
Vis Comput (2015) 31:717–732
DOI 10.1007/s00371-014-0997-3

ORIGINAL ARTICLE

A vectorization framework for constant and linear gradient
filled regions

Ruchin Kansal · Subodh Kumar

Published online: 5 July 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Linear gradients are commonly applied in non-
photographic artwork for shading and other artistic effects. It
is sometimes necessary to generate a vector graphics form of
raster images comprising such artwork with the expectation
to obtain a simple output and plug it into a traditional work-
flow, to be further edited and arranged.Many suchworkflows
support only linear gradients and our goal is to generate a
standard vector form of the image that can fit such workflow.
This vectorization process should be automatic withminimal
user intervention. We present a simple image vectorization
algorithm that detects regions of linear gradient in poten-
tially noisy images and reconstructs the vector definition on
the basis of that information. It uses a novel interval gradi-
ent optimization scheme to derive large regions of uniform
gradient. We also demonstrate the technique on noisy and
hand-drawn portraits.

Keywords Image vectorization · Gradient reconstruction ·
Region detection

1 Introduction

This paper presents a framework to identify linear gradient
regions in digital images and then reproduce their possible
original definition for vector graphics that may be inserted
into a typical art workflow and further processed. Vector
graphics consists of mathematical primitives for the objects
present in an image in contrast to a per-pixel bitmap repre-

R. Kansal (B) · S. Kumar
IIT, Delhi, Delhi, India
e-mail: rkansal@adobe.com

S. Kumar
e-mail: subodh@cse.iitd.ac.in

sentation. For this reason, vector graphics is considered to
be suitable for editing, animation and rendering at varying
resolutions.

The process of converting a bitmap to vector graphics
is called vectorization [2,13–15,21,25,28,29]. It may be
viewed as a reverse process of rasterization where a vec-
tor image is converted to raster. Significant research exists
in the field of vectorization. Many commercial software are
also available to perform automatic vectorization. However,
in practice this problem tends to be deceptively hard. Stan-
dard techniques work well on clean images, for example,
those directly rasterized from a vector form. However, when
the image is from the wild, i.e., it is noisy with processed
edges and shading, many of these methods fail to accurately
vectorize it satisfactorily. For example, as shown in Fig. 1,
commercial software like Adobe Illustrator [1] and Inkscape
[11] approximate the linear gradient definitionwith solid col-
ored regions while ARDECO [15] creates multiple patches
for the same gradient region. Because of this inappropriate
gradient construction, any further editing of the vectorized
asset is challenging. It is hardly surprising that much recent
work in this area has focussed on the need to use higher order
gradients for accurate vectorization. However, such gradients
are not always supported in actual workflows, which often
require a series of software and only the gradients supported
by all the stages of the pipeline can be used. This paper pro-
poses an approach for vectorization of linear gradient regions
containing accumulated noise such that the output consists
of a small number of vector parts.

Vector graphics may be represented using an open vector
format such as EPS, PDF, or SVG [20] or it could be a pro-
prietary format (such as Adobe Illustrator or Corel). Among
open formats, SVG is possibly the most widely used vector
format for web and digital media, which we have chosen as
our output. Nonetheless, the definition of linear gradient is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-014-0997-3&domain=pdf

718 R. Kansal, S. Kumar

(a)

(e)

(b) (c)

(d)

Fig. 1 Comparison of different outputs. a Original image, b Abode
Livetrace output, c Inkscape output, d ARDECO output, e our output

Fig. 2 Linear Gradient defined by four gradient stops (C1, C2, C3
and C4). Notice the color along gradient vector is defined by linear
interpolation from one stop to another, but the color of a pixel along
gradient normal remains same

largely the same in prevalent vector standards. SVG defines
Linear Gradient as continuous smooth color transition along
a 2D direction from one given color at a known position to
another. This direction is called the Gradient Vector. The
value of each pixel along the gradient vector may be calcu-
lated by linearly interpolating the two end colors. TheGradi-
ent Normal is the vector perpendicular to the gradient vector.
The color of each pixel on the gradient normal is the same.
The SVG standard also allows fixing of more than two col-
ors along the gradient vector, to form a smooth multi-color
transition. These specific points on the gradient vector with
pre-defined color values are called Gradient Stops or Color
Stops (see Fig. 2). Unless otherwise stated, the gradient in
this paper refers to the linear gradient at a pixel which is rep-
resented by the slope of line in the direction of the maximum
change of color in its neighborhood.

We have developed an approach that can detect linear gra-
dient filled regions as well as the gradient values. While the
contributions of this paper are primarily in effective recov-

ery of regions with uniform gradient, for completeness we
do also produce boundary curves and regions with uniform
fill color where necessary. We do not target vectorization of
photographic quality images, but rather art-design by artists.
The distinguishing feature of such images is that they con-
tain relatively large areas of uniform fill and gradients, but
suffer from noise and other smoothing and post-processing
artifacts. The main contributions of this paper are:

1. A novel interval gradient optimization scheme to derive
large regions of uniform gradient.

2. The ability to reconstruct the linear gradient definition by
estimating gradient stops and direction.

3. The ability to generate a small number of regions to keep
the output vectors editable.

4. The ability to refine the segments further in multiple
passes based on an error analysis.

2 Previous work

Much research has been performed in the field of vector-
ization. A good discussion of vector primitives related to
color gradients is provided by Barla et al. [2]. They describe
various available techniques for construction and rendering
of such vector primitives. They mention the current meth-
ods of vector creation by hand as well as through automated
vectorization. Some practical challenges and limitations of
these approaches are also explained. The literature relevant
to vectorization may be divided into following four broad
categories.

