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Abstract Understanding crowd behavior using automated
video analytics is a relevant research problem in recent times
due to complex challenges in monitoring large gatherings.
From an automated video surveillance perspective, estima-
tion of crowd density in particular regions of the video scene
is an indispensable tool in understanding crowd behavior.
Crowd density estimation provides the measure of number
of people in a given region at a specified time. While most of
the existing computer vision methods use supervised train-
ing to arrive at density estimates, we propose an approach to
estimate crowd density using motion cues and hierarchical
clustering. The proposed method incorporates optical flow
for motion estimation, contour analysis for crowd silhouette
detection, and clustering to derive the crowd density. The pro-
posed approach has been tested on a dataset collected at the
Melbourne Cricket Ground (MCG) and two publicly avail-
able crowd datasets—Performance Evaluation of Tracking
and Surveillance (PETS) 2009 and University of California,
San Diego (UCSD) Pedestrian Traffic Database—with dif-
ferent crowd densities (medium- to high-density crowds) and
in varied environmental conditions (in the presence of par-
tial occlusions). We show that the proposed approach results
in accurate estimates of crowd density. While the maximum
mean error of 3.62 was received for MCG and PETS datasets,
it was 2.66 for UCSD dataset. The proposed approach deliv-
ered superior performance in 50 % of the cases on PETS
2009 dataset when compared with existing methods.
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1 Introduction

Monitoring crowd and understanding its behavior has been
one of the foremost research frontiers currently. One of the
objectives of crowd monitoring is to ensure safety and secu-
rity of the individuals in public gatherings (music concerts),
public shared spaces (shopping malls), roadways (pedestrian
crossing, urban streets), transport facilities (in airports, pub-
lic transport terminals), sporting events (such as in stadia,
olympics), and importantly, in the case of emergency evac-
uations (in the event of fire, terror threat, natural disaster,
building collapse, etc.). In the event of emergencies such as
fire, stampede, and eruption of violence, we require an esti-
mate of crowd density in different spaces. Manual counting
of the people from several live streams of videos at a cen-
tralized location becomes tedious, which is the current and
widely adopted approach. Often, personnel would experi-
ence fatigue with continuous monitoring of these feeds and
it becomes impossible to monitor several streams in case of
emergencies.

To help alleviate the problem of manual counting, several
people detection, counting and tracking systems have been
proposed with some commercial outcomes. A comprehen-
sive survey of human activity recognition and behavior can
be found in [80]. Often these systems fail in occluded sce-
narios due to either unavailability of information about the
occluded object during detection or the inability to establish
the correspondence upon reappearance of the same object
during tracking. People counting-based crowd monitoring
systems detect and locate the individuals to arrive at the num-
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Fig. 1 Crowd monitoring at MCG: a small section of the concourse was used as experimental testbed. This figure shows the schematic view of
six camera locations deployed at the MCG

ber of people in a scene, whereas density estimation-based
approaches, without locating individuals, provide a mapping
of the group of people to the crowd density in the scene (in
a specific area) using certain features. For monitoring the
crowd in public spaces, counting people by detecting the
individuals and then tracking is infeasible because of the
occlusions and matching the reappearances.

One of the primary objectives of monitoring the crowd in
public spaces is to provide a reasonable estimate of people for
emergency evacuations and path planning. Zhan et al. [92]
and Jacques et al. [41] have provided the importance of crowd
analysis and their applications (public space design, creation
of virtual environments, visual surveillance and intelligent
environments) in managing large crowds. Crowd monitor-
ing systems face the difficulties in detecting motion from
the scene due to varying environmental conditions. Nonuni-
form illumination, cast shadows, nonrigid human movements
and occlusions are some of the major challenges [90]. The
challenges associated with people detection and tracking
are mainly ascribed to the nonrigid human body motions.
Humans as nonrigid objects, in general, fall under the cate-
gory of elastic and fluid movements [2,45]. The challenges
in object detection and tracking include [90]: (a) loss of
information (from 3D to 2D), (b) presence of video noise,
(c) nonrigid (articulated) object motions, (d) inter-object
occlusions, self-occlusions, partial occlusions and full occlu-
sions, (e) random object motions, (f) nonuniform scene illu-
mination, and (g) near real-time processing requirements.

Most of the existing visual monitoring systems are applied
to detect and track vehicles (particularly cars) by the police
to patrol highways. Many crowd monitoring systems do
exist, but they face challenges and problems during the high-
density crowded scenarios. Detecting and tracking a single
object is relatively less challenging when compared to the
multi-object and high-density circumstances. In addition, a
further degree of difficulty is added for the human detection
and tracking because of the nonrigid body movements. Non-
rigid body movements imply that the movements of an object
are incoherent and different parts of the body move differ-
ently (varying directions and velocities); whereas, rigid body
movement (such as vehicle) follows coherent motion (holds
the parts of an object together). Consequently, the techniques
developed for vehicle detection and tracking would be inap-
plicable without modifications to the pedestrian tracking in
occluded scenarios. Hence, it is of utmost importance to
study, analyze and develop algorithms that are specifically
targeted at monitoring the crowd.

In this work, we collected data from the Melbourne
Cricket Ground (MCG) as a means to estimate crowd density
at entry and exit points of the concourse. Six locations were
chosen for monitoring crowd movement. Figure 1 shows the
schematic map of the MCG camera locations and their view.
The goal of this research is to estimate the crowd density
without using supervised video subvolume features or clas-
sification to estimate the density. In this work, online refers
to the way the processing of frames are carried out. The pro-
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posed approach does not require all the frames; instead, the
density is estimated framewise. Offline processing refers to
batch processing where the processing is commenced after
the availability of the complete video. The key differentiating
factor from the existing works is that most of the methods
are offline: use features that are extracted from the the entire
video sequence, trained and classified to arrive at the esti-
mate.

In this regard, we present an optical flow-based approach
for crowd density estimation. The optical flow motion estima-
tion is used as a primary basis for deducing all the outcomes.
Different signal processing blocks, filters and mathematical
tools are analytically and efficiently combined to provide the
estimate of the density in the scene. We believe that this work
provides the necessary foundation for motion tracking and
analysis in the crowded scenarios, and also a basis for future
research in crowd behavior analysis. The proposed approach
has been tested on MCG dataset—with low light, severe
occlusions, perspective distortion and low-quality video. To
validate the proposed approach, the method was tested on
two papular public crowd datasets—PETS 2009 and UCSD
Pedestrian Database—with medium- to high-density crowds
in the presence of shadows and occlusions. These datasets
contain only humans and hence it is assumed that detection of
objects refers to humans only. For identification of vehicles,
humans, animals and other objects, the proposed approach
requires addition of detection and classification steps to dis-
tinguish these objects, which is not pursued in this work.
The advantages of the proposed approach are: (a) use of
motion features to calculate the crowd density as opposed to
background modeling, model-based approaches and texture
methods and (b) estimation of density is online as opposed
to offline.

Section 2 provides a review of relevant background model-
ing, motion estimation, human modeling, head detection and
crowd density estimation approaches. Section 3 provides the
flow of the proposed approach. Section 4 provides the object
detection using motion estimation and contour analysis. Sec-
tion 5 describes the crowd density estimation problem and the
proposed approach. Section 6 provides the complete dataset
and implementation details followed by results and discus-
sion, and with Sect. 7 concluding this work.

