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Abstract We present a new method for real-time render-
ing of multiple recursions of reflections and refractions. The
method uses the strengths of real-time ray tracing for objects
close to the camera, by storing them in a per-frame con-
structed bounding volume hierarchy (BVH). For objects fur-
ther from the camera, rasterization is used to create G-buffers
which store an image-based representation of the scene out-
side the near objects. Rays that exit the BVH continue trac-
ing in the G-buffers’ perspective space using ray marching,
and can even be reflected back into the BVH. Our hybrid
renderer is to our knowledge the first method to merge real-
time ray tracing techniques with image-based rendering to
achieve smooth transitions from accurately ray-traced fore-
ground objects to image-based representations in the back-
ground.We are able to achieve more complex reflections and
refractions than existing screen space techniques, and offer
reflections by off-screen objects.Our results demonstrate that
our algorithm is capable of rendering multiple bounce reflec-
tions and refractions, for scenes with millions of triangles, at
720p resolution and above 30 FPS.
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1 Introduction

Reflective and refractive objects are important components of
reality found in ray-traced imagery, but rarely found in real-
time rendering. When these objects do appear in real-time
rendering, they typically only demonstrate a single bounce
using rendered or pre-rendered environment maps. These
reflective and refractive objects can relay to the viewer infor-
mation about the composition of the scene, such as what is
hiding behind an object, or what can be seen through refrac-
tive objects.

For example, in modern real-time games, being able to
see movement behind the player in a mirror would add to the
gameplay experience. Also, real-time reflections are listed
by Andersson [1] as a major challenge for real-time render-
ing. Modern real-time rendering scenes have a high triangle
count, and most triangle meshes are highly detailed. Storing
this data can take a large amount of memory, and computing
complex visibility with reflections is quite challenging, if all
geometry is taken into account.

The contribution of this paper is a general framework
that enables real-time reflection and refraction rays to tra-
verse multiple bounces, while running on graphics hardware.
Ourmethod enables complex reflections and refractions with
multiple recursions to be computed within a region near the
camera, and more limited interaction in the remainder of the
scene. We use a hybrid approach that starts with a rasteriza-
tion of the scene to compute primary ray hit points. We also
generate a cube map of G-buffers, that store depth, color,
normal and material, creating an image-based representation
of the scene from the camera’s view point. In the area close
to the camera, a bounding volume hierarchy is constructed
every frame to enable fully deformable objects. For the pri-
mary ray hit points that require further tracing, rays are traced
into theBVH, and theG-buffers. To trace rays in theG-buffer,
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Fig. 1 A scene showing the type of complex reflections possible in
real-time using our system. The left image shows the camera and its
viewing frustum from a distance and the right shows the camera image.
On the left, three reflection and refraction ray paths are shown as red
lines. The top ray reflects off a mirror sphere and reveals a green sphere
that is occluded in screen space. The middle reflection bounces off a

large mirror sphere that is behind our BVH region close to the camera,
but the viewing ray is still traced back into the BVH to show the back of
the red sphere. The lower ray traces through a refractive yellow sphere
and is then reflected back into the yellow sphere. All these complex ray
paths are not possible with existing screen space techniques

we present a new approach to ray marching in the scalable,
geometry insensitiveG-buffer that represents an entire scene.
Rays traced into the image-based G-buffer that intersect with
reflective objects can spawn new rays that trace back into the
BVH volume or into other G-buffers. The different types of
rays that are traced are illustrated in Fig. 1. An important
objective of our system is to integrate complex viewing rays
into large scenes, e.g., where complex foreground reflections
and refractions are integrated with non-reflective, faster to
render, backgrounds.

2 Related work

Real-time reflections and refractions have long been possi-
ble using environment maps and graphics hardware using the
technique introduced by Blinn and Newell [2]. This method
is limited to a single bounce and so immediately loses much
of the realism that reflections and refractions provide. True
photo realism requires more complex rendering of visibil-
ity to capture realistic reflections and refractions. Realistic
reflections and refractions can be achieved using ray trac-
ing [24], but ray tracing needs to be integrated carefully into
real-time systems to ensure high performance.

Real-time rendering in games has used environment-
mapped reflection and refraction for many years. Recent
game engines such as unreal engine [3] supports features
such as billboard reflections, where imposters are used to
improve the accuracy of reflections.

More realistic screen space reflections are created in
CryEngine 3 [19] using raymarching in screen space to create
accurate reflections, but are limited to objects which appear
in the view frustum. Recent research on using non-pinhole
cameras for reflections is presented by Rosen [16].