2.1 Edge detection-based approaches

Early work in vectorization was focused on only line draw-
ings and bi-tonal images [6,7]. These approaches are mainly
based on edge detection [5], thresholding [23,24], thinning
[26] and contour tracing [10]. The extracted line, image con-
tour or region is represented by vector graphics primitives,
e.g., curves and paths.

2.2 Triangular patches

Delaunay triangulation is a popular technique for image seg-
mentation. Many approaches have been suggested using this
segmentation basis for vectorization. One such popular vec-
torization technique is ARDECO [15]. It tries to decompose
the input image into triangular patches. Each patch is approx-
imated by a constant color, linear or higher order gradient in
order to minimize the overall energy. The energy function in
their approach is determined by a boundary length function

123

A vectorization framework for constant and linear gradient filled regions 719

and a curve fitting term as per the Mumford and Shah model
[18]. The boundary length functional is computed by using
LLoyd’s algorithm [16] to decompose the set of points into
compact cells. The curve fitting function is defined as a lin-
ear combination of a constant color and first or higher order
gradient functions.

The weights of terms is controlled by user input. Since
the energy functional is quite generic, it can handle images
with fine details. At the same time it often produces a large
number of patches and consequently it is not possible to edit
the final vector graphics easily for post-editing. Further, for
large gradient fill regions, it often fails to converge to a result.
Also, due to linear constraints the segment boundaries pro-
duced by them is often not smooth. Finally, the user needs
to adjust several parameters by experimentation. Our algo-
rithm is simpler to use than ARDECO and it discovers only
first-order gradients. Further, our algorithm produces fewer
regions so that the user can edit the image easily.

Xia et al. [28] propose a vector-based representation in
which the image is decomposed into non-overlapping trian-
gular patches with curved boundaries. The color variation
over each triangular patch is approximated with a thin-plate
spline for every color channel. This allows them to approxi-
mate raster images with both smooth variations and curvilin-
ear features. Also, this vector representation is more accurate
and compact in comparison to triangulation-based vector-
ization. In the same paper, they also propose a GPU-based
rasterization algorithm to render their patch-based vector for-
mat. Although, the representation is powerful and compact,
again editability and portability is a concern.

2.3 Parametric mesh representation

Mesh-based techniques claim for amore editable and flexible
representation. Price and Barett [3] propose an approach for
interactive image editing using object-based vectorization.
They allow the user to select an object and then graph cut is
used recursively to form a hierarchical object tree. For each
object they define a mesh by locating the corner points and
doing recursive subdivision. The resultingmesh can be edited
by various tools. However, the approach is designed to be
driven by user manually. Also, the algorithm does not handle
gradient re-construction, it only provides a better means of
object construction.

Sun et al. [25] introduce a vectorization approach using
Gradient Mesh. There, a gradient mesh is defined by a grid
using topologically planar rectangular Ferguson patcheswith
mesh-lines. Control points of the mesh have three attributes:
position, derivative and color. Because of these attributes, a
rich color object may be represented by the gradient mesh by
simply varying one or more of these attributes.

While this earlier approach relies on user assistance for
mesh initialization and placement, Lai et al. [14] improve
that algorithmbygenerating the gradientmesh automatically.
The output of gradient mesh is quite impressive and it can
even be applied to photographic images. However, the size
of their representation is too unwieldy for further editing
and manipulation. Moreover, gradient mesh is not a standard
primitive and hence is less portable; gradient meshes cannot
be rendered or edited by standard tools.

2.4 Curvilinear feature detection

Diffusion curves [19] form a different approach to represent
smooth shaded images. A diffusion curve partitions the space
through which it is drawn, defining different colors on either
side. These colors may vary smoothly along the curve. In
addition, the sharpness of the color transition from one side
of the curve to the other can be controlled. Given a set of
diffusion curves, the final image is constructed by solving a
Poisson equation whose constraints are specified by the set
of gradients across all diffusion curves. An automatic diffu-
sion curve coloring algorithm is discussed in [12] such that
the resulting diffused image looks very similar to the origi-
nal source image. They also suggest a way to estimate and
store the texture details with diffusion curves on the basis of
Gabor Noise, and then generalizing it to store any number
of attributes. However, due to the limitations with Poisson
equations, the color variations in all raster images may not
be represented by this system, especially when the image has
sparse features in some areas. Like gradient mesh, it is also
not a standard primitive yet, although it has been considered
for inclusion in the SVG standard. As noted previously, for
common workflows users expect good, editable and auto-
matic vector output generation. ARDECO [15] may gener-
ate gradient patches and it improves the appearance, but the
output is hardly editable because of too many patches. For
examples, please see Table 1. Other approaches like gradi-
ent mesh ([14,25], Xia et al. [28], Price and Barett [3]) and
diffusion curves [19] also yield good results, but their output
is not in the traditional standard form. So, further processing
becomes difficult.

3 Our approach

Figure 3 depicts our pipeline. We start with a raster image.
In our experiments all input images are 8-bit per-channel
RGB images, but the technique is independent of the color
format. Likemost vectorization approaches, we first segment
a filtered version of the image. Color discontinuity imposes
segment boundaries. Next, for each segmented region, we
determine if it can be represented by a single linear gradient.

123

720 R. Kansal, S. Kumar

Fig. 3 The complete pipeline

We determine this by searching for a gradient value that is
supported by all the pixels of the region. In particular, we
compute the range of gradient values supported by each pixel.
A global optimization across pixels of the region determines
the most plausible gradient for the region.

We perform an error analysis with this optimized gradient.
If the error is too high for a segment, we divide it further and
recompute the gradients for smaller regions. Finally, using
this optimized gradient direction slope for each accepted
region, we find its gradient stops. We then trace the con-
tours for each segment and assign the vector information. If
the region is identified with a gradient fill, we store the gra-
dient information with the contour, otherwise we perform
color averaging over the region and use this average color
for region fill approximation. Finally, SVG is output with
these details.

