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Abstract Visual saliency aims to locate the noticeable
regions or objects in an image. In this paper, a coarse-to-
fine measure is developed to model visual saliency. In the
proposed approach, we firstly use the contrast and center
bias to generate an initial prior map. Then, we weight the
initial prior map with boundary contrast to obtain the coarse
saliency map. Finally, a novel optimization framework that
combines the coarse saliency map, the boundary contrast
and the smoothness prior is introduced with the intention
of refining the map. Experiments on three public datasets
demonstrate the effectiveness of the proposed method.

Keywords Visual saliency · Boundary contrast ·
Smoothness prior · Optimization framework

1 Introduction

Visual saliency is an effectiveway to identify themost impor-
tant and noticeable regions in a scene. In the last few decades,
many researchers have devoted themselves to the study of
visual attention [1,2] and many computational models have
been developed. This new trend is motivated by the broad
application of saliency detection in visual computer, such as
image retrieval [3], image segmentation [4], object recog-
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nition [5], object retarget [19] and adaptive compression of
images [6]. Generally, there are three sub-fields (fixation pre-
diction [7], salient object detection [28] and objectness pro-
posals [29,30]) which can be considered as a part of visual
saliency detection. Based on what the model is driven by,
there are always two types of computational models. One is
the bottom-upmodel, which is fast and data driven. The other
is the top-down model that is always slower and task driven.

Recently, most of the works have taken much effort to
build bottom-up saliency models on low-level image fea-
tures. The most fundamental measure for visual saliency is
the contrast computation. Depending on where the contrast
is computed, previous methods can be categorized into local
contrast [7–10] and global contrast [4,11–13].

The local methods investigate various contrast measures
in a small local neighborhood of the pixel or region. Itti et al.
[7] utilized the color, intensity and orientation image features
to develop a multi-scale bottom-up saliency method, which
is usually used for comparison and is a milestone in saliency
detection. Harel et al. [8] introduced amethod to non-linearly
combine the local uniqueness maps from different feature
channels to highlight conspicuity. Ma and Zhang [9] used
an alternative local contrast analysis for saliency estimation.
Moreover, Liu et al. [10] presented an algorithm which uses
themulti-scale contrast in a difference-of-Gaussian pyramid.
The methods based on local contrast can only achieve suc-
cess in limited aspects. The edges of the salient objects are
better than the object’s interior, since the latter cannot be
highlighted uniformly.

The global methods compute the pixel or region saliency
at global scalewith respect to the entire image. Zhai and Shah
[11] calculated the color saliency with image histograms in
the whole image region. Goferman et al. [4] considered four
principles of human visual attention to exact the saliency
map. Based on the global contrast, Cheng et al. [12] designed
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Fig. 1 Visual examples of the
proposed approach. a The input
images. b The ground truth.
c The saliency maps of our
methods

a saliency detection approach which involves either the color
contrast or spatial coherence. Achanta et al. [13] proposed a
frequency tuned method to generate the saliency map, with
consideration of color difference between each pixel and
the average value of the entire image in Lab color space.
However, when the backgrounds are complex and the salient
objects are small, there also exists difficulty in global method
ondistinguishing the salient object.Althoughglobalmethods
can alleviate the problemof highlighting the object uniformly
which exists in local methods, these methods still have diffi-
culties in highlighting the entire object uniformly.

Recently, a few methods which exploit the smoothness
[14,15] item to refine the saliency quality have been pro-
posed. Yang et al. [14] presented a novel bottom-up salient
object detection approach by using contrast, center and
smoothness priors. Based on quadratic programming frame-
work, Li et al. [15] defined an approach that can adap-
tively optimize the regional saliency values on each specific
image to simultaneously meet multiple saliency hypotheses
on visual rarity, center bias and mutual correlation. How-
ever, these methods cannot make full use of the low-level
information and the application of center bias still has some
limitations.