Wyman [25] makes real-time refraction look more real-
istic by also representing a second surface. Sun et al. [20]

present a technique for simulating light transmission through
refractive objects using the GPU, but at much lower frame
rates than we target in this work.

Our approach also captures the surrounding scene by ren-
dering a cube map, similar in nature to image-based methods
such as presented byMcMillan [11]where images arewarped
to create the final rendering. Hakura and Snyder [4] present
a hybrid system that uses environment maps and ray tracing
to generate realistic reflections and refractions. Their system
creates multiple environment maps from different directions
and distances from the reflective or refractive object in a pre-
processing stage that would take significantly more time than
ourmethod,which createsmaps of the entire scene’s environ-
ment using the rasterization pipeline, which is significantly
faster, even without modern graphics hardware. Our algo-
rithm also improves accuracy by tracing rays at each pixel.

Cube maps have been used extensively in real-time ren-
dering to capture lighting. Games, such as Half-Life 2 [12],
assign individual cube maps to each object to create local
lighting. Sebastien et al. [18] present techniques for recent
games that solve the parallax issues present in the cube map
technique. Szirmay-Kalos et al. [21] render a cube depthmap,
similar to our G-buffer cube map used here, and uses it for
parallax corrected access to lighting in the environment map.
Their approximation to the intersection point is calculated
using the point where the cube maps where created from and
the currently intersected point. In our work, we use simi-
lar cube and depth maps, but use ray marching to compute
accurate intersection points and trace secondary rays from
those points, rays that also traverse the depth map to enable
much more accurate visibility from our cube map. Knecht
et al. [8] also useG-buffers to capture illumination and relight
reflective and refractive objects.

In recent work, Mara et al. [10] use a two-layer deep
G-buffer to achieve low-frequency lighting effects. They also
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Real-time multiply recursive reflections and refractions using hybrid rendering 1397

showhow to use their deepG-buffer to computemirror reflec-
tions. Although their two-layer G-buffer captures objects
hidden to the viewer (such as objects behind a wall), the
reflected object still has to reside within the view frustum.
Our approach offers reflective rays in any direction, even
opposite to the view direction, and with a higher quality if
the reflected object is located within the BVH region.

We use a screen space approach based on deferred shad-
ing [17] to find the hit points of the primary rays and then
use real-time ray tracing to trace secondary rays through the
foreground objects. There is a great deal of work in real-time
ray tracing which will not be reviewed here that includes
data structure construction such as BVHs and kD-trees [27]
and optimizations of ray tracing performance, but this paper
focuses on combining ray tracing with image-based render-
ing to compute complex reflection and refraction effects.
Recent work on real-time ray tracing on GPUs [6], using
voxelization and A-buffers to create a representation of the
scene, is capable of global illumination at interactive rates
using a full GPU pipeline. The algorithm presented targets
higher frame rates and resolutions to fitmore easily intomod-
ern real-time rendering engines.

Interactive global illumination attempts to accurately
model the interaction of light andmatter by rendering frames
in less than a second. Ritschel et al. [15] survey the current
state of the field and we take a few highlights from that area
that are related to our current work.

Screen space techniques improve upon basic environment
mapping using the representation of objects in the scene in
screen space, but still screen space does not handle objects
occluded from the view point or objects outside the view
frustum. Reinbothe et al. [14] voxelize the entire scene so
that ambient occlusion can be more accurately calculated in
screen space.

Thiedemann et al. [23] also voxelize the scene to avoid
illumination errors. Ritschel et al. [15] point out that interac-
tive global illumination approaches approximate the geome-
try and lighting in the scene to reduce the complexity, because
low-frequency representations are sufficient for lighting. For
accurate reflections and refractions, accurate geometry is
required and for this we use real-time BVH construction.
Recent improvements in accurate indirect illumination using
BRDFs [26] demonstrate future directions for improving the
image quality of our work, but since their performance is
limited, they are beyond the scope of this paper.

3 Algorithm

Our rendering algorithm is based on a hybridization of exist-
ing rasterization and ray tracing techniques. It balances visual
quality and performance in such a way that multiple bounce
reflections and refractions of complex scenes are possible in
real-time on current graphics hardware.