As shown in Fig. 3, the pipeline consists of various stages
and each stage is dedicated to a specific function. We now
discuss the functions and design of each stage.

3.1 Smoothing

To reduce the effect of noise in the image, it is advisable to
use a low-pass filter. We have used a Gaussian blur of radius
3 for this purpose. It reduces the sharpness near edges and
produces a relatively smooth image.

3.2 Segmentation

We can perform initial image segmentation using a standard
scheme.We have performed image segmentation using seed-
fill [9] from openCV [4], which generates reasonable seg-
ments. A more expensive segmentation algorithm can also
be employed, slightly improving the performance, but it is
not critical for the purposes of this paper.

3.3 Gradient calculation

From the pixel values, we estimate the unknown gradient
direction slope m for each segment. In general, due to inde-
pendent filters and masks the noise in the images is inco-
herent and discontinuous. Hence, local gradient estimation
followed by standard best-fit regression applied to the entire
segment is less effective.We instead apply the best-fitmethod
only locally and then search for the most consistent gradient
globally in a segment.

Note that the input color values become especially impre-
cise due to smoothing, rasterization and rounding. In partic-
ular, as the pixels go through a series of image processing
steps, computational error adds up and sampled values devi-
ate from the vector values.Rasterization, in particular in areas
of low gradient, results in a number of pixels snap to the same
color value, before a change is encountered. We conjecture,
however, that the pixel color values are largely within a small
interval of the precise interpolated color. This range may be
larger in case the image undergoes successive rasterizations
or filtering. Hence, if the color at pixel p input to this stage is
c, we allow that the actual color lies in the interval [c− : c+],
where c ∈ [c− : c+]. For example, if c only has rounding
error, c− = c − 0.5 and c+ = c + 0.5. We use ±0.5 in our
experiments.

If the gradient at pixel p is m, we expect the color along
the gradient normal, p + k 1

m , to be in the interval [c− : c+]
for all values of k within a segment, if the input color at p is
c. However, due to the discrete nature of rasterization in the
input image, that entire line may miss all pixel centers and
hence colors along the line must be reconstructed from the
sample values at the pixels.

For this we consider a neighborhood around pixel p and
locate the normal line passing through the center of p. We
choose a rectangular neighborhood (only the part that lies
within the segment). We search for candidates in this neigh-
borhood through which the normal line may pass. Instead
of this search through the entire region, it is sufficient to
find the range [c− : c+] on the boundary of the region, call
it R (see Fig. 4). Assuming linear interpolation along R,
we find two samples p1 and p2 on R such that the color
c1 at p1 and color c2 at p2 contain the range [c− : c+],
where p1 and p2 are the closest such pixels on the con-
tour. In other words, [c− : c+] ⊆ [c1 : c2]. We deduce that
the normal line through p intersects R somewhere between
p1 and p2. As an aside, if one were to search for the exact
value c reconstructed from samples near p1 and p2, it would
produce unreliable estimates for m, which are often incon-
sistent with the estimates of p’s neighbors. The location
of the normal line is its estimate at p. This may be inac-
curate. A range of normal slopes would be more reliable.
We derive this range. Figure 4 and Algorithm 1 describe
how.

123

A vectorization framework for constant and linear gradient filled regions 721

Fig. 4 The setup: a rectangular grid of pixels around a pixel p is con-
sidered. The color interval of pixel p, [c− : c+], lies in the colors at
pixels p1 and p2. This implies the normal direction through p, passes
between p1 and p2. Consider lines joining p with p1 and p2, respec-
tively. These lines intersect at the opposite side of the grid on p′

1 and p′
2.

If [c− : c+] is spanned by the colors at p′
1 and p′

2, the normal directions
is assumed to lie between the two solid lines. Additionally, the green
dotted line is formed by fitting a line among all pixels whose colors are
similar to that of pixel p. This estimated slope is also stored for each
pixel p

Algorithm 1 Computation of Slope Range for pixel p
1: procedure FindRange(p, R) � Calculate range of slopes for pixel

p over region R
2: p.range ← ∅ � Initialize the range of p as empty
3: S ← Boundary pixels of R � Initialize

vector S with boundary pixels of R in such an order that all
consecutive pixels in S are neighbors in R

4: i ← 0
5: c ← p.color
6: for i < S.si ze − 1 do
7: p1 ← S[i]
8: p2 ← S[i + 1] � Get two neighbor pixels from S in p1 and

p2
9: if [c− : c+]⋂[p1.color, p2.color] �= ∅ AND p.region =

p1.region = p2.region then
10: L1 ← line(p1, p) � Find line L1 passing through p1

and p
11: L2 ← line(p2, p)
12: p′

1 ← intersection(L1, R) � Find intersection of L1
with R

13: p′
2 ← intersection(L2, R)

14: if [c− : c+] ⊆ [p′
1.color, p

′
2.color] then

15: p.range ← [slope(L1), slope(L2)]
16: break;
17: end if
18: end if
19: i ← i + 1
20: end for
21: end procedure

Recall that the color values are expected to be constant
along the entire normal line passing through a pixel. Hence,
if p is not on the boundaryof its region, a pair (p1, p2) implies

Algorithm 2 Computation of Favored Gradient
1: procedure FindGradSlope(p, R) � Calculate favored gradient

slope of pixel p over region R
2: p.slope ← nil
3: Q ← all pixels of R � Initialize vector Q with all pixels of R
4: i ← 0
5: S ← ∅
6: for i �= Q.si ze do � Loop on all pixels in Q
7: q ← Q[i]
8: if p.color ∈ [q.color− : q.color+] AND p.region =

q.region then
9: S ← S

⋃{q}
10: end if
11: i ← i + 1
12: end for
13: if S �= ∅ then
14: L ← Fit Straight Line(S)