2 Related work

The primary requirement in object detection is to separate the
moving objects from the background. Intuitively, one of the
ideas is to model the background of the scene and then clas-
sify the objects that do not belong to the background model
as foreground (objects). A review of such background mod-
eling schemes is provided in Sect. 2.1. The other approach
to extract the foreground is the motion estimation scheme,

which estimates the inter-frame motion information based
on the pixel displacements. Section 2.2 provides the review
of motion estimation schemes. The second step in the object
detection is to ascertain that the detected objects are indeed
humans. A review of model-based human detection is pro-
vided in Sect. 2.3. Others prefer head detection to ascertain
the humans. Section 2.4 provides a review of head detection-
based approaches and finally Sect. 2.5 provides a review of
relevant density estimation approaches.

2.1 Background modeling

In the process of motion detection and estimation for object
tracking, the separation of the object is the most critical
of all. Frame differencing, a basic approach to detect the
changes, can be obtained by performing difference of two
frames or by taking difference between a reference frame and
the current frame [25]. The resulting difference can be bina-
rized based on global thresholding [46] or multiple thresh-
olds [62]. In addition, the accumulative difference image is
an another way to segment the background from the fore-
ground [42]. Pfinder [85] used a single-Gaussian multi-class
statistical pixel-based model that maintains the pixel values
using the Gaussian model and thus tolerates the spontaneous
pixel noise. The notion of adaptive background modeling was
introduced using the Mixture of Gaussian (MoG) [26,74].
Each pixel value was modeled as a MoG of recently observed
pixel values (most probable background pixels will have
more weight in the mixture). A new Gaussian was created by
replacing the least probable Gaussian from an open-ended
list of Gaussians to incorporate the new pixel value. Depend-
ing on the mean and variance of the pixel values, the pixel
that did not fit into any of the Gaussians was labeled as fore-
ground. This is one of the most popularly adopted approach
in background modeling.

MoG was generalized using the Kernel Density Estima-
tion (KDE) [21], where the recent values of the pixels were
modeled as kernel. Up to this point, only the intensity values
were used to model the background. Color Gaussian dis-
tribution of each pixels was modeled to exploit the color
information by [95] inspired by [85]. It is worth noting that
color information may change significantly when cast shad-
ows and nonuniform illumination are present, particularly in
monitoring crowd in the unconstrained environment. Oth-
ers have used the eigenvalue decomposition for background
subtraction [60]. Eigenvalues represent the variance in the
decreasing order. Hence, eigenvalues of a region of pixels
identify those pixels with the higher fluctuations. Some have
adopted to the running Gaussian average [98], spatial cor-
relation of pixels [69], or the bimodal distribution of pixel
values (either foreground or background) [27–29] for mod-
eling the background. It should be noted that all of these
approaches use recent pixel observations. In contrast, in [7],
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for each pixel (in a given color space), a set of sampled val-
ues were taken from the past pixel values or from the neigh-
borhood and the Euclidean distance between the new pixel
value and the set of samples was computed and stored. The
downside of modeling background is that the systems need
to learn the model of the scene. In general, learning the scene
model depends on the learning rate and the sample frames
(with no objects). Furthermore, when the background has the
wide dynamic ranges due to the presence of large number of
individual objects and occluded objects, modeling the back-
ground would require a comparatively longer time than when
only a few objects are present and are not occluded.

2.2 Motion estimation

In contrast to the background modeling schemes, motion
estimation comprises of estimating the 2D pixel velocities
between frames. Motion estimation deduces movements in
the scene based on the apparent motion of the objects in
the scene. Optical flow is one such approach to estimate the
motion (measuring velocity) components of objects in the
scene. Based on estimating the 2D flow vectors, motion esti-
mation techniques can be grouped into four categories [8]:
(a) gradient-based techniques, (b) region-based techniques,
(c) energy-based techniques and (d) phase-based techniques.
Gradient-based techniques [34,50,59,79] derive pixel veloc-
ities using the spatio-temporal derivatives. Region-based
techniques aim to match the pixel intensities in a regional
window by maximizing the similarity scores [5,70]. Energy-
based techniques use the spatio-temporal windows and tex-
ture features in the Fourier (frequency) domain to estimate
the power spectra of the window and calculated the optical
flow velocities [32,33]. Phase-based techniques compute the
velocity vectors based on tracking contour phases [23,82].
Dense optical flow [34] considers the global view of the scene
and estimates the motion, where estimation of motion vectors
is smooth because of regularization. Sparse optical flow [50]
averages the pixel values in a window and then estimates the
motion. The drawbacks of the motion estimation approaches
are that the techniques developed are applicable only when
there is a motion. In cases of object positioned at a particular
location for a long period of time, the object goes undetected.

2.3 Human modeling

To overcome the difficulty of incoherent motions of the
humans [2], shape-based analysis of the detected regions is
widely used to the address problem of human detection and
classification. In [93] and [49], the problem of segmenta-
tion (human crowd with occlusion) was handled using the
three-dimensional models and shapes to interpret the fore-
ground. In [94] and [96] both shape and appearance-based
(color features) models were maintained. Templates were

used to represent the human shape information [11,20,24,97]
and wavelet-based templates were also been employed [61].
Part-based matching methods include the prior object shape
information such as head, hands, torso and legs to be matched
with the detected shapes [16,18,78,91]. Shape models may
also include the points, silhouettes, articulated shapes [10],
and skeleton models. Active Appearance Models (AAM) use
both the shape (spatial) and local (texture, color, edge) fea-
tures [9,43,67,88]. AAMs are suitable for face recognition,
eye tracking and medical image segmentation. Nevertheless,
matching the human models require definite models, object
structures, predetermined color and reproducible features.

2.4 Head detection

In most of the surveillance and tracking systems, it is assumed
that the humans are walking upright. One of the prominent
features to track humans is to detect the head. Since most of
the body parts follow articulated motion, head maintains a
stable shape for each of the individuals. In this regard, people
tracking and counting systems have employed head detection
approaches [29,36,39,40,55,57,58]. Head detection based
methods are also used in estimating the crowd density. Head
detection assists in localizing the individuals in crowded sce-
narios. Global head detection and 2D Gaussian kernel based
regression was employed in [66] to estimate the density in
crowded scenarios. Interest points based on the orientation
of the gradients were used to form a binary image. In [75],
LUV channels, intensity of the gradient channels and six ori-
entation of the gradient channels were used as features for
head detection. However, the visibility of the heads depend
on the camera angle and the severity of occlusion. Complete
top-view would always provide better results using the head
detection, whereas tilted cameras suffer from the occlusion.
Further, other density estimation approaches based on head
detection will be dependent on the accuracy of detected heads
and the detection rate is currently low.

2.5 Density estimation

Most of the crowd density estimation schemes use either
the texture features on the local and global levels or extract
the foreground pixels using the motion information. The
extracted features of the foreground pixels are then mapped to
the crowd density in a given region. Texture features such as
Gray Level Dependence Matrix (GLDM), Minkowski Frac-
tal Dimension (MFD), and Translation Invariant Orthonor-
mal Chebyshev Moments (TIOCM) were used to classify
the crowd density into five classes (very low, low, moderate,
high and very high) using Self Organizing Maps (SOM) [64].
GLDM was used at local and global levels as features and
Support Vector Machine (SVM) as classifier for the abnor-
mal crowd density detection [86]. Kanade–Lucas–Tomasi
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Fig. 2 Overview of crowd
monitoring system

(KLT) [50] tracking features were clustered to estimate the
crowd density in public venues [3]. Statistical texture mea-
sures such as contrast, homogeneity, energy, entropy, and
Gradient Orientation Co-occurrence Matrix (GOCM) were
used in conjunction with the ν-Support Vector Regression
(ν-SVR) for estimating density [52,53]. Gaussian regression
process to density estimation using geometrical, edge and
texture features can be found in [12].

