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Abstract In this paper, we present a new numerical method
for advection in fluid simulation. The method is built on the
Characteristic Mapping method. Advection is solved via grid
mapping function. The mapping function is maintained with
higher order accuracy BFECC method and dynamically reset
to identity mapping whenever an error criterion is met. Deal-
ing with mapping function in such a way results in a more
accurate mapping function and more details can be captured
easily with this mapping function. Our error criterion also
allows one to control the level of details of fluid simulation by
simply adjusting one parameter. Details of implementation
of our method are discussed and we present several tech-
niques for improving its efficiency. Both quantitative and
visual experiments were performed to test our method. The
results show that our method brings significant improvement
in accuracy and is efficient in capturing fluid details.

Keywords Fluid simulation · Advection · BFECC ·
Characteristic Mapping

1 Introduction

Fluid phenomena such as water, smoke and explosions are
common in daily life. The motion of fluid is complex and
full of details, which attracts increasing attention in com-
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puter graphics. To simulate fluid motion realistically, many
techniques were developed to solve the Navier–Stokes equa-
tions, which describe the physics of fluids.

One critical step of Navier–Stokes equations is the advec-
tion, which deals with the transportation of physical variables
along the velocity field. Semi-Lagrangian method [15] was
popularly used for advection as it is unconditionally stable.
However, the first-order semi-Lagrangian is of low accuracy,
leading to a significant amount of numerical diffusion and
dissipation.

Many techniques were proposed to overcome this prob-
lem with higher order accuracy, such as vorticity confine-
ment [5], particle level set method [3], back and forth error
compensation and correction (BFECC) [2] and MacCormack
method [13]. Higher order methods are normally more diffi-
cult to implement, particularly for non-uniform meshes and
are more time consuming than first-order methods.

Tessendorf and Pelfrey examined the method of char-
acteristics and presented a mathematical framework called
Characteristic Mapping (CM) method for solving the advec-
tion in VFX production [16]. The advection problem was
then solved via first-order semi-Lagrangian advection of
mapping function. CM method reduces the numerical dif-
fusion and dissipation and improves the accuracy of advec-
tion effectively. However, first-order semi-Lagrangian advec-
tion leads to numerical diffusion for mapping functions
still. In addition, when the mapping function is badly dis-
torted under extreme velocity field, the accuracy decreases
severely. We can simply reset the mapping to identity map-
ping frequently. However, it is difficult to determine the fre-
quency as excessive remapping introduces extra diffusion
and dissipation while deficient remapping results in arti-
facts. This would be even worse when we use dynamic CFL
timestep in fluid simulation. Thus we need a high-order accu-
racy advection for mapping function and a careful remap-
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ping scheme to maintain the accuracy of the mapping func-
tion.

In this paper, instead of purely advecting the mapping
function with first-order semi-Lagrangian method, we advect
the mapping function with high-order BFECC method and
we provide an error criterion for checking the quality of
the mapping function. The mapping function is dynamically
maintained and remapped. Whenever the error criterion is
met, we reset the mapping function to identity mapping for
better accuracy. This treatment brings significant improve-
ment in accuracy and our error criterion allows one to control
the level of details of fluid by simply adjusting one parameter.

In summary, our contribution is a dynamic BFECC Char-
acteristic Mapping method, which points out that by main-
taining the mapping function with higher order accuracy
scheme and careful remapping scheme, the accuracy of Char-
acteristic Mapping method can be significantly improved.

In the next section, we briefly discuss some related works.
Section 3 gives the mathematical formulation and Sect. 4
details the numerical implementation of our method. We
demonstrate results of our work in Sect. 5 and discuss about
the limitations and future work in Sect. 6.

2 Related work

In fluid simulation, the stability problem of advection
under Eulerian grid was successfully addressed by semi-
Lagrangian advection [15], which enables the widespread
applications of fluid simulation in visual effects. However,
semi-Lagrangian advection suffers from built-in numeri-
cal diffusion and dissipation, i.e, small details dissipate
quickly due to linear interpolation in the first-order semi-
Lagrangian.