15: p.slope ← slope(L)

16: end if
17: end procedure

the existence of another pair (p′
1, p

′
2) on the opposite side of

the region (see Fig. 4). For pair (p1, p2), we extend the lines
joining p1 and p, and respectively, p2 and p (Fig. 4 explains
this construction, see the blue and red lines passing through
p). The intersections of these lines with the opposite bound-
ary of contour R provides the conjugate pair (p′

1, p
′
2). Again,

the image is unlikely to include samples taken precisely at p′
1

and p′
2. We reconstruct the color, respectively, c′

1 and c′
2 at

positions p′
1 and p′

2 from the neighboring samples. If again
[c− : c+] ⊆ [c′

1 : c′
2], it is evidence of the normal line pass-

ing between p′
1 and p′

2. If the slopes of lines p1 p
′
1 and p2 p′

2
are 1

m1
and 1

m2
, respectively, we say that pixel p supports

color gradient in the range [m1 : m2] subject to the condition
that pairs (p1, p2) and (p′

1, p
′
2) lie in the same image region.

Please note that if the range [p′
1 : p′

2] is not tight and its
subset contains the color range [c− : c+], that subset is used
instead to provide a tighter gradient range.

Not the entire range of gradients [m1 : m2] are equally
probable, even locally. We assume the likelihood to have a
single maxima and a truncated Normal-like distribution. We
compute the favored gradient, i.e., the most likely gradient
m′ and attenuate the likelihood for gradientsm ∈ [m1 : m2],
increasingly for m further away from m′. To find m′, we
compute the best-fit line to the color values nearest c within
R. In particular, we consider the set of pixels S lying within
R with color within [c− : c+]. We compute the least-squares
straight line for point in S. The slope of this line is 1

m′ . If
m′ does not lie in the previously estimated range (m1,m2),
the pixel is marked as excessively noisy and its estimates are
discarded from the optimization step. The process is detailed
in Algorithm 2.

Please note that, for some pixels, no value of gradient is
favored if any of the following holds:

123

722 R. Kansal, S. Kumar

1. The range of normal lines is not entirely contained within
the same region as p.

2. There is no pair of pixels (p1, p2) within the region that
satisfies the above conditions.

3. All pixels on R all have the same color. This means p
possibly lies in a solid fill region.

4. m′ �∈ [m1 : m2].

If a pixel does not produce a gradient range, either it is
not a part of a gradient filled region, or it cannot provide
candidate gradients due to noise.

Every pixel pi of a presumed gradient fill region similarly
produces its favored gradient m′

i and supported slope range
(mi1 ,mi2). We explain next how we choose a single gradient
value for the entire region that best satisfies all ranges.

3.4 Gradient optimization

After computing the local gradient for each pixel pi , favored
m′

i and range [mi1 : mi2], the final gradient mr for the region
should ideally lie in this range and as close tom′

i as possible.
We computemr by optimizing across all pixels of the region.

We use a function that maximizes its potential if the
selected gradient mr = m′

i . This potential monotonically
decreases as mr grows apart from m′

i . With this observation,
we can select the optimization function in several ways. For
our experiments, we have used a dot product-based optimiza-
tion function.

Given two vectors aligned with the slopes m′ and m′′, the
dot product of the vectors gives a projection of one on the
other. We define our objective function to maximize the sum
of such dot products. In particular, the value of objective
function f (x) is computed by finding all pixels pi which
have the range [mi1 : mi2] containing x and performing a
summation over the dot products with their favored slope
m′

i , i.e.,

f (x) =
n∑

i=0

|g(x, i)|,

where g(x, i) = x̂ .m̂′
i |mi1 ≤ x ≤ mi2 and x̂ and m̂′

i are unit
vectors in the directions of x andm′

i , respectively. This global
optimization can be performed using any standard technique.
For our experiments,wehave used the dynamic system-based
global optimization [17,22] fromGANSO library [27], since
it requires few configuration parameters and converges fast.
Moreover, an implementation was already available. This
technique starts with a box domain, samples the objective
function within this search domain and chooses a number of
these values to define the system evolution rules. The algo-
rithm performs sampling in this domain until it converges to
a stationary point which is then returned as the solution.

3.5 Color assignment

Every region in our final output is represented by either a
linear gradient or a solid color. This solid color value is cal-
culated by the average color of pixels in that segment. The
decision for color assignment is presented in Algorithm 5.
In short, the algorithm checks whether a sufficient number
of pixels favor the optimized gradient. If not, the algorithm
checks whether this region may be approximated with its
average color. If neither of these holds, it means that the suf-
ficient information is not available for color assignment and
the region is subdivided and the approach is applied on all
sub-regions. This subdivision is explained in the next section.

3.6 Gradient analysis and re-segmentation

The objective of this step is to refine segmentation if the com-
puted gradients are not satisfactory. To do so, we compute
mr ·m′

i for each pixel pi in the given region. This dot product
provides an estimate of the error in gradient for each pixel.