Background modeling-based approaches can also be
found in the literature. Features such as blob area, Harris
corner, KLT feature points, contour number, contour perime-
ter, ratio of contour perimeter to area, Canny edge and frac-
tal dimension were treated as inputs to multi-variable lin-
ear regression model [54]. Combining neural networks with
foreground pixels and morphological operations, the crowd
density was estimated in [37]. Density was also estimated by
accumulating foreground pixels over time followed by the
use of texture features such as the four orientations: 0◦, 45◦,
90◦ and 135◦ to create the Gray Level Co-occurrence matrix
(GLCM) and statistical features (energy, entropy, homogene-
ity, and contrast) [73].

In contrast, crowd modeling was also performed using
motion estimation followed by Markov Random Field (MRF)
to locate the objects’ positions and application of the
least squares method to reduce the neighborhood search
space [37]. Furthermore, motion frequency using the Dis-
crete Cosine Transform (DCT) coefficients and SVM to esti-
mate the density was proposed [38]. Using moving Speed
Up Robust Feature (SURF) points and their clusters as input
features for the ε-SVR, density estimation was performed
in [17]. Most of the aforementioned approaches to density
estimation require training. Consequently, a change in the
scene or camera or orientation requires retraining of the sys-
tem, which is undesirable as an end user.

In this paper, we propose the crowd density estima-
tion using motion estimation followed by the hierarchical
clustering. Willick and Yang [83] indicated that Horn and
Schunk’s [34] motion estimation scheme performed better
compared to Nagel’s work [59]. In addition, since the selec-
tion of window size in Lucas and Kanade [50] affects the
flow vector determination, nonrigid human motion may gen-

erate noisy vectors compared to dense optical flow. There-
fore, in this work, we use the dense optical flow for motion
estimation by Horn and Schunck [35]. Figure 2 presents an
overview of the developed crowd monitoring system. The
system is divided into five major blocks (see Fig. 2): (a)
camera inputs, (b) prepossessing filters, (c) people tracking,
(d) motion tracking, and (e) crowd events. In this work, the
path chosen to estimate the crowd density is: input from cam-
era:1 → preprocessing filters:2 → multiple objects:3 → den-
sity estimation:4 → people count:5. We assume that the
video data from cameras are directly accessible, the cam-
eras are calibrated and only human objects are present. Sam-
ple frames from the three datasets (MCG, PETS 2009, and
UCSD) are shown in Figs. 3, 4, and 5.

3 Flow of the proposed approach

Let Ip×q represent an area in the frame I(x, y), where p, q ∈
Z+ represent the number of pixels. The problem of crowd
density estimation then translates to

f : Ip × Iq ∈ R
2 → f (Ip×q) ∈ N, (1)

where f (Ip×q) is the crowd density in Ip×q of I(x, y). Thus,
the goal of the crowd density estimation now turns to esti-
mating number of people in a given region. In other words,
the function maps the number of moving objects to the region
in the foreground.

1. At first, nonlinear distortions introduced such as barrel
or pincushion distortions by low-cost optics are rectified
by applying lens correction profile to each of the frames.
In addition, the perspectivity introduced in imaging from
3D to 2D to central projection is fixed by perspective
correction.

2. Next, the video frames are pre-processed to remove any
video noise such as chroma noise, blurred scene and
speckle noise or so by applying suitable filters.

3. Later, motion vectors of the scene are computed from the
optical flow to narrow the search space (of foreground
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(a) 16S.11,C1 (b) 16S.11,C2 (c) 16S.11,C3

(d) 16S.11,C4 (e) 16S.11,C5 (f) 16S.11,C6

Fig. 3 Sample frames from MCG dataset for different cameras

(a) S1-L1, Timestamp: 13-57,
View-001, Frame #130

(b) S1-L3, Timestamp: 14-17,
View-001, Frame #090

(c) S1-L2, Timestamp: 14-06,
View-001, Frame #090

Fig. 4 Sample frames from PETS 2009 dataset [22]

(a) vidf1 33 000, Frame #001 (b) vidf1 33 007, Frame #001 (c) vidf1 33 008, Frame #001

Fig. 5 Sample frames from UCSD Pedestrian Database dataset [13]

pixels) for estimating the crowd density. In other words,
we do further computation on motion vectors and their
locations of the video scene in the current scene instead
of the entire video scene.

4. Motion vectors corresponding to the zero angular ori-
entation are eliminated. We consider only those motion
vectors that have both horizontal and vertical motion
components. This step provides a means of filtering
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Lens Distortion Correction
Perspective Correction, 
Prepocessing

Motion estimation,
Contour Analysis,
Motion cues

Clustering 
Motion Cues

Crowd 
Density

Input 
Video Region of 

Interest (ROI)

Fig. 6 Flow of crowd density estimation by clustering motion cues. In the Region of Interest (ROI), the actual number of people was 2. One can
notice that this is a low-light region. The proposed solution estimated the density to be 3.

the speckle noise equivalent generated by the motion
vectors.

5. Contours are drawn for each of the connected regions.
This step demarcates the crowd region and provides as
a input to the next level of processing. To demarcate
these regions truthfully to crowd regions only, step 2 is
essential.

6. Refine the motion cues by spatially filtering the motion
vectors using the median filter to reduce rapid changes
in motion information. Motion vectors in a space of the
video region can posses high variance in case of crowd
due to articulated movements of people. This variance
is reduced by means of median filter and assigning the
filtered value to all the elements of the block.

7. Finally, foreground pixels are mapped to the crowd den-
sity by clustering the motion cues hierarchically. The
association of the crowd density in a region is a function
of block size and the motion information obtained from
spatially filtered motion vectors. Clustering the motion
vectors is tantamount to localizing the movements corre-
sponding to grouped objects and thus providing an esti-
mate of the crowd density.

The complete flow of the proposed crowd density estima-
tion is provided in Fig. 6.

4 Object detection

In this section, the building blocks of detecting the moving
objects for density estimation are described. The preprocess-
ing block, estimates the motion in the scene from two con-
secutive frames using optical flow, and finding the contours
and their analyses are presented in the following subsections.

4.1 Lens distortion correction

Most of the optical devices introduce nonlinear distortions. In
case of image formation in a camera, two main types of distor-
tion are introduced: radial distortion and tangential distortion.
Radial distortion introduces barrel and pincushion effects,
whereas the less-severe tangential distortion arises when the

(a) Barrel distortion (b) Pincushion distortion

Fig. 7 a Barrel distortion and b pincushion distortion due to nonlinear
optical effects of a camera lens [63]

(a) 16S.11,C2 (b) 16S.11,C2

Fig. 8 a Presence of the barrel distortion in C2 is more clearly visible
towards the left edge of the frame where the vertical structure appears
to be bent outwards and b distortion-corrected frame

image plane and the lens plane are not parallel. Radial dis-
tortion proves to extremely distort the images compared to
tangential. Tangential distortion is attributed to the manufac-
turing defects. Consequently, in this work, only the radial
distortion is considered. The radial distortion is corrected by
determining the coefficients (K = k1, k2, k3) regulated by
the 6th-order polynomial equation [30,51]:

f (r) = 1 + k1r
2 + k2r

4 + k3r
6 (2)

where f (r) is the functional with r = x2 + y2 and (x, y)
forming the image coordinates. When f (r) < 1, the bar-
rel distortion arises and pincushion effect surfaces when
f (r) > 1. Figure 7 shows the barrel and pincushion dis-
tortions and Fig. 8 shows an example of “barrel” distortion
present in one of the frames of MCG dataset and its correc-
tion.
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4.2 Perspective correction