Researchers had proposed many techniques to solve this
problem. Fedkiw et al. [5] presented a vortex confinement
method by adding the vorticity back to the velocity field
in. They also improved the accuracy by replacing the lin-
ear interpolation with a monotonic cubic interpolation. Kim
et al. [9] proposed a new constrained interpolation profile
(CIP) solver, which was stable and accurate. Partial deriv-
atives should be advected to build the sub-cell profile, thus
increasing the implementation complexity and computation
time. Kim et al. [7,8] introduced the BFECC method to com-
puter graphics, which had been analyzed by Selle et al. [13]

Several hybrid approaches were proposed to combine the
Eulerian and Lagrangian frameworks to overcome the fun-
damental drawback of grid-based interpolation. Enright et
al. [3] developed a particle level set method. Selle et al. [14]
used vortex particle to transport vortices without loss. Zhu
and Bridson [18] introduced the FLIP method to graphics
community and advection was performed with massless par-
ticles.

Hachisuka [6] presented a combined Lagrangian–Eulerian
approach for accurate advection, which solved the advection
using two mapping functions. Similarly, Tessendorf and Pel-
frey examined the semi-Lagrangian method and formulated
the mathematical framework of CM for solving the advec-
tion in VFX production [16]. The advection problem was
then solved via the semi-Lagrangian advection of mapping
function. CM method can reduce the numerical diffusion and
dissipation and improve the accuracy of advection but suf-
fers from accuracy loss when mapping function is distorted
badly.

The mapping function was advected using first-order
semi-Lagrangian advection in [16]. Contrarily, we extend the
CM method by advecting mapping function with high-order
accuracy BFECC method and we also present an error crite-
rion for dynamically maintaining the mapping function with
accuracy. Be noted that, [16] did mention that the advection
of the mapping function can be solved by other advection
schemes, however, no results were presented and they did
not address the problem of remapping either. To the best of
our knowledge, we are the first to apply CM to water sim-
ulation, which requires careful remapping otherwise visual
artifacts would be quite obvious. We refer to our method
as the dynamic BFECC characteristic mapping (DBCM)
method.

Recently Mercier and Nave [10] presented a similar frame-
work for advecting arbitrary sets in a vector field. They
advected the mapping function with gradient-augmented
level set (GALS) method [11], which is more complicated
than BFECC and they used dynamic grid resolution for map-
ping function while we only use fixed resolution for the
tradeoff between accuracy and computational cost. We also
provide an importance sampling technique for remapping.
Thus our method is much simpler to implement and effi-
cient.

3 Mathematical formulation

In this section, we briefly introduce the theoretical founda-
tions of Characteristic Mapping described in [10,16] and
present the mathematical formulation of the dynamic BFECC
Characteristic Mapping method.

3.1 BFECC Characteristic Mapping method

Given a regular Cartesian grid, the advection is phrased as
mapping function χ(x, t) through a velocity field u(x, t).
χ(x, t) defines the mapping from point x in space at time
t to its position at the initial time. χ(x, t) is advected by a
velocity field u(x, t), thus the evolution of χ(x, t) is formally
defined as the solution of the advection problem
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∂χ(x, t)

∂t
+ u(x, t) · ∇χ(x, t) = 0 (1)

χ(x, 0) = x (2)

Equation (2) defines the initial condition of the mapping func-
tion, which is the identity mapping. All the information nec-
essary for advecting a set is contained in this map. For any
initial set function S0, e.g., level set functions S0(x) = φ0(x),
evolved under velocity field u, the set at a final time T can
be written as

S(x, T ) = S0(χ(x, T )) (3)

Equation (3) is not restricted to level set function. In general,
any set functions can be advected via this mapping procedure,
which makes the CM method highly efficient, parallelizable
and easy to implement.

To solve Eq. (1) numerically, we employ the semi-
Lagrangian method. In paper [16], linear semi-Lagrangian
method was used, namely,

χ(x, t +�t) = χ(x − u�t, t) (4)

As stated above, linear semi-Lagrangian method inherently
suffers from severe numerical diffusion and dissipation.
Therefore the mapping function is of low accuracy in such
case.

To remedy this problem, we advect the mapping function
with BFECC method. BFECC advects the solution forward
and then backward in time and compares the result to the
original data to estimate the error. The error estimate is then
used to correct the data before advection to raise the accuracy
to second order.