To obtain a more robust result, and inspired by Yang et al.
[14] and Li et al. [15], we propose a coarse-to-fine measure
based on low-level information for defining image saliency.
Firstly, we learn from [14] that the contrast and center priors
were used to compute an initial prior map. Unlike most of the
existing algorithms that refer to image center as priors, we
estimate the center of the salient object by applying the con-
vex hull of interest priors. Then we weight the initial prior
map with boundary contrast to obtain the coarse saliency
map. The boundary contrast is defined as the rarity of a region
to boundary regions. Finally, we propose a novel optimiza-

tion framework that combines the coarse saliency map, the
boundary contrast, and the smoothness prior to refine the
map. This strategy can effectively suppress the background
and uniformly highlight the salient object. We experimen-
tally demonstrated that our method captures more the salient
object than the state of the art methods [14,15] on famous
benchmarks. Some visual saliency effects of the proposed
method are shown in Fig. 1.

The rest of this paper is organized as follows. Details of
the coarse saliency map are analyzed in Sect. 2, whereas the
optimization framework is described in Sect. 3. The exper-
iments on public datasets are preformed in Sect. 4 and the
paper is concluded in Sect. 5.

2 The details of coarse saliency map

Taking the computational complexity into consideration, we
over-segment the image into N super-pixels with the SLIC
algorithm [16]. The measure can preserve the object bound-
aries better than the fixed size segmentation.

2.1 The initial map

Based on the color contrast and spatial coherence [14], the
contrast prior map can be defined as a kind of regional rarity:

Sco(i) =
∑

j �=i

∥∥ci − c j
∥∥ · exp

(
−

∥∥pi − p j
∥∥2

2σ 2
p

)
, (1)

where i and j denote the super-pixels, respectively, ci and
c j are the mean color values of the corresponding super-
pixel in CIE LAB color space, pi and p j are the average
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Fig. 2 The comparison examples with Yang [14]. a The input images.
bTheground truth. cThe initial priormaps in [14].dThe coarse saliency
maps by weighting the initial prior map with boundary contrast. e The

final saliency maps (PBS) in [14]. f The refined saliency maps of the
proposed approach

position whose values are normalized to [0, 1], and σ 2
p = 0.2

indicates the strength of spatial coherence. Because of the
absence of high-level priors, the initial map often incorrectly
detects some background noises. Thus, we use the convex
hull enclosing interesting points to estimate the general loca-
tion of the salient object.Given the center (x0, y0), the convex
hull-based center prior map can be defined as:

Sce(i) = exp

(
−‖xi − x0‖2

2σ 2
x

− ‖yi − y0‖2
2σ 2

y

)
, (2)

where σx and σy control the horizontal and vertical variances,
and we set σ 2

x = σ 2
y = 0.15 in our experiment. Then the

initial prior map can be obtained by fusing the above two
prior maps:

Sin(i) = Sco(i) × Sce(i). (3)

A visual saliency effect of the initial prior map is shown in
Fig. 2c. By comparing the result, we note that the contrast
prior map based on a super-pixel’s contrast to all other super-
pixels is inaccurate in many cases. Although the contrast
prior map combines with the convex hull-based center prior
map, there is still difficulty in suppressing the background
efficiently.

2.2 The coarse saliency map weighted with boundary
contrast

For most nature images, the background regions always
appear smoothly and homogenously [18], while the salient
pixels are usually grouped together [4]. From the photo-
graphic composition rules, we further observe that most pho-
tographers will not crop salient object along the view frame
[18]. Thus, we can define the boundary contrast of a region as
its color contrasts to the image boundary regions. It is close
to 1 when the contrast is large and close to 0 when it is small.
The definition is:

ctri = exp

⎛

⎝− 1

m

m∑

j=1

wi j

⎞

⎠ , (4)

where m is the number of super-pixels on the image bound-
aries (we first use the SLIC algorithm to segment the image
into N regions; then, we can obtain the boundary pixel set
that was connected to the image boundary).