During image formation, the light from the 3D projective
space (P3) is projected onto a 2D space P2 through the fixed
center of projection. If we denote (X,Y, Z , 1) as a point in
P

3 and (x, y, 1) in P
2 in homogeneous coordinates, then the

perspective projection (camera matrix) can be written as:

⎡
⎣
x ′
y′
1

⎤
⎦

︸ ︷︷ ︸
image plane

=
⎡
⎣
fx sk x0

0 fy y0

0 0 1

⎤
⎦

︸ ︷︷ ︸
intrinsic parameters

⎡
⎣
R11 R12 R13 tX
R21 R22 R23 tY
R31 R32 R33 tX

⎤
⎦

︸ ︷︷ ︸
extrinsic parameters

⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦

︸ ︷︷ ︸
world plane

= K[R|t]

⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦ (3)

where ( fx , fy) are the focal lengths of in the (x, y) directions
of the image in terms of pixel units, (x0, y0) is the principal
point, sk is the skew parameter are the five intrinsic para-
meters. The extrinsic parameters indicate the rotation (R)
and translation (t) between the camera coordinates and the
external world.

However, projective transformation introduces perspec-
tive distortion through central projection mapping. This dis-
tortion projects objects closer to camera to appear bigger and
objects far away from the camera to be smaller. The distortion
is corrected by estimating the projectivity or collineation or
homography from points to points, from lines to lines, from
P

2 to P
2 [31]. The homography matrix (H) is a non-singular

matrix and hence invertible. The homography is estimated
using Direct Linear Transform (DLT) given by:

s

⎡
⎣
x
y
1

⎤
⎦ =

⎡
⎣
h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦

⎡
⎣
x ′
y′
1

⎤
⎦ = H

⎡
⎣
x ′
y′
1

⎤
⎦ (4)

where s is a nonzero scalar. The matrix H has 8◦ of free-
dom and hence requires four point correspondences between
images. An example of perspective-corrected frame from
MCG dataset is shown in Fig. 9.

(a) 16S.11,C1 (b) 16S.11,C1

Fig. 9 a View of C1 and b its perspective corrected view for the MCG
dataset.

4.3 Preprocessing

Let (x, y) denote a pixel in a frame I(x, y). In this work, x
axis indicates the horizontal axis of the frame and the y axis
represents the vertical axis of the frame. At this stage, every
frame is first bilaterally filtered to preserve edges and reduce
variations in color pixels with σd = 5 and σr = 10. Bilateral
filtering is applied to boost the sharpness of the frames while
maintaining perceptually strong colors and edges. Next, these
frames are converted to grayscale. The grayscale frames are
then low-pass filtered to eliminate high-frequency noise. This
is accomplished using two-dimensional Gaussian filter with
μ = 0 and σx = σy = 0.1. The filtered frames are then used
for motion estimation using the optical flow [34].

4.4 Motion estimation

For a given sequence of frames, the motion is computed using
the optical flow approach. The brightness at point I(x, y) is
denoted byE(x, y, t), where t represents the time. Assuming
that a moving object retains the constant brightness, estima-
tion of motion between two frames of a video sequence is
given by optical flow [34]:

∂E
∂t

dx

dt
+ ∂E

∂t

dy

dt
+ ∂E

∂t
= 0 (5)

Further,

Exu + Eyv + Et = 0 (6)

where u = dx
dt and v = dy

dt , represent the velocities of
matching pixels in two frames. Spatially, for each pixel loca-
tions (x, y), the resultant velocity vector of two-dimensional
motion (u(x, y) = dx

dt and v(x, y) = dy
dt ) with time is calcu-

lated. The matrix of resultant vectors’ magnitude and direc-
tions are given by:

IR(x, y) =
√

(u(x, y)2 + v(x, y)2) (7)

and

ID(x, y) = arctan

(
v(x, y)
u(x, y)

)
(8)

where IR(x, y) and ID(x, y) together indicate the presence
of moving objects. Matrices IR and ID are used to detect the
object boundaries in contour analysis. Algorithm 1 shows a
pseudocode of preprocessing and motion estimation.

4.5 Contour analysis

Contour analysis includes demarcating the boundaries of
the possible object detected from the previous steps. Both
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Algorithm 1: Initialization
Data: initialization(video, perspective point correspondences, lens profile)

Result: opticalFlow (IO)

/* Correct radial lens distortion */

lensProfileCorrection(video);

/* Initialize video frames */

totalNumberOfFrames = numberOfFrames(video);

processingFrame = 1;

while processingFrame < totalNumberOfFrames do

/* Perform perspective correction */

currentFrame = perspectiveCorrection(currentFrame);

nextFrame = perspectiveCorrection(nextFrame);

/* Remove noise */

currentFrame = preprocessing(currentFrame);

nextFrame = preprocessing(nextFrame);

/* Compute optical flow */

IO = computeOpticalFlow(currentFrame, nextFrame);

end

the magnitude (IR) and direction (ID) matrices are used for
this analysis. For each iteration of the optical flow between
two frames, the direction matrix ID comprises of vector
directions for each of the pixel movements. The angle of
these vectors is confined to [0, 360) degrees. To segment the
motion of objects, ID is binarized for only those pixels with
|ID(x, y)| > 0. The speckle noise in the foreground pixels
that may originate either due to presence of u or v compo-
nent is eliminated. The binarized ID is further smoothened
using (7×7) median filter to reduce any speckle noise. Mor-
phological closing is performed to enhance the motion seg-
mentation. Next, the contours C = ⋃n

i ci are determined
for each of the nonzero foreground components. For sim-
plicity, the subscript i is dropped in future contexts. Fig-
ure 10 shows the examples of detected contours following
preprocessing step (without perspective correction) includ-
ing motion estimation and filtering of the flow vectors for
MCG dataset, PETS 2009 and UCSD dataset. Similar results
would be obtained with the inclusion of perspective cor-
rection. However, the size of the objects would be normal-
ized in the latter case. Algorithm 2 shows the extraction of
contours.

5 Crowd density estimation

5.1 Foreground mapping

Each object occupies certain area (region of foreground pix-
els belonging to an object) in the foreground due to its motion.
In case of single object, the foreground region corresponding
to the object will be less when compared to multiple objects
moving together at same scale. The contour of the multiple
unoccluded objects forms gaps (valleys between objects—
Zhao and Nevatia [94] provided silhouette projections of
multiple objects where one can observe valleys) in the fore-
ground mapping, whereas, the contour of a partially occluded
group fills these gaps to a major extent (this was the phenom-
enon that was found in case of partially occluded objects).
Now, the problem is to learn the crowd density correspond-
ing to the foreground regions. Motion cues has been used for
mapping the movements of the objects to the foreground pix-
els, median filter of the motion vectors to create the blocks
in the foreground regions and the hierarchical clustering to
map the foreground regions into the crowd density.