Let A be the forward operator used in Eq. (4) from time
t to time t +�t , and AR be the backward operator, we can
get equations below

χ(x, t +�t) = χ(x − u�t, t) = A(χ(x, t)) (5)

χ(x, t) = χ(x + u�t, t +�t) = AR(χ(x, t +�t)) (6)

BFECC advection for Eq. (1) can be formulated as follows:
Step 1. Solve χ̂(x, t + �t) using χ̂ (x, t + �t) =

A(χ(x, t)).
Step 2. Solve χ̂(x, t) using χ̂(x, t) = AR(χ̂(x, t +�t)).
Step 3. Let χ̄ (x, t) = χ(x, t)+ (χ(x, t)− χ̂ (x, t))/2
Step 4. Solve χ(x, t + �t) using χ(x, t + �t) =

A(χ̄(x, t)).
BFECC method can be implemented very easily and

exhibits second-order accuracy in both space and time [8].
With BFECC, the accuracy of mapping function can be sig-
nificantly improved thus resulting in a more accurate Char-
acteristic Mapping method.

3.2 Dynamic remapping

Theoretically, we can evolve the mapping function forward
to any time. However, the mapping function may be distorted
severely by the velocity field u, which increases the interpo-
lation error. Thus, we need to reset the mapping function to
identity mapping (i.e., remapping) sometime after the evolu-
tion starts.

When to remap is not trivial as the distortion depends on
specific characteristics of the velocity field u. Remapping
frequently, such as every 10 steps, is a simple solution. How-
ever, this solution cannot achieve the desired results as it
is difficult to decide the frequency well. Excessive remap-
ping introduces extra diffusion and dissipation while defi-
cient remapping causes artifacts. In both cases, the mapping
function suffers from severe accuracy loss.

To control the representation error induced by the mapping
function, we want to be able to detect the situation where the
interpolation error of χ becomes larger than a predefined
tolerance (or threshold) ε.

To evaluate this error, we first present another mapping
function χ R(x, t), which defines the mapping from point x at
initial time to its advected position at time t . Note that χ(x, t)
defines the mapping from time t to initial time while χ R(x, t)
defines the mapping from initial time to time t reversely.

Unlike χ , we evolve χ R directly by solving the set of
ODEs

∂χ R(x, t)

∂t
= u(x, t) (7)

χ R(x, 0) = x (8)

χ R is evolved at the same time when χ evolved with the same
initial condition. We solve Eq. (7) by using a sufficiently
accurate four-order Runge–Kutta solver (RK4), which can
be regarded as advecting Lagrangian particles located in grid
cells.

Augmented with χ R(x, t), we are now ready to measure
the interpolation error of χ(x, t) with

M(χ(x, t)) := max
x
||χ(χ R(x, t), t)− x|| (9)

Equation (9) evaluates the error in point x by first evaluating
its advected position with χ R and then evaluating the initial
position of the advected position. The initial position is finally
compared with x to measure the error. This method makes
use of the information brought by the Lagrangian treatment
of χ R .

Equipped with the error measure M , we can evaluate the
quality of the χ easily. When χ induces a representation error
greater than ε, that is

M(χ(x, t)) > ε (10)
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We stop evolving this mapping and reset χ and χ R to iden-
tity mapping. For any set S that is under evolution, we also
reset the initial set to current set, namely S0(x, 0) = S(x, t).
After remapping, the time t is set to zero and the evolution
continues with the new mapping.

Note that we use similar techniques as [10] for dynamic
remapping. But they evolve another set of particles while
we use another grid, which enables the importance sampling
technique described in Sect. 4.2.

In the next section, we will discuss in more details about
the practical implementation of the dynamic BFECC Char-
acteristic Mapping method.

4 Implementation

4.1 Algorithm

We first summarize our method in pseudo-code for ease of
implementation in Algorithm 1. In addition, we discuss some
practical issues for convenience and efficiency of the imple-
mentation.

Given a problem of advection, we first define χ(x) and
χ R(x) on two Eulerian grids (with resolution of Nc and N f )
and initialize both to identity mapping. Note that in a prac-
tical implementation, the resolution of χ(x) and χ R(x) can
be decoupled. We have found that the grid of χ(x) can be
quite coarse while that of χ R(x) should be finer (typically,
N f = 2Nc or N f = 4Nc ). χ(x) and χ R(x) are then evolved
separately. The solution to the problem of advection is for-
mulated as the mapping from initial set function to current
set function.

The implementation of advection of χ(x) and χ R(x) is
the same as the ordinary routines in [7] and we use extrema
limiter technique [13] to clamp local extrema to ensure the
stability of BFECC. For back tracing computation in Eq. 4,
we have found that it is better to use high-order Runge–Kutta
solver (RK2 for this paper).

To save computation cost, linear interpolation is used
through the whole process as we have already employed
higher order accurate method for advection. Higher order
interpolation does not improve the result a lot but brings
extra expenses.