wi j = exp(−‖ci−c j‖
σ 2 ) is the color contrast (σ 2 = 0.1

empirically), whereas ci and c j are the mean color values of
corresponding super-pixels and j represents the super-pixels
in the image.
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Fig. 3 Validation of the proposed approach. a Comparison of the proposed background contrast-weighted coarse saliency map (CSM_bc) with
the initial prior map (IPM). b The performance estimation of the proposed optimization framework

Fig. 4 The parameter setting and performance of different terms in
the our optimization framework on the MSRA-1000 dataset. a The
precision–recall comparison of different α on the refined saliencymaps.

bThe precision–recall comparison of different β on the refined saliency
maps. cThe validation of different terms in our optimization framework

We weight the initial prior map with boundary contrast,
which is defined as:

Scoar(i) = Sin(i) · ctri . (5)

According to Eq. (5), the object regions receive high ctri
and the background regions receive small ctri , so the object
regions are highlighted while the background regions are
suppressed. This measure effectively enlarges the contrast
between the object regions and background regions. Such
improvement is clearly presented in Fig. 2d. The original
initial prior map in [14] is messy when the background is
complex (as shown in Fig. 2c). With the boundary contrast
as weight, there is an obvious improvement.

The boundary contrast can suppress the background to a
certain degree, while it is still bumpy and noisy. In the next

section, we will propose a novel optimization framework to
integrate these measures based on [15].

3 The optimization framework

From rarity hypothesis, center bias hypothesis and correla-
tion hypothesis, Li et al. [15] transformed the problem of
visual saliency estimation into an optimization framework.
To combinemultiple saliency cues ormeasures, we introduce
a novel optimization framework that combines the coarse
saliency map, the boundary contrast and smoothness prior to
obtain the refined saliency map.

In this work, we model the saliency detection problem
as the optimization of the saliency values of all the image
super-pixels. The energy function is designed to assign the
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Fig. 5 Saliency detection results of different methods on the MSRA-1000 [13] dataset. The proposed approach consistently generates saliency
maps close to the ground truth

salient super-pixel value 1 and value 0 to the background
super-pixel. Let Si be a saliency value of a super-pixel, then
the energy function is defined as:

argmin
S

N∑

i=1

(1 − ctri ) · S2i +
N∑

i=1

Scoar(i) · (Si − 1)2

+
N∑

i=1

λi · (Si − Scoar(i))
2+

N∑

i=1

Ti · (Si − Zi )
2,

+
N∑

i, j=1

wi j (Si − S j )
2. (6)

The five items are different constraints in the definition of
saliency detection. According to the definition of ctri , it is
close to 1 when the contrast is large and close to 0 when it
is small. Thus, the value of (1− ctri ) denotes the probability
of super-pixel i which belongs to the background; it is large
when the super-pixel belongs to the background and small
when the super-pixel belongs to the salient object. The first
item encourages a super-pixel to take a small value Si with
large background probability.

The following three items are all related to the coarse
saliency map (Eq. 5). The second item indicates that a super-
pixel with high value of Scoar(i) takes a high value Si (close
to 1). The third item shows that the final saliency should not
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Fig. 6 Evaluation of the proposed work on the MSRA-1000 [13] dataset. Precision–recall curves in a is the comparison of different previous
methods. b The precision, recall and F-measure

change too much from the coarse saliency map, whereas λi
signifies that if a super-pixel’s value is close to 1 or 0 in
a coarse saliency map, it has a more significant impact on
final saliency and it is defined as: λi = exp(−Scoar(i) · (1 −
Scoar(i))/σ 2

1 ).
The constraint parameter σ 2

1 is empirically set to 0.1.
Inspired by [27] in the fourth item, Ti is the assuring con-
straint whose elements are 1 for certain pixels and 0 for all
other pixels, and is given by:

Ti =
⎧
⎨

⎩

1, if (Scoar(i) ≥ αM)

1, if (Scoar(i) < βM)

0, otherwise
, (7)

where M represents the mean saliency value of the coarse
saliency map. If Scoar(i) ≥ αM , we assume that the super-
pixel i belongs to the foreground. Moreover, if Scoar(i) <

βM , then i belongs to the background. Experimentally, we
find that when we set α = 2.22 and β = 0.3 (Fig. 4a, b),

the performance is stable. Zi denotes the certain foreground
pixels whose value is 1 and 0 for others. Inspired by closed-
form solution [27], we admit that if the current super-pixel i
belongs to a foreground region, the value of Zi is 1, otherwise
its value is 0. The last item encourages continuous saliency
values. It indicates that a good saliency map should have
similar saliency value between nearby super-pixels.

The minimum solution is computed by setting the deriva-
tive of the above energy function to zero. The five items can
achieve impressive results and the optimization can be done
fast due to the small number of super-pixels. Figure 2f shows
the optimized results.

4 Experiments

We use the standard benchmark datasets: MSRA-1000 [13],
SED1 [17] and BSD [18]. MSRA-1000 [13] is widely used
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Fig. 7 Precision–recall curves and F-measure on SED1 [17] dataset to validate our algorithm. a Precision–recall curves of different methods.
b Precision, recall and F-measure

Fig. 8 Example results of different algorithms on SED1 [17] dataset to validate our approach

and relatively simple and contains 1,000 images with the cor-
responding accurate human-labeled binary masks for salient
objects. The other two datasets are more challenging. The
SED1 [17] contains 100 images and BSD [18] contains 300
images; these two datasets contain objects of different sizes
and locations.

For performance evaluation, like many saliency detection
models, we evaluate all methods through precision, recall
and F-measure. Giving a saliency map with saliency value
which is normalized to [0, 255], a set of binary images can be

obtained by varying the threshold from 0 to 255. As a result,
the precision–recall curve is generated based on the ground
truth mask.

The F-measure is the overall performance of precision and
recall, which can be measured as:

Fβ = (1 + β2) Precision × Recall

β2 Precision + Recall
, (8)

where β2 = 0.3 according to [13].
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Fig. 9 Visual comparison of saliency maps on BSD [18] dataset. It can be observed that our methods can achieve better performance

Fig. 10 Precision–recall curves and F-measure to measure the effectiveness of the proposed approach on BSD [18] dataset. a The comparison of
different methods. b The evaluation of our method with F-measure

4.1 Validation of the proposed approach

To verify the effectiveness of the proposed approach, we
compare the proposed background contrast-weighted coarse
saliencymap (CSM_bc) with the initial prior map (IPM) [14]
by a precision–recall curve on MSRA-1000 [13] dataset. As
shown in Fig. 3a, the red line represents the CSM_bc, which
is higher than the blue line (IPM). Our coarse saliency maps
have a better effect in precision and recall. This is because the
boundary contrast effectively enlarges the differencebetween
salient regions and backgrounds.

To estimate the performance of optimization frame-
work, we compare our method with [14] and [15] with the
precision–recall curve on MSRA-1000 [13] dataset firstly.

The results in Fig. 3b show that the proposed approach is
significantly better than PBS [14] and SIO [15].

Then we analyze the effects of the different terms in
Eq. (6) to validate the proposed optimization framework.
We use quantitative result comparisons to analyze each term
of the optimization framework. For example, we delete the
first term and then present a precision–recall curve to show
the effect. The precision–recall curves are shown in Fig. 4c.
Because Eq. 6 has five terms, in Fig. 4c, the precision–recall
curve shows pr–i when the i th item is deleted.

From the precision–recall curves in Fig. 4c, we can learn
that our approach can achieve better performance. It is due
to the full use of low-level information and our framework is
more robust. In other words, the proposed method considers
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more information of the image and presents the formulation
in a more general way. The visual comparison results are
shown in Fig. 5m, p, r.