Algorithm 2: Contour analysis
Data: contourAnalysis(IO )

Result: contours IC

/* Extract contours */

if IO then

IR(x,y) = (u(x,y)2 +v(x,y)2) ;

ID(x,y) = arctan
v(x,y)
u(x,y)

;

while not end of frame do

/* Apply region of interest mask */

IR(x,y) = IR(x,y) AND ROI;

ID(x,y) = ID(x,y) AND ROI;

if ID(x,y) == 0 then

IR(x,y) = 0 ;

else

IR(x,y) = 1 ;

end

end

/* Extract contours from boundaries */

IC = findContours(IR(x,y));

end

(a) 16S.11, C2, MCG
Dataset

(b) S1-L2, Timestamp:
14-06, View-001, Frame
#136, PETS 2009 dataset

(c) S1-L3, Timestamp:
14-17, View-001, Frame
#090, PETS2 009 dataset

(d) vidf1 33 000, Frame
#003, UCSD dataset

(e) vidf1 33 007, Frame
#003, UCSD dataset

Fig. 10 Examples of contour analysis: a contours detected for MCG dataset; b, c PETS 2009 dataset; and d, e UCSD dataset (Note: perspective
correction is not shown here for image clarity)
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5.2 Selection of motion cues

Most of the methods describing density estimation in Sect. 2
require training to deduce a function that provides crowd
density in the scene. In brief, once the contours are extracted,
the region of interest (ROI) is binarized to generate a contour
mask cmask. The optical flow magnitude IR corresponding to
the cmask is processed for density estimation. Bounding box
information is derived for each of the contours. The bounding
box region of the IR (corresponding to cmask) is divided into
b × b block. To alleviate the flow noise, for every block, the
pixel values in each of the blocks are replaced by median
filter (b×b) output. The resulting matrix is termed as motion
matrix M, is a matrix with the blocks of size b× b for every
contour and each block corresponding to the median values
of original IR . In this approach, since perspective correction
is used, the block size is fixed to 32 × 32.

Block size for uncorrected perspective scene can be deter-
mined by the height and width of the objects obtained during
camera installation and calibration process. For each of the
contours inC , the contour width cwidth, contour height cheight,
contour orientation cangle, contour starting point cx and cy are
obtained. Average single object size Os and object area Oa

are determined using contour dimensions. The block size b is
determined using the single object contour size in the scene.
The block size b is given by:

b = 1

NSO
× √

cSOwidth × cSOheight (9)

where cSOwidth and cSOheight are height and width of a single
object contour, and NSO = 3 is chosen such that at least NSO

blocks cover the width of a single object.

5.3 Clustering motion cues

Let Mmin and Mmax denote the minimum and maximum of
M. The motion cue matrix or motion cues IM is obtained
by relatively scaling the motion information as IM =

(M−Mmin)
(Mmax−Mmin)

. Figure 11 shows an example of the motion
information matrix (without blocks). We see that relatively
high magnitude motion information form a 2D Gaussian-
shaped points. The distinct points (highlighted points) corre-
spond to distinct number of people in the scene. As a result,
one can generalize that the motion cue matrix IM highlights
the regions in the scene that approximately correspond to
identifying individual objects i.e. if there are N people in a
scene, then there would approximately be N corresponding
distinct points. Thus, we can deduce the density of the people
in the scene from the motion cues.

To deduce density, isolation of distinct points is necessary.
A natural way to achieve this is by clustering the motion cues.
At first, dissimilarity matrix of the motion cues is obtained as
D = IMT IM . Spectral clustering methods such as Principal
Component Analysis (PCA) and Singular Value Decompo-
sition (SVD) require input about top d eigenvalues, which
limits our ability to determine the number of clusters present.
K -means clustering requires the desired number of clusters,
which is unattractive for our purpose. However, on the other
hand, hierarchical clustering provides us a means to isolate
distinct points that correspond to number of people in the
scene. This forms the basis for the use of hierarchical clus-
tering of motion cues.

Intuitively, the idea is to form the clusters of motion vec-
tors representing the foreground objects as patterns of crowd.
The IM provides a natural 2D Gaussian model for forming
clusters with peak values indicating the highest velocities
at the center of the objects and decreasing values as moved
away from the center. In case of crowded scenes, the inter-
cluster variance, a property of clustering algorithm, is used
to cluster different objects in the scene. A K -means tree rep-
resenting the clusters of motion vectors would be an ideal
approach; however, we do not know the density of the crowd
and furthermore, the density changes with time and hence
we cannot fix the number of clusters. Instead, we use hier-
archical clustering where we use agglomerative clustering
to build the clusters (bottom-up). The dissimilarity matrix

(a) Current frame (b) Motion vectors’ signature for 5 people in
the scene

(c) Gaussian shaped distinct points for 5 people

Fig. 11 Refining and clustering motion cues to estimate density (Note: perspective correction is not shown here for image clarity)
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consists of features from spatially-filtered median motion
vectors. In the process of clustering, the most similar blocks
are merged and the process is continued across the scene.
In agglomerative clustering process, single-linkage cluster-
ing is used (nearest-neighbor clustering) as the motion vec-
tors belonging to an object will be similar to its center and
also the dissimilarity increases with increased distance and
peaks at the interface between two objects. This process
identifies the distinct motion regions in the scene. Minimum
spanning tree is constructed using single-linkage clustering
and the computational complexity of the clustering amounts
to O(N 2). Average-linkage and complete-linkage computa-
tional complexities are of the order O(N 3). Since we are
using 2D plane for the scene analysis, Euclidean distance
is used as a metric to perform cluster analysis ,where inter-
cluster and intra-cluster variance are used simultaneously to
determine the formation of the clusters. Algorithm 3 pro-
vides the pseudocode for obtaining motion cues from con-
tours and Algorithm 4 describes the procedure of clustering
to extract distinct points. The nearest-neighbor or the sin-
gle linkage would create a minimum spanning tree to create
clusters where the blocks are distinct since the clusters are
formed by linking the motion signatures through edges that
are distinct (Fig. 12). Algorithm 5 provides a brief overview
of process to estimate crowd density.

Algorithm 3: Motion cues
Data: motionCues(IC )

Result: Motion cues (IM)

while IC do

/* Compute motion matrix */

M =createBlocks(IO );

for each block in M do
Mb×b = mean(Mb×b)

end

/* Derive motion cues */

IM = (M−Mmin)
(Mmax−Mmin)

end

6 Performance evaluation

The implementation of the proposed crowd density estima-
tion approach was carried out in OpenCV 2.3 on a Virtual

Algorithm 4: Clustering motion cues
Data: motionCues

Result: clusters

/* Initialize cluster */

m= 0;

/* Initialize sequence number for clusters */

s= 0;

/* Initialize hierarchical level of cluster */

level(m) = 0;

while clusters do

/*skcolbytiralimissidllafomuminimdniF*/

d(i, j) = argmin Di−D j 2 = argmin IMi − IM j 2
;

/* Increment the sequence number */

s= s+1;

/* Merge the clusters to form a new cluster and assign level */

level(m) = d(i, j);

/* Renew the IM with new cluster */

/*deretsulcerastnemelellalitnutaepeR*/

end

Box Linux machine (32-bit Ubuntu 12.04 LTS) equipped
with 1.5 GB RAM and Intel® i7 − 2600 CPU running at
3.4 GHz. The proposed approach was tested on the MCG
dataset and two popular crowd datasets: PETS 2009 [22] and
UCSD Pedestrian Database [13].

6.1 Dataset

Table 1 provides detailed information about the three data-
sets. MCG dataset was originally collected in Advanced Sys-
tems Format (asf) from six cameras on four different days
of Australian Football League (AFL) matches held at MCG.
The data were collected during the start and end of the games.
We collected a total of nearly 6 hours of data per camera from
each camera at 30 fps (equivalent to 36 h of data at 30 fps
in total). For the purpose of crowd density estimation, four
cameras were chosen (C1, C2, C4, and C6). In-line with stan-
dard public datasets, 1 min of video from each camera was
extracted during the peak crowd movements and converted
to JPG format for analysis. The frame size is 640 × 480 and
in RGB format. The ground truth was generated manually
using customized software.