Algorithm 3 Gradient evaluation
1: procedure AnalyzeGradient(mr , R, R′) � Analyze whether

gradient mr approximates the complete region R. The results of
re-segmentation are stored in R′

2: S ← ∅ � Initialize set S as empty
3: R′ ← ∅ � Initialize set R′ as empty
4: for every pixel i in R do
5: S[i] ← mr .m′

i � Compute the dot product of mr with m′
i

6: end for
7: R′ ← Segment (S, ε)� Re-segment set S with some threshold ε

8: for every region X in R′ do � Eliminate regions which are
smaller than a threshold δ

9: if X.si ze ≤ δ then
10: Dissolve X in to nearby region since it is too small.
11: end if
12: end for
13: end procedure

Algorithm 4 Gradient re-computation Feedback Loop
1: procedure RecomputeGradient(mr , R) � Analyze the gradient

mr for region R and subdivides the region R, if necessary
2: R′ ← ∅ � Initialize region R′ as empty
3: AnalyzeGradient (mr , R, R′) � Call Algorithm 3 to analyze

gradient for region R
4: while R′.si ze ≥ δ do � If region R′ is sufficiently small, then

stop
5: for every region X in R′ do
6: mx ← OptimizedGradient (X) � Compute

new optimized gradient mx for region X as described
in Sect. 3.4

7: cx ← AverageColor(X) � Calculate the average color
of region X in cx

8: AssignColor(X,mx , cx)� Try color assignment on this
sub region now

9: end for
10: end while
11: end procedure

123

A vectorization framework for constant and linear gradient filled regions 723

Algorithm 5 Color Assignment
1: procedure AssignColor(R,mr , cr) � Analyze whether gradient

mr or average color cr is appropriate for complete region R
2: countg ← 0 � Initialize countg as 0
3: errorc ← 0 � Initialize errorc as 0
4: for every pixel i in R do
5: if mr ∈ [mi− : mi+] then
6: countg ← countg + 1� Increment countg if mi is in the

range of slopes which this pixel supports
7: end if
8: errorc ← errorc + (cr − ci) ∗ (cr − ci) � errorc adds the

squared error for this pixel with average color cr
9: end for
10: if countg ≥ εg then
11: R.gradient ← mr
12: else
13: if errorc ≤ εc then
14: R.color ← cr
15: else
16: RecomputeGradient (R,mr)

17: end if
18: end if
19: end procedure

Fig. 5 Gradient Stops Estimation: the shaded area is a gradient filled
region while its bounding box is marked as black rectangle. We draw
lines from four corners of the bounding box parallel to gradient axis
(shown in different colors), since the line passing from top-left corner
(marked in blue) overlaps the maximum pixels of the region, it is used
for gradient stops estimation. Two stops are generated where line hits
the bounding box(C1 and C4) while two stops are generated where line
intersects the regions (C2 and C3). Also, note that value of C2 and C3
is determined by using the pixel color at respective location of image,
while value of C1 and C4 is computed by extrapolation of C2 and C3
along gradient axis

We iteratively performa re-segmentation on the basis of these
dot products as described in Algorithm 3. Formation of dot-
product segments indicate non-homogeneity of gradients. If
this re-segmentation produces non-trivial sub-regions, i.e.,
the sub-regions are larger than a threshold, we deduce that

Algorithm 6 Adjust Stop
1: procedure ADJUSTSTOP(P, R, gr , P ′)� Adjusts stop P along gr

for region R
2: P ′ ← P � Initialize P ′ with P
3: if mr /∈ [mp− : mp+] then � Check if point P supports optimal

gradient mr
4: else
5: for every pixel i in R along normal to gr on P do
6: if mr ∈ [mi− : mi+] then � Check if point Pi supports

optimal gradient mr
7: P ′.posi tion ← P.posi tion � Copy the stop

position from P
8: P ′.color ← Pi .color � Copy the color from Pi
9: break;
10: end if
11: end for
12: end if
13: end procedure

Algorithm 7 Stops Estimation
1: procedure AssignStops(R,mr , gr , S) � Compute set of gradient

stops S along gr for region R
2: S ← ∅ � Initialize S as empty
3: {P1, P2} ← I ntersection(gr , R)� Find intersection of gr with

R
4: C2 ← ADJUST ST OP(P1)� Adjust stop P1 to the best color

value in neighborhood
5: C3 ← ADJUST ST OP(P2)
6: C1 ← Extrapolate(C2) � Extrapolate C2 to place it on

bounding box
7: C4 ← Extrapolate(C3)

8: S ← {S ⋃{C1}} � Include C1 in S
9: S ← {S ⋃{C2}}
10: S ← {S ⋃{C3}}
11: S ← {S ⋃{C4}}
12: for every pixel Pi in R along gr between P1 and P2 do� check

for all pixels on the selected line
13: c′

i ← I nterpolate(S) � Compute color c′
i using

interpolation from color stops in S
14: if |colori − ci | > δ then � Check the deviation of

computed color c′
i with actual color colori

15: S ← {S ⋃{ADJUST ST OP(Pi)}} � Generate a color
stop at Pi if the color difference is above a threshold

16: end if
17: end for
18: end procedure

the original gradient estimate mr is not appropriate for the
entire region. Therefore, we optimize the gradient again for
these smaller regions (see Algorithm 4). We employ this step
iteratively until the color of each segment is assigned.

3.7 Gradient stops estimation

Once we finalize the gradient vector for a region, mr , it is
important to find the gradient stops in order to reconstruct
the original colors. To find these stops accurately, we need a
vector parallel tomr that overlaps a sufficiently large number
of pixels in the region.

123

724 R. Kansal, S. Kumar

Fig. 6 The results with our
approach. Original image is on
the left and the final vector
image is shown on right
(contd. on next page)

123

A vectorization framework for constant and linear gradient filled regions 725

(a) (b) (c) (d)

(h)(g)(f)(e)

(l)(k)(j)(i)

(m) (n) (o) (p)

Fig. 7 Comparison of Sobel filter-based approach on noisy images.
Kernel size of sobel filter was 5 for this example. a Input image without
artificial noise, b output by taking average gradient, c output by using
RANSAC, d output using our method, e input image having low noise,
f output by taking average gradient, g output by using RANSAC, h out-

put using our method, i input image having more noise than Fig. 7e, j
output by taking average gradient, k output by using RANSAC, l output
using our method,m very noisy input image, n output by taking average
gradient, o output by using RANSAC, p output using our method

123

726 R. Kansal, S. Kumar

We use a heuristic to find two approximate intermediate
color stops and then generate the end colors by extrapolation.
In particular, we draw lines parallel to the computed gradi-
ent vector mr from each corner of the bounding box of the
region as shown in Fig. 5. Among the four vectors, the one
with the largest overlap with the region is selected for stops’
estimation. Note that at least one vector, call it gr , always has
an overlap with the bounded region.