BVH

Cube Map

Environment Map

c

z

x

Fig. 2 An X–Z 2D diagram of our rendering setup shows the differ-
ent regions we break the scene into and how they are represented for
rendering. Objects near to the camera (c) are inside a BVH. Objects fur-
ther away are rendered into 6 G-buffers that are stored as a cube map.
Objects beyond the cube map will be represented by the typical sky box
in an outer environment map. The cube map faces are rendered with the
camera at the center point c. A blue trapezoid shows the view frustum
where three paths are traced from the primary view G-buffer into the
BVH and intersect with objects in the BVH (red ray), objects in the
cube map (green ray) and going through two cube map faces (yellow
ray). The red ray shows an example where a ray can trace in and out of
the cube map and BVH regions

Distant geometry in the scene is represented by image-
based maps that reduce scene complexity, but still allow rays
to recursively reflect and even refract if the refraction goes to
a sky box. The maps are a set of six G-buffers arranged in a
cube map style. Geometry close to the view camera is repre-
sented in a BVH that is traversed with a real-time ray tracer.
To facilitate fully dynamic scenes in real-time, a full rebuild
of the BVH around objects close to the camera is performed
for each frame. An overview of the partitioning of the scene
geometry is shown in Fig. 2.

Each frame of our algorithm performs the following steps:

1. Rasterize primary visibility
2. Render a G-buffer cube map
3. Build the BVH of geometry near the view camera
4. Perform primary shading and generate secondary rays
5. Recursively traverse the BVH and G-buffer cube map

These steps are further explained in the following sections.

3.1 Primary visibility

The first pass of the algorithm is the same as the first step of
a standard deferred renderer. Primary visibility depth values
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and normals are stored in 2D textures that are used as a G-
buffer. The only variation with our G-buffer compared to
one commonly used in deferred rendering methods is that
a material index rather than a specularity value is stored in
the alpha component of the normal texture. These material
indices are later used as material identifiers by the ray tracer.

3.2 The cube map

The cube map in our algorithm is an image-based data struc-
ture that is updated once every frame. The cubemap is used to
reduce scene complexity for ray tracing by rasterizing distant
geometry. It stores the same kind of G-buffers as the primary
visibility pass does, but instead of having one G-buffer, an
individual G-buffer is stored per cube face. The cube origin
is set to the view camera’s world space position and the near
planes of the cubemap cameras define the boundary between
BVH ray traversal and image-based ray marching. To avoid
issues when a ray travels parallel to the diagonal planes of
the view frustums of the cube map camera faces, the cube
map cameras’ field of view (FOV) is slightly wider than 90◦.
In our implementation, the FOV is set to 90.2◦ (Fig. 3). By
widening the FOV, a ray existing in one of the cube’s diago-
nal planes will always belong to at least one of the cube sides

BVH

Cube Map

z

x

90

90.2

90.2

Far Plane

Near Plane

Fig. 3 It is always possible to get a ray that goes along the diagonal
planes (green ray) that separate the 90◦ frustums of the cube map’s
faces. A drawback of having the view camera centered in the cube is
that this is a frequent event. In our approach, we widen the FOV of the
cube map cameras so that the green ray always belongs to one or the
other cube map side, and once the side to traverse is picked, the ray will
continue in that side and not risk repeatedly switching sides. The blue
ray displays a case where the ray first only belongs to the red frustum
and then enters the overlapped region. Entering the overlapped region
does not mean that the ray will switch side. The blue ray continues in
its current side for as long as it is within the red frustum. A ray aligned
with the diagonal plane of the red view frustum would only be able to
switch to the blue frustum once, since the new switching planes would
then be the blue view frustum’s diagonal planes

when entering the cube map. It is not important which side a
ray belongs to, the first side a ray is tested positively against
is chosen for ray marching.

3.3 BVH construction

Our BVH implementation builds an LBVH, the linear BVH
approach by Lauterbach et al. [9], where tree construction is
reduced to a sorting problem. Parallelism is further improved
by applying a tree and axis aligned bounding box (AABB)
construction algorithm similar to the one by Karras [7].

Only geometry residing inside the cube defined by the
cube map cameras’ near planes is represented in the BVH.
Before the BVH is constructed, a per object culling pass is
performed. If an object’s AABB overlaps with the cube then
all triangles of that object are transformed to world space
and a second culling pass is executed. The second pass per-
forms per triangle culling. This is motivated since any ray
that leaves the BVH boundary will enter the cube map and
not continue in the BVH, even if the BVH contained trian-
gles from partially overlapping objects. By culling triangles
from objects partially overlapping the BVH region, no time
is wasted on building a tree that includes triangles that would
never be intersected anyway. Per triangle culling also enables
a more balanced BVH of the triangles that actually are inside
the BVH region. Since a lot of geometry is represented in the
cube map, the BVH becomes much smaller, with the benefits
of both reduced construction time and faster ray traversal.