PETS 2009 dataset images are in JPG format with a size of
768×576. View 001 is considered for the density estimation

Input Video Motion signature Gaussian formation Clustering
filtered motion cues

Crowd 
Density

Fig. 12 Overview of clustering motion cues (Note: perspective correction is not shown here for image clarity)
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Algorithm 5: Crowd density estimation
Data: crowdDensity=(video, perspective point correspondences, lens profile)

Result: crowdDensity

totalNumberOfFrames = numberOfFrames(video);

processingFrame = 1;

while processingFrame < totalNumberOfFrames do

if (currentFrame AND nextFrame) = NULL then

/* Correct lens distortion */

lensProfileCorrection();

/* Correct perspective distortion */

currentFrame = perspectiveCorrection(currentFrame);

nextFrame = perspectiveCorrection(nextFrame);

currentFrame = preprocessing(currentFrame);

nextFrame = preprocessing(nextFrame);

/* Compute optical flow */

IO = computeOPticalFlow(currentFrame, nextFrame);

/* Extract contoours */

IC = contourAnalysis(IO );

/* Select motion cues */

IM = motionCues(IC );

/* Identify objects */

crowdDensity= clusteringMotionCues(dissimilarity(IMb×b ));

else

End of video reached or error in reading frames;

end

end

for sequences S1.L1, S1.L2 and S1.L3. Different environ-
mental conditions such as shadows, overcast, medium and
high crowd density were present with both walking and run-
ning events. The crowd density is estimated in regions R0, R1
and R2 as shown in Fig. 10 for sequences S1.L1 and S1.L2.
For S1.L3, density is estimated in region R1. The ground
truth information for PETS 2009 dataset is available in [56].
In the PETS 2009 dataset, the regions R0, R1 and R2 had been
marked by the dataset providers. The dataset has three roads
(surrounded by green lawns at an educational campus) inter-
sect at a point. From View-001, R1 oversees one of the roads
and the intersection point. The road from R1 leads to another
road where R2 overlooks that road. Region R0 encompasses
not only regions R1 and R2, but also other regions including
the third road and walkable area where there is a possibil-
ity of peoples movement. The size of the objects in R1 is
comparatively larger than in R2. Furthermore, R1 is more
occluded compared to R2 because of the camera view and
angle.

UCSD dataset contains walking events and comparatively
smaller sized objects. The images are with a resolution of
238 × 158 in grayscale and PNG format. UCSD dataset is
challenging in terms of smaller object size (less motion infor-
mation and reduced texture features) and techniques depen-
dent on color information would perform poorer because of
lack of color information. Initially, using empirical knowl-
edge the block size was set to 6. The ground truth information
for UCSD Pedestrian Database dataset is available at [13].

6.2 Results and discussion

Performance of the density estimation is measured using
Mean Absolute Error (MAE), Mean Relative Error (MRE)
and Root Mean Squared Error (RMSE). MAE, MRE and
RMSE can be calculated using (10), (11) and (12):

MAE = 1

N

N∑
i=1

|A(i) − P(i)| (10)

MRE = 1

N

N∑
i=1

|A(i) − P(i)|
A(i)

(11)

RMSE =
√√√√ 1

N

N∑
i=1

|A(i) − P(i)|2 (12)

where i indicates the i th frame, A(·) is the ground truth
crowd density and P(·) is the predicted density. MAE pro-
vides a measure of how well the performance is in terms of
absolute error i.e. the absolute difference between the actual
measured values (ground truth) and the predicted values for
each frame and averaged for the given sequence (all the
frames). MRE provides a percentage relative error i.e. the
ratio of absolute error for each of the frames to the actual
value expressed in percentage. This gives us a measure of
how good the prediction is relative to the size of the actual
value. RMSE provides a measure about variations in predic-
tions and will always be greater than or equal to MAE and
MAE ≤ RMSE ≤ √

N · MAE [84]. In other words, closer
the RMSE values to MAE, better the predictions results are.
Although, these three measures have been used in the lit-
erature commonly, comparison among different approaches
are mainly evaluated based on MAE. This is because of the
nature of the application (crowd density) that is more mean-
ingful in terms of MAE for a given sequence and the way the
density is estimated is different for different approaches.

MCG dataset was collected indoors, whereas PETS and
UCSD were collected outdoors. As a means to validate the
proposed approach, it was validated on PETS and UCSD
datasets. Further, we provide the comparison with respect to
the existing methods on PETS 2009 dataset. Table 2 provides
the results for MCG dataset. For three out of four sequences,
the MAE error was less than 2 and less than 4 for the entire
dataset. Table 3 shows the results for the PETS 2009 datset.
For region R0, the MAE was less than 3; MAE was less than 4
in region R1 and less than 1 for region R2. Table 4 shows the
results for UCSD dataset. The MAE for four sequences were
less than 1, three sequences less than 2 and three sequences
(the MAE and MSE for pedestrian movements using super-
vised schemes for the UCSD dataset can be found in [14]).
The results demonstrate that the proposed method provides
a reasonably good estimate of the crowd density.
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Table 1 MCG 2011, PETS 2009 and UCSD Pedestrian Database datasets used in this work

Dataset Sequence View Environment Event Frames Frame
rate (fps)

No. of people

Min Max

MCG 2011 16S.11 C1 Low-density crowd Walking 302 6 1 6

Low light

16S.11 C2 High-density crowd Walking 313 6 4 15

Occlusions

16S.11 C4 Medium-density crowd Walking 303 6 0 11

Low light

16S.11 C5 High-density crowd Walking 296 6 5 13

Low light, Occlusions

PETS 2009 S1.L1, 13-57 001 Medium-density crowd Walking 221 7 0 19

Overcast

S1.L1, 13-59 001 Medium-density crowd Walking 241 7 0 20

Overcast

S1.L2, 14-06 001 High-density crowd Walking 201 7 0 21

Overcast

S1.L3, 14-17 001 Medium-density crowd Running 91 7 0 22

Bright sunshine

Shadows

UCSD Pedestrian
Database 2008

vidf1_33_000.y – Medium-density crowd Walking 200 10 12 22

vidf1_33_001.y – Medium-density crowd Walking 200 10 20 27

vidf1_33_002.y – Medium-density crowd Walking 200 10 19 25

vidf1_33_003.y – Medium-density crowd Walking 200 10 11 21

vidf1_33_004.y – Medium-density crowd Walking 200 10 11 23

vidf1_33_005.y – High-density crowd Walking 200 10 20 40

vidf1_33_006.y – High-density crowd Walking 200 10 32 45

vidf1_33_007.y – High-density crowd Walking 200 10 29 45

vidf1_33_008.y – Medium-density crowd Walking 200 10 21 31

vidf1_33_009.y – Medium-density crowd Walking 200 10 17 24

Details of each dataset and video sequence with their conditions are provided. MCG dataset sequences are in (RGB) JPG format (640 × 480).
PETS 2009 sequences are in (RGB) JPG format and have the frame resolution of 768 × 576. UCSD Pedestrian Database dataset sequences are in
(grayscale) PNG format and have the frame resolution of 238 × 158

Table 2 Results for MCG Dataset. MAE, MRE and RMSE measures
have been tabulated

Dataset Sequence View Prediction error

MAE MRE (%) RMSE

MCG 2011 16S.11 C1 01.22 29.34 3.30

16S.11 C2 03.62 32.72 5.74

16S.11 C4 01.95 62.31 3.93

16S.11 C5 01.82 20.78 4.67

The prediction error plots for the three datasets have
been included in Online Resource. The prediction error plots
include ground truth, predicted results and the error. Fur-
thermore, for each sequence, mean and standard deviation
per person is provided. Most of the methods have provided

the mean error for the entire sequence (for all the frames).
However, we believe that such a measure would not provide
adequate information about the density since the error during
increased or decreased crowd density will be averaged over
the entire sequence. Instead, we have provided the prediction
error in terms of density that clearly highlights the trend of
the system error. MCG dataset results have been presented
in Online Resource Fig. 1 and Fig. 2. PETS 2009 results are
depicted in Online Resource Figs. 3-6. UCSD dataset results
are presented in Online Resource Fig. 7-10. The mean error
increases as the density crosses 10 for MCG dataset, 15 for
PETS 2009 dataset and 10 for UCSD dataset. The error is
attributed to the heavy inter-object occlusions.