We generate multiple color stops on the gradient vector,
two of which lie on the bounding box and two on the region
boundary (see Fig. 5). As per the SVG specifications, the
stops have to span the bounding box. Therefore, if the gradi-
ent stops atC1 andC4 do not lie in the region, their colors are
estimated using extrapolation from C2 and C3 as shown. For
a smooth color transition, we generate multiple color stops
between C2 and C3 by taking multiple color samples along
the selected direction (see Algorithm 7). An important aspect
to note here is that simply using the color of a point on the
gradient line does not produce a satisfactory stop color due
to the noise. A local neighborhood search must be performed
to compute the most reliable colors supporting the computed
gradient as described in Algorithm 6.

3.8 Contour tracing

Tracing is the process of fitting curves that bound each image
region. After tracing, we obtain a set of curves that represent
the image geometry. We employ the potrace engine devel-
oped by Schilinger [21] for this outline tracing. The same
engine is also used by open source vector drawing package
Inskscape [11].

3.9 SVG output

Once we obtain the curves outlining each image segment, we
apply fills to these curves and generate the final vector rep-
resentation (in the SVG format). The region color, as noted
before, may be either a solid fill color obtained through color
assignment (Sect. 3.5) or a linear gradient produced by the
optimization algorithm (Sect. 3.4).

4 Results and validations

4.1 Results

Figure 6 shows our results on a few images. The regions of
input images that contain linear gradient are identified and
then reconstructed successfully. The generated SVG when
rasterized resembles the input image closely.

(a) (b)

(d)

(e)

(c)

Fig. 8 Results by changing Sobel filter kernel size. a Input image,
b output usingmean Sobel gradient of kernel size 3, c output usingmean
Sobel gradient of kernel size 5, d output using mean Sobel gradient of
kernel size 7, e output using our method

4.2 Comparison with naive Sobel filter-based approach

The computation of ‘average’ gradients appears to be a
simple problem. We evaluate the performance of naive

123

A vectorization framework for constant and linear gradient filled regions 727

Fig. 9 Noisy images and
comparison with ARDECO.
Input image is on left, ARDECO
result is in middle and result
with our approach is shown on
right. a A noisy image. Random
RGB noise was added to the
input image, b a noisy image.
Noise was added using a filter in
Adobe Photoshop, c an image
with a big gradient patch, d an
image with solid colors only,
e an Image having many
gradient patches

(a)

(b)

(c)

(d)

(e)

123

728 R. Kansal, S. Kumar

Table 1 Comparison with ARDECO on the basis of number of patches
generated and root mean squared error per pixel

Input Our results ARDECO results

Patches Error Patches Error

Fig. 9a 4 15.6 1,200 111.48

Fig. 9b 4 15.6 1,200 55.1

Fig. 9c 78 17.17 601 51.70

Fig. 9d 202 37.8 601 94.44

Fig. 9e 90 35.4 601 24.0

approaches. We compute the per-pixel gradients using a
Sobel filter kernel of size 5. Then to find the optimized gra-
dient for whole region, we employ two simple techniques.

In the first, we simply calculated the mean of the gradi-
ent values for each region.The second technique used a least
squares formulation augmentedwithRANSAC-based outlier
rejection [8]. For each regionweprovided all the gradient val-
ues to the RANSAC algorithm and calculated the RANSAC
distance based on the dot product between two gradients.
This algorithm removes outliers based on this distance and a
threshold, and finally outputs an optimized value.

Both of these techniques work satisfactorily for simple
images as shown in Fig. 7a and the results are comparable
with that of our approach. However, even with a medium
degree of noise, these fail and the output is quite different
from the original, as shown in Fig. 7f, g. We show the effect
of increasing noise in Fig. 7j, k, n, o, p. Please note that
with extreme noise, even our technique fails to reproduce the
gradient with the default parameters because toomany pixels
vote for the wrong gradient. Varying the Sobel kernel size
does not help in most cases. For example, Fig. 8 uses a kernel
size of 7.

4.3 Noisy images and comparison with ARDECO

Our approach works on noisy images also. We added a ran-
dom RGB noise in the input image (see Fig. 9) and then
used it as an input to our approach. The output is reason-
ably close to the actual gradient. We have also compared it
to the ARDECO output. The results with ARDECO were
generated using default values for all parameters. The num-
ber of patches in ARDECO is much higher than with our
approach. Table 1 summarizes the results of comparisonwith
ARDECO.

(a) (b)

(d)(c)

(e) (f)

(h)(g)

Fig. 10 Comparison of computed gradient with original known gradi-
ent in image. aOriginal gradient direction: 1.0, color varying from (255,
0, 0) to (255, 255, 0), b computed gradient direction: 1.2, color varying
from (255, 4, 0) to (255, 248, 0), c original gradient direction:1.75 ,
color varying from (255, 0, 0) to (255, 255, 0), d computed gradient
direction:1.85 , color varying from (255, 8, 0) to (255, 242, 0), e original
gradient direction: 0, color varying from (255, 0, 0) to (255, 255, 0),
f computed gradient direction: 0, color varying from (255, 2, 0) to (255,
252, 0), g original gradient direction: ∞, color varying from (255, 0, 0)
to (255, 255, 0), h computed gradient direction: ∞, color varying from
(255, 2, 0) to (255, 251, 0)

123

A vectorization framework for constant and linear gradient filled regions 729

Table 2 We calculated the per pixel error for gradient and solid colored
regions separately in our output and then comparedwith the correspond-
ing region error in Inkscape

Input Our error Inkscape error Patches

Gradient Solid Gradient Solid Ours Inkscape

Fig. 6e 7.7 16.25 17.49 24.40 18 16

Fig. 6k 11.4 13.2 18.64 21.31 4 16

Fig. 6c 11.63 18.67 14.76 26.55 20 16

Fig. 6i 15.64 25.14 26.20 44.8 25 16

Fig. 6a 25.51 34.26 46.92 37.40 36 16

The number of patches are also compared

4.4 Comparison with vectors

Tomeasure the accuracy, we applied our algorithm to images
whose gradient direction andmagnitudewere alreadyknown.
The results are shown in Fig. 10.