4.2 Error estimation

The key to remapping is an accurate error estimation for
Eq. (9). If the grid is fine enough, we can iterate over all
grid points to evaluate the maximum error. However, this is
not practical and time consuming. To evaluate the maximum
error induced by χ practically, we propose to estimate Eq. (9)
with random sampling and importance sampling.

Algorithm 1 The DBCM method
Define χ(x) = x on a Nc grid and χ R(x) = x on a N f grid, t = 0, S0
is given.
while Evolving do

Advance simulation time with t = t +�t .
Advect χ(x) using BFECC method (Eq. (1)).
Advect χ R(x) using RK4 (Eq. (7)).
Map S from S0 (Eq. (3)).
Estimate error criterion M(χ(x)) (Ep. (9)).
if M(χ(x)) > ε then

χ(x)← x
χ R(x)← x
S0 ← S
t ← 0

end if
end while

For each grid cell of χ , we randomly sample Ns points and
evaluate their errors. Ns is defined by the differential factor
of Nc and N f with Ns = (N f /Nc)

2.
This process is further improved with importance sam-

pling by taking the visual importance into consideration. To
perform importance sampling, we define a spatially varying
sizing function Size(x). We evaluate the sizing function at
grid cell of χ and randomly sample N points on χ with the
sizing function. We then evaluate the errors at these sampling
points and use the maximum of these errors as the estimated
error of Eq. (9). N is determined by N = nNs , and n is the
number of cells with non-zero sizing function value.

For examples of level set water simulation in this paper,
we perform error estimation in a narrow band of the interface
with sizing function

Size(x) = max(0, 5− |φ(x)|) (11)

where φ(x) is the level set function, 5 is the width of the
narrow band.

For smoke simulation, we are only interested in where the
concentration is not zero. Therefore, we use the size function
as the combination of density, fuel and temperature:

Size(x) = max (ρ(x), k1 · fuel(x), k2 · temp(x)) (12)

where ρ(x) is the density function, fuel(x) is the fuel func-
tion and temp(x) is the temperature function. k1, k2 are para-
meters to adjust fuel and temperature to a similar scale as
density.

Our method is versatile to cope with any sizing functions.
Other criteria can also be imposed as sizing functions for
more efficient computation.

Importance sampling makes the process of error estima-
tion much more efficient by restricting the computation to
areas that are visually important. This may decrease the accu-
racy of the mapping function but the result is visually accept-

123



Dynamic BFECC Characteristic Mapping method 791

able as long as we design the sizing function for visual impor-
tance carefully.

4.3 Mapping of set function

For any initial set S0 under evolution, the set S at any time can
be computed via Eq. (3). For example, sets defined on grid,
such as level set, linear interpolation can be used to evaluate
the right-hand side of Eq. (3) easily.

Furthermore, this decoupling of sets and mapping function
allows one to advect multiple sets and any kind of sets with
given velocity field u at the same time.

Here we provide a variation of semi-Lagrangian contour-
ing (SLC) [1] by coupling it to our method to capture thin
sheets of water spray. With the combination, detailed thin
sheets can be captured even in low-resolution water simula-
tion.

Let S0 be the initial water surface mesh. We evaluate S(x)

by first computing the mapping position xi with xi = χ(x).
S0(xi ) is then evaluated under the framework of SLC by
directly computing the distance from xi to the initial surface
mesh S0. x is dynamically sampling and S(x) is maintained
on a distance tree. Surface mesh is finally abstracted on the
tree for visualization.

In fact, the evolution of any kind of sets under the advec-
tion of velocity field u can be incorporated with our method
with very small modifications.

4.4 Choice of ε

The choice of ε affects the accuracy of the mapping function.
Theoretically, the smaller ε is, the more accurate the mapping
function will be, assuming the grid is fine enough. However,
if the grid which χ lives on is coarse, too smaller tolerance
would result in too frequent remapping instead. In our tests,
we have found that setting ε to a range of [�x, Nc/10 ·�x]
is a good choice, where �x is cell size of the grid of χ .

One nice feature of ε is that it provides a simple way to
control the level of details. The value of ε is directly related
to the small details that can be captured by our method. For
example, in the water simulation, smaller ε leads to more
splashing and turbulent water spray. However, sometimes we
may prefer some smoother results. Our remapping strategy
thus provides a simple way to achieve such a goal by adjusting
ε (see Fig. 1).