Various methods have been proposed by research commu-
nities on PETS 2009 dataset. The proposed method is com-
pared with the results provided in [1,47,75], tested on PETS
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Table 3 Results for PETS 2009 dataset (View-001)

Sequence Timestamp Prediction error

R0 R1 R2

MAE MRE (%) RMSE MAE MRE (%) RMSE MAE MRE (%) RMSE

S1.L1 13-57 02.78 21.89 03.93 02.97 38.29 02.86 00.75 52.66 02.63

S1.L1 13-59 02.14 31.65 03.78 02.15 16.97 04.19 00.58 57.63 02.78

S1.L2 14-06 02.95 40.72 04.68 03.62 34.13 03.35 00.83 48.50 02.10

S1.L3 14-17 – – – 01.40 19.40 01.35 – – –

MAE, MRE and RMSE measures have been tabulated

Table 4 Results for UCSD Pedestrian Database dataset

Sequence Prediction error

MAE MRE (%) RMSE

UCSD Pedestrian Database 2008

vidf1_33_000.y 01.34 42.26 05.38

vidf1_33_001.y 00.63 13.32 04.54

vidf1_33_002.y 00.54 13.28 04.41

vidf1_33_003.y 01.15 22.50 04.01

vidf1_33_004.y 01.76 34.76 05.02

vidf1_33_005.y 02.66 14.63 03.63

vidf1_33_006.y 02.29 23.64 04.14

vidf1_33_007.y 02.97 12.25 03.74

vidf1_33_008.y 00.47 07.25 02.87

vidf1_33_009.y 00.87 24.11 04.95

MAE, MRE and RMSE measures have been tabulated

2009 dataset, and [12] tested on UCSD dataset. Table 5 pro-
vides a comparison of previous work [75] and the proposed
work. The table highlights the prediction error in terms of
MAE and MRE for the regions R0, R1 and R2. Table 5 pro-
vides similar measures (MAE and MRE) compared to the
others in regions R0 and R1. Since the region R2 consists of
single object cases for larger extents of time, the MRE mea-
sure is skewed. Hence, the MRE measure in R2 shows higher
error rate. Subburaman et al. [75] used gradient features and
training for arriving at the results. The proposed approach
uses motion features for determination of density.

Table 6 provides a comparison of previous work [75]
and the proposed work for individual sequences rather than
the regions R0, R1 and R2. Results for [4] was obtained
from [17,75]. For the purpose of comparison, we have aver-
aged our obtained measures (MAE and MRE) in the regions
R0, R1 and R2 to obtain the MAE and MRE for each
sequence. Considering the supervised approaches [4,17,75],
the proposed approach provides similar results and is the best
in case of S1.L3 (Timestamp: 14-17) and S1.L1 (Timestamp:
13-59) with the MAE measures of 1.40 and 1.62. The pro-
posed method performed better in 2 out of 4 sequences.

In sequence S1.L1 (Timestamp: 13-57) people move from
right to left, where people are partially occluded and bound-
ary between groups are not clearly demarcated. In S1.L2
(Timestamp: 14-06) people move from right to left as a single
group with occlusions. In contrast, in S1.L1 (Timestamp: 13-
59), people move in groups from right to left such that groups
as well as individuals are well separated and occlusions are
very limited. In sequence S1.L3 (Timestamp: 14-17), peo-
ple move across the scene from left to right while running.
During the running event, people are individually separated.
The better performance of our purposed approach in 2 out of
4 cases compared to others is attributed to the fact that dur-
ing limited occlusions, the proposed method performs better.
Occlusion handling will be addressed in future for enhancing
the system.

Noise induced at the low level due to the nature of digi-
tal image formation can at many times introduce erroneous
results in the high-level processing. The noise would gener-
ally be small variations in the pixel values in a given neigh-
borhood. Though these variations are undetected by human
perceptions (because our visual system is filtering these vari-
ations), these small variations will result in high-amplitude
noise at higher level processing in the digital image domain.
As a result, filtering or reducing the noise at the low level of
video processing forms one of the key building blocks of the
video analysis. Filtering in this context implies that reducing
variations among perceptually similar colors and maintain-
ing edges to determine the characteristic features. Bilateral
filter is one such state-of-the-art filter that was first proposed
by Aurich and Weule [6] as “non-Guassian” filter in 1995
and later reintroduced by Smith and Bardy [71] in 1997 and
by Tomasi and Manduchi [76] in 1998. Tomasi and Man-
duchi [76] coined it as “bilateral” filter and remains the most
popular edge preserving even today. The biggest advantage
of the the bilateral filtering is that it maintains colors and
edges that are perceptually meaningful to humans, which
mainly imitates human vision system. In other words, the fil-
ter maintains geometric and photometric closeness of neigh-
borhood pixels. In the proposed, this has been applied on the
input color frames. Application of bilateral filter to optical
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Table 5 Results for PETS 2009 dataset

Approach Methods Sequence Timestamp Prediction error

R0 R1 R2

MAE MRE (%) MAE MRE (%) MAE MRE (%)

Background modeling
+ head detection

Jian and Odobez [44]
+ Subburaman et al. [75]

S1.L1 13-57 06.17 35.00 02.27 21.00 02.95 36.00

S1.L1 13-59 02.08 14.00 01.64 18.00 01.02 16.00

S1.L2 14-06 03.01 13.00 02.35 14.00 01.42 10.00

S1.L3 14-17 – – 02.21 15.00 – –

Background modeling
+ head detection

Barnich and
Droogenbroeck [7]
+ Subburaman et al. [75]

S1.L1 13-57 05.95 30.00 01.90 29.00 02.50 32.00

S1.L1 13-59 02.08 11.00 01.86 18.00 00.86 11.00

S1.L2 14-06 02.40 12.00 01.40 10.00 01.70 01.70

S1.L3 14-17 – – 01.89 10.00 – –

Head detection Subburaman et al. [75] S1.L1 13-57 04.80 25.00 02.40 32.00 03.40 42.00

S1.L1 13-59 04.70 35.00 02.60 47.00 01.10 21.00

S1.L2 14-06 05.00 60.00 03.10 74.00 03.30 23.70

S1.L3 14-17 – – 02.88 56.00 – –

Motion estimation
+ density estimation

Proposed S1.L1 13-57 02.78 21.89 02.97 38.29 00.75 52.66

S1.L1 13-59 02.14 31.65 02.15 16.97 00.58 57.63

S1.L2 14-06 02.95 40.72 03.62 34.13 00.83 48.50

S1.L3 14-17 – – 01.40 19.40 – –

In this table, results of the previous works presented in [75] has been tabulated for comparison in the regions R0, R1 and R2. For each sequence in
the regions R0, R1 and R2, the best MAE results have been highlighted

Table 6 Comparison of results for PETS 2009 dataset

Prediction error

Method Albiol et al. [4] Conte et al. [17] Subburaman et al. [75] Proposed
Learning type Supervised approach Supervised approach Supervised approach Semi-supervised approach
Detection type People detection People detection Head detection People detection