4.5 Comparison with commercial software

To analyze the per-pixel error in our output, we rasterized our
vector output and then compared it with the original image
using root mean squared error. Table 2 compares the error in
our gradient and solid colored regionswith the corresponding
regions in Inkscape output. We used a quantization palette
size of 16 colors for Inkscape results. Since, Inkscape uses
color quantization for patches, the number of output patches
are always equal to the quantization palette size, as the results
show below.

Theper-pixel error in the output canbe attributed to several
factors:

1. Vector and raster spaces are not congruent. The pixel at
location (x, y) in the input image may not be present at
the same exact location in the vector space.

2. The input image may contain small pixel-level features,
which are merged in larger regions during vectorization.
Further, the noise is smoothed over by design.

3. Vector output is optimized to be represented with fewer
colors using color minimization.

4.6 Results on hand-drawn portraits

As noted before, our algorithm is designed for non-
photorealistic images. The approach works well when the
gradient in image rasterized with a software. However, even
on hand-drawn portraits our approach generates reasonable
results which we also compare with ARDECO (see Fig. 11).

4.7 Performance

Since, we use global optimization as discussed in Sect. 3.4,
the output generation takes time. The time taken depends on
the number of gradient patches in the image, and the size of
these patches. The system currently takes around 5–6 min
to produce vectorizations. Vectorization with ARDECO also
took almost the same time on these images. Being a one-
time initial step, this is generally sufficient. However, with
a more tuned optimization using multi-threading and GPU
computing, it may be possible to reduce it to seconds.

4.8 Editability

The output SVG can be easily edited using any standard
vector graphics tool like Inkscape. Examples are shown in
Fig. 12.

4.9 Conclusions and future work

We have presented an approach to find the linear gradient in
images that optimizes the gradient values across noisy pixels.
We have demonstrated its robustness on a variety of images.
It mainly targets reconstruction of simple non-photorealistic
art drawings that can then be further edited or stylized. Its
application on noisy images is also demonstrated. The output
is compared to other gradient-basedvectorization approaches
like ARDECO.

Our approach does not produce good results when the
linear gradient is applied on small width regions, like linear
gradient on a single pixel wide curve, for it needs to find
segments with a few neighbors around its pixels.

In our approach, we have focussed on detection and recon-
structionof linear gradients only, butwebelieve the algorithm
can be adapted to handle non-linear gradients like a radial or
circular gradient as well.

Figure 11 shows that ARDECO performs better on the
hand-drawn portraits, but our method performs well on
images that have software-generated gradients as shown in
Fig. 9. Segmentation should be improved to generate better
output with hand-drawn portraits.

Our algorithm is designed to operate on each pixel inde-
pendently, therefore it can parallelize well. Future work can
leverage this aspect and focus on parallelization. It is pos-
sible to use both GPU and CPU-based parallelism with this
approach.

Future work should also include deriving vector graphics
for videos and using the level of optimization in a feedback
loop to refine the segmentation, potentially producing even
fewer patches.

123

730 R. Kansal, S. Kumar

Fig. 11 Results on a
hand-drawn portrait. a Original
portrait, b original portrait,
c our output, d our output,
e ARDECO output, f ARDECO
output

(a)

(b)

(d)

(c)

(e)

(f)

123

A vectorization framework for constant and linear gradient filled regions 731

(a)

(e)

(f)

(b) (c) (d)

Fig. 12 Editing the final output. a Editing the output vector: scaled the
body parts, b editing the output vector: rotated the arm levers, c editing
the output vector: removed a path, d editing the output vector: the orig-
inal linear gradient color stops (as shown in Fig. 6 were towards red to

white. Using Inkscape, we edited the output so that the gradient stops
are changed to blue and white, e editing the output vector: changed the
outline style, f editing the output vector: changed the outline style

Acknowledgments The images used in Sect. 4.6 have been taken
from ARDECO [15] website. Other images have been taken from vari-
ous open content provider websites. This research was supported in part
by the department of Science and Technology, government of India.

References

1. Adobe Systems Inc., Adobe illustrator CS5 (2010)
2. Barla, P., Bousseau, A.: Gradient art: creation and vectorization.

In: Rosin, P., Colomosse, J. (eds.) Image and Video Based Artistic
Stylization. Springer, New York, Nov 2012

3. Barrett, W.A., Cheney, A.S.: Object-based image editing. In: Pro-
ceedings of the 29th Annual Conference on Computer Graphics
and Interactive Techniques, ACM, SIGGRAPH ’02, pp. 777–784,
New York, NY, USA (2002)

4. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software
Tools (2000)

5. Canny, J.: A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

6. Dori, D., Liu, W.: Sparse pixel vectorization: an algorithm and its
performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell.
21, 202–215 (1999)

7. Fan, K.-C., Chen, D.-F., Wen, M.-G.: A new vectorization-based
approach to the skeletonization of binary images. In: Proceedings
of ICDAR, pp. 627–630. IEEEComputer SocietyWashington, DC,
USA (1995)