By introducing a small overlap of the BVH and the cube
map, the possibility of a gap at the boundary due to precision
errors is removed. In the overlap, an intersection occurs either
in the map or in the BVH.

It is also possible for objects to have individual pre-
computed BVHs, rather than a per-frame full BVH rebuild,
and that rays intersecting an object are transformed to the
local frame of the object before continuing traversal. How-
ever, thismethod onlyworkswhen applying rigid body trans-
formations. Our method is capable of handling any types
of transformations, as an example, procedurally animated
meshes.

3.4 Ray tracing: BVH and cube map traversal

Our ray tracer approximates Whitted ray tracing by letting
rays recursively traverse through the two different data struc-
tures, the BVH and the cube map. In fact, the cube map can
itself be considered an approximation of a BVH. As it is
an image-based data structure, once rasterized, ray traversal
time in the cube map is constant in relation to scene com-
plexity. The size of the BVH and cube map can be chosen
arbitrarily and as the BVH is increased in size, to cover a
larger part of the scene, our method converges towards a
complete Whitted ray tracer.
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Before ray tracing begins, the view camera G-buffer is
used to compute shading of the primary intersections and to
determinewhether a visible object should generate secondary
rays or not. A spawned recursive ray continues to traverse
the scene until it hits a diffuse surface, exits through the
far planes of the cube map (and intersects a sky box in an
outer environment map), or the maximum recursion depth is
surpassed. The first recursion of a ray may start either in the
BVH or in the cube map. Where it starts is simply decided
by testing if the origin of the ray is inside the BVH bounding
box or not. A recursive ray is initially defined in world space
as

rw(t) = ow + dwt, {ow, dw} ∈ R3, |dw| = 1, t > 0.

If a ray currently traversing theBVHdoes not intersect any
geometry, then it is instead sent to intersect with the world
space representation of the cube map cameras’ near planes.
Given an intersection in the cube map side i ∈ [1, 6] at the
parameter value ti > 0, the two points

p0 = rw(ti ) and p1 = rw(ti + ε)

can be computed along the ray, where the offset ε > 0 is a
small value that extends the ray slightly into the cube map
side. By multiplying the points p0 and p1 with the view
projection matrix Mi given by the camera that corresponds
to cube map side i , the transformed points

p′
0 = Mi p0 and p′

1 = Mi p1,

are computed and further used to define the map ray used for
ray marching as:

rm(t) = p′
0

︸︷︷︸

om

+ p′
1 − p′

0

|p′
1 − p′

0|
︸ ︷︷ ︸

dm

t

with the components of om and dm in the range [−1, 1].
Rays that leave the BVH and enter the cube map use a

similar ray marching technique to that of per-pixel displace-
ment mapping [5] and parallax occlusion mapping [22]. An
important difference is that where previous ray marching
techniques expect an orthogonal height map to traverse, in
our method, each face of the cube map is represented in per-
spective. A second difference, and an result of the perspective
projection, is that a ray can exit one face of the cube map,
but still be an active ray, and enter a neighboring side of
the cube map. A ray can also bounce between the cube map
and the BVH and back again, as many times as the recur-
sive traversal needs before reaching one of the terminating
conditions.

If the map ray, rm , currently traversing the cube side i
does not intersect anything in the map, then there are five
alternatives to exit the cube map sides for continued traversal
and one alternative which would terminate the ray. If the

z-component rmz > 1, then the ray exits through the far
plane of the cube and is sent to intersect the sky box as a final
traversal step. If the ray traverses in the negative z-direction
and rmz < −1, then traversal continues in the BVH, using
the original ray rw. The other four alternatives are when the
ray exits through the x- or y-axis and continues in the cube
map side j . Given the side i and the map exit condition, it is
possible to directly pick the side j to traverse. Before the ray
can continue in cube side j , rm is transformed back to world
space and further transformed to the cube side j’s space using
the j th view projection matrix. The matrices from any side i
to any other possible side j can be pre-computed to speedup
the transition from one cube side to another.

The sampling rate n while traversing a cube map side
depends on the angle between the normal Nw of the inter-
sected plane and the ray direction rw and is computed in a
similar way as it is done by Tatarchuk [22], n = nmin +
Nw · rw(nmax − nmin). However, once the ray is transformed
to normalized device coordinates (from rw to rm), the trans-
formed normal will always be directed along the z-axis and
Nm · rm simply becomes the z-component of rm .