Sequence MAE MRE (%) MAE MRE (%) MAE MRE (%) MAE MRE (%)

S1.L1, 13-57 2.80 12.6 1.92 08.70 5.95 30 2.17 37.61

S1.L1,13-59 3.86 24.9 2.24 17.30 2.08 11 1.62 35.41

S1.L2, 14-06 5.14 26.1 4.66 20.50 2.40 12 2.47 41.11

S1.L3,14-17 2.64 14.0 1.75 09.20 2.20 10 1.40 19.40

In this table, results of previous works presented in [4,17,75] has been tabulated for comparison of individual sequences. For each sequence, the
best MAE results have been highlighted

flow estimation can be found in [68,87]. While preservation
of edges is essential, presence of multiple object boundaries
invites large number of edges that degrade the high-level
processing in the case of crowd movements. On the other
hand, Gaussian filter is a low-pass filter that eliminates high-
frequency signals (edges) by averaging the pixels in the local
neighborhood according to 2D Gaussian function [76]. In the
proposed approach, Gaussian filter has been added on top of
bilateral filter to ensure that high-amplitude edges are sup-

pressed. Thus the combination of filters yields smooth object
surfaces and simultaneously, reduces high-amplitude edges
for smooth motion estimation.

The proposed approach is suitable for sparse camera
(single-view) networks where such networks form the essen-
tial components of surveillance systems [72]. Counting peo-
ple using tracking may be accomplished in sparse camera
networks or dense camera networks. In case of dense camera
networks, multi-view invariant features assist to help resolve
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occlusions with the combination of trackers. The challenges
in sparse camera networks are that only single-view fea-
tures are available and that the features must be invariant.
Gradient-based optical flow, used in this work, is one of
such invariant features. Furthermore, perspective normal-
ization in dense camera networks provide accurate object
sizes. In sparse camera networks, only camera calibration
parameters are available. It must be noted that most of the
existing methods apply weight to the features to compensate
for perspective distortion. In these cases there is an assump-
tion that features are available for all the detected objects. In
addition, it is assumed that features are consistent for both
objects nearer to the camera and farther from the camera.
Most of the Optical Character Recognition (OCR) systems
and License Plate Recognition (LPR) systems employ per-
spective correction [77,89]. However, the features available
for the farthest object decrease with increase in perspective
distance away from the camera [77]. Indeed, research indi-
cates that perspective-corrected images yield more accurate
results. For instance, a study by Clark et al. [15] regarding
visual image registration based using Scale-Invariant Fea-
ture Transform (SIFT), SURF and optical flow indicated that
the two natural features, SIFT and SURF delivered poor per-
formance. With the inclusion of optical flow and perspec-
tive correction, invariance properties were achieved deliv-
ering superior results. Therefore, detecting prominent fea-
tures without correcting the perspective distortion will not
yield accurate results, which has been the major trend in the
existing approaches. In this work, we have explicit 2D-2D
geometric mapping that compensates for perspectivity.

In the literature, many methods employ the background
modeling approach to segment the foreground objects and
map the foreground pixels to the number of objects. Others
extract the texture, color or intensity features and then use
the training and classification using classifiers while assum-
ing that the objects are available. Compared to these methods,
in general, the proposed method uses motion estimation and
contour analysis to extract the foreground objects without
training. For instance, Chan et al. [12] use temporal subvol-
ume of the video to extract features. A similar video-temporal
subvolume-based approach was proposed using motion only
features by Rao et al. [65], in which several frames were
considered. An improvement in this work is that the density
estimation is based on individual frames rather from sev-
eral frames (except for motion features where two frames
are required), as this was our primary goal of the proposed
approach.

An analogy can be drawn between the crowd monitoring
system shown in Fig. 2 and human visual system for den-
sity estimation. In human vision system, rods and cones act
as sensors in capturing the visual images. Rods are sensitive
to low-light vision, provide coarse information fast, whereas
cones require minimum luminance, provide fine details and

are slow in response. Ganglion cells aggregate information
signals from rods (many-to-one mapping) and cones (one-
to-one) for sending it to Lateral Geniculate Nucleus (LGN),
which acts a carrier of signals for higher level processing. The
signals from LGN are projected into visual cortex for object
recognition, registration, and tracking. Edge, direction, spa-
tial, temporal and chromaticity information are clubbed (log-
ical AND/OR) and a decision is made at higher dimensional
to accurately identify the objects invariance of scale, space
and identity [19,48,81]. In the proposed approach, camera
networks is tantamount to rods and cones; preprocessing fil-
ters to ganglion cells and LGN; people detection, motion
tracking and density estimation are equivalent to functions
of visual cortex.

Although the overall results are impressive, slow move-
ments and shadows limit the effectiveness of the proposed
algorithm. If the objects are moving slowly such that the
optical flow is unable to determine the apparent motion, then
the object detection, contour extraction and density estima-
tion may not be accurate. One such scenario is when the
people start to gather at a point and the people at the cen-
ter do not move. In this scenario, only the exterior of the
crowd has the movements while the interior of the crowd
has zero movements. In those cases, use of area information
from motion cues would be valuable to deduce the crowd
activity. We used background modeling based on Mixture
of Gaussians (MoG) [26,74] to handle such scenarios. Fur-
thermore, the dense optical flow was used to obtain smooth
vectors globally. Sparse optical flow methods are limited by
small movements and in case of articulated movements of
people, dense flow handles articulated movements smoothly.
The results of density estimation can be greatly improved
with the incorporation of explicit shadow handling method.
However, it should be noted that in occluded scenarios, for-
mation of shadows are less likely and also the presence of
shadows would impact less on counting because of occlusion.
There are several instances where occlusion causes the num-
ber of foreground detected regions that do not match with the
actual crowd density of the scene. In such cases, tracking of
the people coupled with density estimation correction would
be an ideal solution. Again, either the full body detection or
the head detection, and tracking depends on the number of
distinguishable features and tracker efficiency. Most of the
trackers assume that the heads of the people are visible. In
case of UCSD dataset, even head detection may also become
inefficient because of lack of features (small-sized objects)
and the frames provided are purely grayscale.

The future work includes handling explicit static crowd
movement, resolving ambiguity during occlusions without
tracking and shadows during crowded scenarios. One possi-
bility to handle crowd occlusions would be to adopt the con-
cept of particle video as described by Sand and Teller [68].
However, the dynamics of crowd movements must be taken
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into account, which necessitates further study in this direc-
tion. Addition of texture information will add another dimen-
sion to addressing problems with static crowd movements.
Whether the texture information provides any improvement
in handling occlusions and shadows in crowded scenes need
to be investigated. In addition, further study is required
whether texture information is necessary or to the degree to
which it is redundant with respect to motion and vice versa,
and how well can the combined features be applied to crowd
monitoring.

7 Conclusion

Understanding the crowd behavior using an automated video
analytics is a relevant research problem from a video surveil-
lance perspective. Crowd density estimation in a video scene
is necessary in understanding the crowd behavior. Most of the
existing density estimation methods use the supervised train-
ing schemes to arrive at the density estimates. In this work,
we proposed crowd density estimation based on clustering
motion cues. The proposed approach results in accurate esti-
mates of the crowd density. It delivered superior performance
in 50 % of cases on PETS 2009 dataset when compared with
existing methods. While the maximum mean error of 3.62
was received for MCG and PETS datasets, it was 2.66 for
UCSD dataset. The maximum mean error was found to be
nominal in estimating crowd density.
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