8. Fischler, M.A., Bolles, R.C.: Random sample consensus: a par-
adigm for model fitting with applications to image analysis and
automated cartography. Commun ACM 24(6), 381–395 (1981)

9. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn.
Addison-Wesley Longman Publishing Co. Inc, Boston (1992)

10. Hori, O., Tanigawa, S.: Raster-to-vector conversion by line fitting
based on contours and skeletons. In: Proceedings of the Second
International Conference on Document Analysis and Recognition
1993, pp. 353–358, Oct 1993

11. Inkscape. An open source linux/windows scalable vector graphics
editor (2010)

12. Jeschke, S., Cline, D., Wonka, P.: Estimating color and texture
parameters for vector graphics. Comput. Gr. Forum 30(2), 523–532
(2011). This paper won the 2nd best paper award at Eurographics
2011

13. Kansal, R., Kumar, S.: A framework for detection of linear gradi-
ent filled regions and their reconstruction for vector graphics. In:
Proceedings ofWSCG’2013, communication papers, pp. 220–229,
June 2013

14. Lai, Y.-K., Hu, S.-M., Martin, R.R.: Automatic and topology-
preserving gradientmesh generation for image vectorization. ACM
Trans. Gr. 28(3), 85:1–85:8 (2009)

15. Lecot,G., Levy,B.:Ardeco: automatic region detection and conver-
sion. In: Proceedings of Eurographics Symposium on Rendering
(2006)

16. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf.
Theor. 28(2), 129–137 (2006)

17. Mammadov, M.A.: A new global optimization algorithm based on
dynamical systems approach. In: Proceedings of the 6th Interna-
tional Conference on Optimization: Techniques and Applications
(ICOTA’ 04), Ballarat, Australia (2004)

18. Mumford, D., Shah, J.: Boundary detection by minimizing func-
tionals. In: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (1985)

123

732 R. Kansal, S. Kumar

19. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J.,
Salesin, D.: Diffusion curves: a vector representation for smooth-
shaded images. In: Proceedings of ACMSIGGRAPH 2008 papers,
SIGGRAPH ’08,ACM, pp. 92:1–92:8.NewYork,NY,USA (2008)

20. SVG working group. SVG format for vector graphics
21. Selinger, P.: Potrace: a polygon-based tracing algorithm (2003)
22. Sertl, S., Dellnitz, M.: Global optimization using a dynamical sys-

tems approach. J. Glob. Optim. 34(4), 569–587 (2006)
23. Sezgin, M., Sankur, B.: Survey over image thresholding tech-

niques and quantitative performance evaluation. J. Electron. Imag-
ing 13(1), 146–168 (2004)

24. Stockman, G., Shapiro, L.G.: Computer Vision, 1st edn. Prentice
Hall PTR, Upper Saddle River (2001)

25. Sun, J., Liang, L., Wen, F., Shum, H.-Y.: Image vectorization using
optimized gradient meshes. In: Proceedings of ACM SIGGRAPH
2007 papers, SIGGRAPH ’07, ACM, New York, NY, USA (2007)

26. Tamura, H.: A comparison of line thinning algorithms from digital
geometry viewpoint. In: Proceedings of the Fourth International
Joint Conference Pattern Recognition, Kyoto, Japan (1978)

27. University of Ballarat. GANSO library for optimization functions
28. Xia, T., Liao, B., Yu, Y.: Patch-based image vectorization with

automatic curvilinear feature alignment. In: Proceedings of ACM
SIGGRAPH Asia 2009 papers, SIGGRAPH Asia ’09, ACM, pp.
115:1–115:10. New York, NY, USA (2009)

29. Zhang, S.-H., Chen, T., Zhang, Y.-F., Martin, R.R.: Vectorizing
cartoon animations. IEEE Trans. Vis. Comput. Gr. 15(4), 618–629
(July 2009)

Ruchin Kansal received his
Bachelor of Science from C.C.S,
Meerut in 2001 and Masters in
Computer Science from M.D.
University in 2003. From July
2009 to July 2013, he worked
towards his M.S (Research) in
theDepartment ofComputer Sci-
ence and Engineering, Indian
Institute of Technology, Delhi.
His current research interests
include three-dimensional com-
puter graphics,GPGPUs and par-
allel processing. Currently, he is
working as a computer scientist

with Adobe Systems Pvt Ltd., Noida (India).

Subodh Kumar is a faculty
member in the Department of
Computer Science at IIT Delhi.
Before this he was a faculty
member at Johns Hopkins Uni-
versity. He also spent 2 years at
nVIDIA. Prof. Kumar received
his bachelor’s degree in com-
puter science and engineering
from IIT Delhi, and an MS and a
Ph.D. in computer science from
The University of North Car-
olina at Chapel Hill. His primary
areas of interest include interac-
tive three-dimensional computer

graphics, geometry processing, virtual worlds, scientific and medical
visualization and parallel programming.

123

	A vectorization framework for constant and linear gradient filled regions
	Abstract
	1 Introduction
	2 Previous work
	2.1 Edge detection-based approaches
	2.2 Triangular patches
	2.3 Parametric mesh representation
	2.4 Curvilinear feature detection

	3 Our approach
	3.1 Smoothing
	3.2 Segmentation
	3.3 Gradient calculation
	3.4 Gradient optimization
	3.5 Color assignment
	3.6 Gradient analysis and re-segmentation
	3.7 Gradient stops estimation
	3.8 Contour tracing
	3.9 SVG output

	4 Results and validations
	4.1 Results
	4.2 Comparison with naive Sobel filter-based approach
	4.3 Noisy images and comparison with ARDECO
	4.4 Comparison with vectors
	4.5 Comparison with commercial software
	4.6 Results on hand-drawn portraits
	4.7 Performance
	4.8 Editability
	4.9 Conclusions and future work

	Acknowledgments
	References