5 Results

We have carried out several tests to demonstrate the effec-
tiveness of our method. Simulations reported in this section
were performed on a computer with 2.7 GHz CPU, 12 GB
memory and a Nvidia GeForce GT 650 M graphic card. For
all simulations, ε was set to 3�x if not specified and the
CFL number was 0.5. Rendering of smoke was performed
with GPU ray-marching procedure while the rendering of
water was performed with PBRT [12].

Fig. 1 Comparison of different values of ε. From left to right, the first
one is semi-Lagrangian advection while the others used ε of �x , 3�x
and 5�x for DBCM method. Smaller ε led to more detailed and turbu-
lent surface. ε can be used for controlling the details. As level set was

used for identifying the fluid domain, the underlying simulations could
be slightly different with different values of ε. Even with high tolerance
value, the result was still much better than that of semi-Lagrangian
advection
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Fig. 2 Results of Zalesak’ disk
(top) and Enright’s sphere
(bottom) after one full cycle of
rotation and deformation under
different advection schemes
(start from the second column):
1. Semi-Lagrangian advection;
2. BFECC advection; 3. Linear
CM method; 4. DBCM method.
The leftmost column is the
initial contour. All resolutions
used were 1283

Fig. 3 Enright test of our method with a resolution of 1283. Note that in the extreme deformation, some details were lost and holes appeared due
to the limitation of the resolution

Fig. 4 Two simple 2D smoke simulations using semi-Lagrangian advection, semi-Lagrangian CM method and our method (from left to right) on
a 2562 grid. Using BFECC advection for mapping function captures the most details and the result is less diffusive than the other two methods

5.1 Basic tests

We performed two basic tests for testing the accuracy of our
method for advection. We performed Zalesak’s disk experi-
ment [17] and Enright’s test [3] on 128×128×128 resolution
grids. The contour of the disk and sphere was tracked via level
set.

We used the following advection methods for these basic
tests: linear semi-Lagrangian, BFECC, linear CM method
and our method. Figure 2 shows the initial contours and
the solutions after a full cycle of rotation and deformation.
BFECC advection is effective at conserving the volume but
slightly distorts the shape. Linear CM method is better at
conserving the shape than BFECC but still suffers from more
volume loss than BFECC. Significant improvements can be
achieved by our method for conserving both shape and vol-

ume. Our method is less diffusive than the others and pro-
duces the most accurate result in these tests.

Figure 3 shows several results of the enright test using
our method at different intermediate timesteps. Our method
performed well in tracking the deformation of the sphere.

5.2 Smoke simulation

We applied our method to a linear semi-Lagrangian smoke
simulator [15]. Our method was used to advect scalar field,
such as density, fuel and temperature.

Figure 4 shows two simple 2D smoke simulations per-
formed on a grid of 256 × 256. Semi-Lagrangian advec-
tion, CM method and our method were used for these sim-
ulations. The results demonstrate that our method produced
more details than the other two methods.
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Fig. 5 Snapshots of 3D smoke simulation with linear semi-Lagrangian
advection, linear CM method, DBCM method. DBCM produced a result
with the most details and details of thin smoke sheets were clearly cap-

tured. Resolution of base fluid simulation was 128×256×128. Nc was
set to 256 for χ and N f was set to 256 for χ R for DBCM method

Fig. 6 Smoke simulation with fire simulation using DBCM method.
Fuel and temperature field were used to simulate the fire. DBCM
advected the density, fuel and temperature field simultaneously with
the same mapping function and captured rich details of the distribution
of these physical variables (visualized as smoke and fire). Nc was set
to 256 for χ and N f was set to 256 for χ R for DBCM method

A 3D smoke simulation was performed similarly on a grid
of 128 × 256 × 128. For our method, we use resolution of
128 × 256 × 128 for χ and χ R, Nc and N f is set to the
maximum dimension, i.e., 256, for importance sampling in
error estimation. The result in Fig. 5 shows that our method
captured many interesting details of the smoke plume clearly.

We additionally augmented the 3D smoke simulation
with fire simulation. Fire simulation was performed by
adding additional variables, fuel and temperature specifi-
cally, into simulation and simulating the fuel combustion. We
advected density, fuel and temperature simultaneously with
our method. The result in Fig. 6 shows that we can captured

rich details of the distribution of these physical variables,
which are visualized as smoke and fire.