4.2 Comparison with the other methods

We compare with themost recent 15 state-of-the-art methods
on MSRA-1000 [13] dataset, including AC [20], RC [12],
HC [12], CA [4], HSD [21], GC [22], MZ [23], SF [24],
LC [11], XIE[25], GS_SD [18], GS_SP [18], CBS [26], SIO
[15] and PBS [14]. To make a fair evaluation, we obtain the
saliency maps of RC, HC, FT, LC, SR, AC, CA, GB, IT
and MZ from [12]. For GS_SD, GS_SP and SF, we directly
use the author-provided saliency results. For XIE, CBS, SIO
as well as PBS, we run the authors’ codes. The results of
previous approaches and our algorithm are shown in Fig. 5.
The precision–recall curve and F-measure are presented in
Fig. 6a and b, respectively. From the results, we can see that
our approach can achieve better performance, thanks to the
effect of the optimization framework.

Based on the SED1 [17] dataset, we compare our method
with six classic saliency models: RC [12], HC [12], LC [11],
PBS [14], SIO [15] andCBS [26]. The precision–recall curve
is shown in Fig. 7a, and the F-measure is shown in Fig. 7b.
At the low recall values, the curve of PBS is slightly higher
than our method. This is because we put more constraints in
suppressing the background, so the precision values are a bit
lower in the low recall values. We note that our method can
suppress the background more effectively. Figure 8 indicates
the visual results on the SED1 dataset.

Based on theBSD [18] dataset,we comparewith eight pre-
viousmodels to estimate ourmethods, includingRC [12],HC
[12], LC [11], PBS [14], GS_GD [18], GS_GP [18], SIO [15]
and CBS [26]. From Fig. 9, we can see the visual compar-
ison with different algorithms. The comparison reveals that
our method can achieve better performance. The precision–
recall curve and F-measure are highlighted in Fig. 10. We
note that most methods cannot obtain an appreciable result
in precision and recall.

From the resulting curves, we note that the SED1 [17]
and BSD [18] dataset are more challenging and need to be
improved. The comparison results with other methods on
three datasets indicate that our method significantly outper-
forms other classical methods in saliency detection.

However, like most methods, our method also contains
some failure cases, e.g., when the salient object signifi-
cantly touches the image boundary and there are complex
backgrounds. Figure 11 presents the typical failure cases.

4.3 Computational efficiency

We compare the performance of our method in terms of run
timewith several competitive accuracymethods or those sim-

Fig. 11 Typical failure cases of the proposed methods. Top the input
images. Middle the ground truth. Bottom the saliency maps of the pro-
posed method

Table 1 Comparison of average run time (seconds per image)

Method Ours PBS SIO CBS XIE

Times (s) 0.855 0.749 0.843 2.03 140.679

ilar to ours on theMSRA-1000 dataset. The average run times
of all the comparedmethods using a computer with Intel Pen-
tium G630 2.70 GHz CPU and 2 GB RAM are presented in
Table 1. Specifically, the super-pixel generation by the SLIC
algorithm [16] spends 0.189 s, the coarse saliency map com-
putation 0.644 s and the saliencymap refining spends 0.022 s.
The run time of the proposed method is a little slower than
PBS [14] and SIO [15], due to the combination of more prior
information in our model.

5 Conclusion

In this paper, we present a coarse-to-fine measure to model
saliency. The boundary contrast is used to weight the ini-
tial prior map and obtain a more robust coarse saliency
map. The optimization framework is applied to refine the
coarse saliency map with the combination of coarse saliency
map, the boundary contrast, and the smoothness prior. The
experiment results on public datasets show that the proposed
approach can effectively improve the results and achieve the
start-of-the-art performance.

In future work, we will discuss the hierarchical measure
which integrates more image features.
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