy value. For our
normal image resizing applications, we assume as null. Fur-
thermore, we follow the EM-like methodology in [11] to
optimize Eq. (6) because of its high quality and generality
under different boundary conditions.

We synthesize multiple resolutions through an iterative
optimization solver. In Eq. (5), we apply a large α value in
low resolutions to enhance the spatial constraint. This scheme
helps preserve the global appearance during synthesis. We
reduce the α value in high resolutions to avoid the repeat and
verbatim copying artifacts in the local texel. We use a three-
level pyramid in all our experiments and fix α = 0.65, 0.25,
0.1 for each level in ascending order. This setting is effective
in all our experiments.

Given a composite texture, content discontinuities may
be observed in the boundary areas because we synthesize
each sub-texture in the output image separately. To reduce
this artifact, we develop each boundary by expanding four
pixels on both the inward and outward sides. We then detect
an overlapping area between two sub-textures in the output
image. Subsequently, we re-synthesize these boundary pixels
by taking the entire input texture as an example. This scheme
helps to effectively maintain content consistency among sub-
textures.

6 Results and discussions

Performance We implemented our method on a PC with an
Intel Core(TM) i7 950 CPU, 3.06 GHz, 8 GB RAM, nVidia
Geforce GTX 770 GPU, and 2048 MB video memory. The
texture analysis and initialization steps in our framework are
both performed in real time. Our EM-based synthesis algo-
rithm is fully implemented on the GPU with CUDA and the
timing of this step ranges between 16 (input 128× 128, out-
put 256 × 256) and 80 seconds (input 192 × 192, output
400×400) in this study. Table 1 displays the runtime of some
examples. The time covers the cost of both texture analysis
and synthesis.

Evaluation and discussion Figures 1, 2, 5 and 9 exhibit
the results of our feature-aware texture synthesis and the
comparison with other method. The control maps of all of
the samples are generated automatically. Additional results
are shown in the supplemental material. The findings with
perspective-aware synthesis [3] are all subscribed by the orig-
inal authors. The results of texture optimization [11] and
parallel synthesis [14] are generated through our own imple-

Table 1 Running time of some examples

Image Input res. Output res. Time (s)

Figure 1 192 × 192 400 × 400 63

Figure 2 192 × 192 400 × 400 71

Figure 5 160 × 160 400 × 400 56

Figure 6 128 × 128 256 × 256 18

Figure 9 (water) 192 × 192 400 × 400 50

Figure 9 (grass 1) 166 × 166 384 × 384 43

Figure 9 (flowers 1) 128 × 128 400 × 400 38

Figure 9 (grass 2) 192 × 192 400 × 400 71

Figure 9 (flowers 2) 192 × 192 400 × 400 80

Figure 9 (flowers 3) 192 × 192 400 × 400 78

Figure 10 192 × 192 400 × 400 69

Figure 11 128 × 128 256 × 256 16

mentation. Our method utilizes the visual features extracted
from the content of the sample input in the process of synthe-
sizing a natural texture to guide the synthesis process. Thus,
it can easily reproduce the global visual features of the sam-
ple in the result. We present a synthesis result obtained with
a user-designed control map in Fig. 11.

Our method can generate more natural textures than the
two state-of-the-art general texture synthesis algorithms in
[11] and [14] because our technique preserves global visual
effects such as perspective variation, composition of sub-
textures, and global color patterns. Our technique is more
flexible and effective than those reported in previous works
that can generate results with similar appearances, such as
those of [3,4,12,14,29]. Although the method of Dong et al.
[3,4] can also generate textures with perspective effects, the
results often display the clear repeat copying artifacts of the
same pattern in a small area and the verbatim copying of parts
of the sample images. On the contrary, the control maps must
typically be generated manually as in [3] and [4], whereas
our content analysis method can extract usable control maps
(feature maps) from most examples automatically. The input
must either be isotropic or treated as isotropic (no scale varia-
tions among the texels) in [29] and [14]. Thus, the concept of
these schemes differs completely from that presented in our
work. The graphcut-based texture synthesis method in [12]
can generate a perspective texture by re-sampling the input
image (without perspective effect) to different scales and by
constraining different portions of the output texture to copy
from various scales of the sample. The scope of this method
varies from that of our work because we deal directly with
perspective examples. However, the graphcut-based method
can only expand an input texture with perspective effect in
its non-perspective direction, i.e., the output image must be
similar to the input in height andwidth. However, ourmethod
can generate arbitrary sizes of output images. As shown in
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(a) (b) (c) (d) (e)

Fig. 9 Comparison of synthesis results with different methods. a Input. b Our results. c Perspective aware [3]. (d) Texture optimization [11].
e Parallel Synthesis [14]
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(a) (b) (c) (d) (e)

Fig. 10 Comparison of our result with those that use fixed-size patches in initialization and synthesis. a Input. b Our result. c Using 16 × 16
patches. d Using 32 × 32 patches. e Using 48 × 48 patches

Fig. 11 Extended to
user-assisted texture design. We
use a user-designed output size
map to synthesize the result to
get a new global appearance

Fig. 9, the output aspect ratio of the green grass texture is dif-
ferent with the sample input, but we can also generate a good
result benefiting from the use of feature map in the synthesis
framework.