To avoid stretching artifacts when a ray that is close to
parallel to the current cube map side intersects an object, and
since the cube map only stores one layer of depth values,
objects represented in the cube map can be considered to be
thin or thick. The thickness value of an object is proportional
to the amount of stretching permitted by that object when
intersected in the cube map. If a ray, currently traversing the
cube map, intersects an object that is considered thin, instead
of stretching the object, the ray simply misses and continues
directly to the sky box. Whether an object is thin or thick
is a per material property which can be chosen arbitrarily
by an artist. The thickness value ranges between 0 and 1,
where a thickness of 0 represents a perfectly thin object and
a thickness of 1 represents an object that stretches to the far
plane. Smaller moving objects seem to visually benefit from
being considered rather thin, and static objects, such as walls
(which should not let rays pass behind them anyway), should
preferably be considered thick. Refractive objects in the cube
map are always considered thin and once intersected, ray
traversal is canceled and the refracted ray is sent to the sky
box.

3.5 Shadows and deferred rendering

It would be possible to compute accurate ray-traced shadows
inside the BVH, complying to the restriction that the light
sources also reside within the BVH. If the light sources and
thus possible occluders are positioned outside the extent of
theBVH, it is no longer possible to guarantee correct shadows
using conventional ray-traced shadow rays.

However, since our method is highly compatible with the
deferred rendering pipeline, it is straightforward to incor-
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Fig. 4 Three test scenes rendered from left to right with our algorithm
(Our), using the BVH only (BVH), and with geometry inside the BVH
colored blue and geometry in the cube map colored red (colored). For
the colored image, only pixels that contain reflective material that starts

a ray are colored according to which area of the scene the ray is started
in. The number of triangles for each scene is chess 2,149,944, Sponza–
Buddha–Bunny 1,354,743 and San Miguel is 10,500,551

porate shadow maps, or any other effect or post processing
filter commonly usedwith deferred rendering, to ourmethod.
Computing shadows using shadow maps has an insignificant
impact on rendering performance.

4 Results

We implemented our method using OpenGL and CUDA 5 on
a 32-bit Windows 7 PC with an Intel Core i7 and an Nvidia
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Fig. 5 Rendering time breakdown of the 200 frames Sponza–Buddha–
Bunny animation. Our method to the left compared to full ray tracing to
the right. The scene is rendered with a maximum of four ray recursions.
The improvedperformance ismostly due to the improved ray traversal in

the cube map over the cost of BVH ray tracing. For this scene, the BVH
has been optimized to give high image quality and good performance.
But since the size of the BVH used is chosen arbitrarily, performance
is dependent on this trade-off, and the scene

GeForce 680, and tested it on several scenes. For the larger
San Miguel scene, we used 64-bit Windows and an Nvidia
Quadro K5000 to generate the full BVH ray-traced images.
Figure 4 shows two images from each of our test scenes in
comparison to an accurately rendered image, using a BVH
for the entire scene, and a colored coded image that shows
the size of the BVH near the camera. The San Miguel model
is from PBRT [13]. The San Miguel scene uses only per
triangle frustum culling, since per object frustum culling is
not possible because of its file format.Wewould expectmuch
better performance if per object culling was implemented as
it is for the other scenes, even so, our method still manages
to render The San Miguel scene at an average speed of 10
frames per second.

Figure 5 shows the frame time for rendering a 200 frame
sequence in the Sponza–Buddha–Bunny model. Each frame
is broken down into the CUDA kernels that are used for ren-
dering each frame. The breakdown shows that the ray tracing
kernel is the dominant part of rendering, with the cube map
rasterization of the scene taking little of the overall rendering
time. The results show that on average our algorithm is four
times faster than using a BVH for the entire scene.

The chess scene is considered a pathological case when it
comes to compute approximated reflections. This because
of its many reflective convex objects (288 chess pieces
and 9 spheres) where many of them reflect and interreflect
each other. Yet, our method accurately computes reflec-
tions nearby the view camera and successfully approximates
reflections far away. This can be compared to what is possi-
ble in, as an example, unreal engine [3], where reflections of
dynamic objects only are achieved in screen space (and only
one recursion is possible), and off-screen reflections have to
be pre-computed and stored in reflection environment maps.
Since only static objects are visible in the reflection environ-
ment maps, but all objects in the chess scene are dynamic,
no reflections at all would be possible from the reflection
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Fig. 6 Performance comparison for the chess scene between our
method and using a full BVH for the scene. Both methods rasterize
primary visibility. Our method always out performs full BVH ray trac-
ing by being at least twice as fast and up to 4 times faster

environment maps. Figure 6 shows the performance of our
method for the chess scene compared to the full BVHversion.
The results show a similar characteristic for both methods as
the rendering time is dominated by ray tracing for both our
method and the BVH version. But our method always shows
significant improvement in performance due to the use of the
cube maps for storing the scene.