5.3 Water simulation

For water simulation, we first used the level set water simula-
tor in [4] and performed level set advections with our method
using χ on a grid of 128 × 128 × 128 and χ R on a grid of
256× 256× 256. The resolution of base fluid simulation is
the same as that of χ .

Figure 7 shows the results of our method applied to semi-
Lagrangian level set water simulation. Our method is capable
of capturing rich small details and creating turbulent water
behaviors. Figure 8 shows the comparison of our method with
linear semi-Lagrangian advection.

Figure 1 shows the effect of ε, smaller ε brings more accu-
rate result and thus leads to more detailed and turbulent sur-
face. Details can be easily controlled by adjusting the value
of ε.

We also coupled our method to SLC method as stated in
Sect. 4.3. We used base fluid simulation with a low resolution
of 64× 64× 64. Even in such low resolution, we were able
to capture thin sheets of water spray with our method. We
simulated two dam breaking tests to demonstrate this capa-
bility. Figure 9 shows the result of a single column of water
released to collide with the walls. Thin sheets were devel-
oped when water collided with the walls. Interesting wave
front was also captured in this scene. Figure 10 shows the
result of two columns of water released to collide with each
other and developed tall water sheets.
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Fig. 7 Semi-Lagrangian water simulation using our method for advec-
tion of the level set. Our method is capable of capturing small details
of the water. The resolution of base fluid simulation was 1283. Nc was

128 and N f was 256. The bunny model is courtesy of the Stanford 3D
Scanning Repository

Fig. 8 Comparison of semi-Lagrangian advection and our method.
Though the level sets were advected under the same velocity field, our
method was able to capture many small details of the water surface

5.4 Timing

We maintain the advection of χ with BFECC method
and careful remapping scheme. Indeed, BFECC is slower
than semi-Lagrangian method and the error estimation also
requires extra expenses.

However, our mapping function can be used for arbitrary
set functions. The more set functions we used, the more we
can benefit from our method. Besides, we have proposed an
importance sampling method for efficient error estimation.
Finally, the method is highly parallelizable so we can make it

more efficient using multi-thread techniques. We performed
our DBCM method for all simulations with multi-thread (8
threads) and it is quite efficient.

We summarize some detailed timing of examples pre-
sented above in Table 1 (Nb refer to the resolution of base
simulation). With parallel computation, our DBCM method
is fast enough for applications in fluid simulation.

The computation time for BFECC advection of χ and RK4
advection of χ R depends on the resolution of the grids while
that of error estimation also depends on the sizing functions
in specific applications. As we applied our DBCM method
to single-threaded fluid simulators, most of the computation
time was spent on the fluid solver itself, whose accelerations
are beyond the scope of this paper.

6 Limitations and future work

Though we have shown the properties of our method for
accurate advection, there exist some limitations still. The
mapping functions are maintained on regular grids, which
occupy quite a lot of memories. This limits the maximum
resolution that we can use. Adaptive grids may be adopted to
make it more memory efficient. The details captured by our
method sometimes appear to be a little noisy near the bound-
ary of the water surface. The current method opens a wealth

Fig. 9 Dam breaking simulation by the combination of SLC with our DBCM method. Note the thin sheets captured by our method. The resolution
of base fluid simulation was 643. Nc was 128 and N f was 256 for DBCM method
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Fig. 10 Double-dam breaking simulation by the combination of SLC
with our method. Two columns of water were released to collide with
each other to create tall thin sheets and then fell down. Our method

captured such details easily without much effort. The resolution of base
fluid simulation was 643. Nc was 128 and N f was 256.

Table 1 Average computation time (s/step) of our algorithm in selected examples: smoke simulation in Fig. 5; A water bunny released into pool
in Fig. 7; Dam breaking in Fig. 9

Example Nc N f Nb Dynamic BFECC Characteristic Mapping Total time

BFECC advection RK4 advection Error estimation

Smoke 256 256 256 1.88 1.16 1.98 43.59

Water bunny 128 256 128 0.26 1.14 0.78 25.13

Dam breaking 128 256 64 0.25 1.17 0.27 4.72

We used multi-threaded computation for DBCM while the fluid simulation was left to single-threaded. Timing was measured in steps. Timing for
each frame may take longer, which depends on the CFL timestep of the simulation

of possibilities of applications. We have only applied it to
the advection problem of scalar fields in this paper. We hope
to incorporate it into the advection of a vector field, such as
velocity directly, which would be an interesting subject.
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