We apply variant sizes of patches during both initialization
and synthesis in our algorithm. This scheme is necessary in
the preservation of both the global visual effect and in local
texel completeness. In Fig. 10, we depict the results of using
fixed-size patches in our algorithm to synthesize a natural
texture. Texel incompleteness artifacts are generated in the
areas wherein texels are large (e.g., Fig. 10c, d) if we use
small fixed patches. The perspective effects are limited (by
the unexpected mixture of small and large texels) if we apply
large fixed patches (e.g., Fig. 10d, e). Therefore, we synthe-
size the areas of large texels with large patches to preserve
the completeness of local texels by assuming that a patch that
measures approximately 48×48 is large enough to cover the
entire or most parts of the largest texels. By contrast, we
use small patches to synthesize the areas of small texels to
preserve global visual effects by assuming that a patch that
measures approximately 16 × 16 is small enough to main-
tain a continuously global variation. In particular, we aim to
avoid the incorrect mixture of large and small texels.

Limitations Although our algorithm integrates the fea-
tures of the visual characteristics of the sample input into the
texture synthesis process, some of the high-level semantic
appearances may still be damaged in the result. For exam-
ple, the original spatial layout of the footprints is no longer
observed in our result, as shown in Fig. 12. This problem
may be solved by integrating object-level information. The
feature detection phase may require user interaction in some
examples. The perspective direction generated by our evalu-
ation algorithmmay also be inaccurate when the input exam-
ple is evidently asymmetrical along the right direction (e.g.,
Fig. 8a). This problem can be addressed by generating the
size map manually using the method in [3]. Automatic tex-
ture segmentation may also fail to produce good type maps
for some composite textures. Consequently, the quality of
the synthesis results is affected. We manually generate an
incorrect type map (Fig. 13) to guide the synthesis process
and observed obvious artifacts in the result (Fig. 13d). This
finding is mainly attributed to the poor initialization result
(Fig. 13c) in which sub-textures are incorrectly composited
in some regions. Therefore, we must refine the type map by
manually segmenting the input texture to obtain a good syn-
thesis result. Moreover, we still cannot generate a real-time
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(a) (b) (c) (d)

Fig. 12 Our algorithm may generate an undesired result that damages the original spatial distribution of the semantic objects in the result because
we do not possess object-level information regarding the input exemplar. a Input. b Our result. c TexOpt [11]. d ParaSyn [14]

(a) (b) (c) (d)

Fig. 13 Result may be unsatisfied with bad type mask. a Input. b Mask. c Initialization. d Result

(a) (b) (c)

Fig. 14 We must conduct an accurate search during the neighborhood
matching step instead of an approximate nearest neighborhood search
(K-coherence or K-means) to avoid the blurry blending in b and the

local repeat copying artifacts in c because of the obviously anisotropic
characteristics in natural textures. a Accurate search. b K-means.
c K-coherence

performance as in the parallel synthesis methods of [13] and
[14] although synthesis operation (the most time-consuming
step) is fully implemented on GPU as in Table 1. This fail-
ure is ascribed to the fact that we must search exhaustively
for each Z p to obtain the best neighborhood patch Zq from

the exemplar in each neighborhood matching iteration. The
large resolutions of both the input (192 × 192) and the out-
put textures (400 × 400) in our experiments also increase
the runtime of our system (previous works usually synthe-
size a 128 × 128 or 256 × 256 texture using 64 × 64 or
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128×128 exemplars). The algorithmcanbe accelerated using
K-means [11] or K-coherence [14,22] to determine an
approximate nearest neighborhood. However, these neigh-
borhoods may differ significantly from the exact one given
the evident anisotropy in natural texture, which tends to
induce blurry blending or local repeat copying artifacts (e.g.,
Fig. 14).

7 Conclusion

We have presented a method that facilitates feature-aware
texture synthesis for samples with globally variant appear-
ances. Our method is guided by a feature map that roughly
masks the visual characteristics in the texture images while
the synthesis results produced by our algorithm either pre-
serve the appearances of those characteristics or present user-
defined feature constraints. These results are difficult or at
least cumbersome to obtain with current software; therefore,
we plan to incorporate object-level information into the syn-
thesis process of our future work to address the textures con-
structed by obvious discrete elements.
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