To fairly compare the performance of our method versus
a full BVH ray tracer, we have chosen to rasterize primary
visibility in both methods, which brings the full BVH ray
tracer closer to real-time performance. Even so, our method
always performs better than a full BVH ray tracer.

4.1 Limitations

While accurate reflections and refractions are achieved inside
the BVH, this is not possible in the cube map. The G-buffers
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Fig. 7 In the first row, a minor stretching artifact is visible in the
reflected chess piece on the board (visible as darker pixels to the right
of the chess piece). The second row displays an artifact where an object
(chess piece) is covering a reflective object (sphere) in the cube map
and thus important scene information between the two objects is lost.
Neither of the two artifacts can take place inside the BVH and so only
occurs in the background where the G-buffer cube map is used to store
scene information. The magnified regions can be located by red boxes
in the chess scene images in Fig. 4
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Fig. 8 In our method, refractive objects residing in the cube map can-
not truly refract incoming rays due to the lack of information behind it,
and as a fallback method a typical real-time refraction method is used,
where rays simply do a look-up in the cube map. The magnified region
presented can be located as red squares in the results image (Fig. 4) of
San Miguel

only represent a single depth value without any thickness.
So objects that have some thickness, details that are behind
the front or objects that are hidden behind this depth value
are not represented in the depth map and appear missing
in some rays. This results in some artifacts, but our BVH
close to the camera ensures that the artifacts are in distant
geometry and are only present for secondary rays. Even with
this limitation, the resulting images in real-time applications
have a more realistic look when rendering multiply recursive
reflections and refractions.

The first row of Fig. 7 presents aminor artifact in the chess
scene where the reflected chess piece on the board is slightly
stretched (dark pixels to the right of the chess piece) due to
its thickness value and that the reflected rays’ origins are not
shared with the cube map cameras’ origin.

Another artifact, also displayed in Fig. 7, is when an object
is covering a reflective object in the cube map. This artifact
has a lower probability to appear near the camera (and can-
not appear inside the BVH) than further away, due to the
increased possibility of having objects covering each other

in the cube map the further away they are represented. A
reflected ray can detect that it is behind another object, but
there is no information about what to intersect, and as a fall-
back, the ray is sent to do a look-up in the sky box.

Rendering performance is greatly affected by the type of
materials in the scene and also by the size of the BVH. If
a scene contains many reflective and refractive materials,
performance is naturally reduced due to the high recursive
ray count. The reduced performance in scenes containing a
lot of reflective materials can be mitigated by adapting the
size of the BVH, thus a trade-off between performance and
image quality is made.

A carefully sized BVH is in some cases vital to minimize
the presence of possible artifacts using our method. One arti-
fact that would be too interfering had it not been pushed
to the background by a, for this scene, suitably sized BVH
is displayed in Fig. 8. The refractive objects (water pitcher
and glasses) in the back of the San Miguel scene are only
stored in the cube map, and thus no information about what
is behind them exists. Instead of computing accurate refrac-
tions, a typical real-time refraction approximation is used
where the objects are considered thin and rays simply refract
only once and do a look-up in the cube map.

The G-buffers require a reasonable amount of memory.
If needed, the G-buffers may be rendered at a lower resolu-
tion to reduce memory usage. However, a reduced G-buffer
resolution would also affect image quality.

5 Conclusion

We have presented an approach for rendering multiple
bounce reflections and refractions in real-time using ras-
terization and ray tracing on modern graphics hardware.
Our technique is capable of rendering objects typically
not seen in previous real-time screen-based techniques
at real-time rates of between 30 and 60 FPS for 720p
images. Since the BVH can be arbitrarily sized, our tech-
nique is highly customizable to scene or performance
requirements.

Since our approach is highly compatible with current ren-
dering approaches, such as deferred rendering,wehope itwill
impact future applications and enable new types of interac-
tions and improved visibility in real-time rendering.

Supplemental materials

A paper web page with additional resources can be found
at: http://fileadmin.cs.lth.se/graphics/research/papers/2014/
r5/. At the web page we present videos of our test scenes
rendered with our method, full BVH ground truth videos,
and videos visualizing the extents of BVHs and cube maps.
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