
Vis Comput (2014) 30:729–738
DOI 10.1007/s00371-014-0954-1

ORIGINAL ARTICLE

An adaptive octree grid for GPU-based collision detection
of deformable objects

Tsz Ho Wong · Geoff Leach · Fabio Zambetta

Published online: 10 May 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In spatial subdivision-based collision detection
methods on GPUs, uniform subdivision works well for even
triangle spatial distributions, whilst for uneven cases non-
uniform subdivision works better. Non-uniform subdivision
techniques mainly include hierarchical grids and octrees.
Hierarchical grids have been adopted for previous GPU-
based approaches, due to their suitability for GPUs. How-
ever, octrees offer a better adaptation to distributions. One
contribution of this paper is the use of an octree grid that
takes a middle path between these two structures, and accel-
erates collision detection by significantly reducing the num-
ber of broad-phase tests which, due to their large quantity,
are generally the main bottleneck in performance. Another
contribution is to achieve further reduction in the number of
tests in the broad phase using a two-stage scheme to improve
octree subdivision. The octree grid approach is also able to
address the issue of uneven triangle sizes, another common
difficulty for spatial subdivision techniques. Compared to the
virtual subdivision method which reports the fastest results
among existing methods, speedups between 1.0× and 1.5×
are observed for most standard benchmarks where triangle
sizes and spatial distributions are uneven.

Keywords Collision detection · Deformable objects ·
Octree grid · GPU-based

Electronic supplementary material The online version of this
article (doi:10.1007/s00371-014-0954-1) contains supplementary
material, which is available to authorized users.

T. H. Wong (B) · G. Leach · F. Zambetta
School of Computer Science and IT, RMIT University,
GPO Box 2476, Melbourne, VIC 3001, Australia
e-mail: itszwong@gmail.com

1 Introduction

Collision detection (CD) has been a core research area in
computer graphics for decades. The main challenge that
arises for highly deformable meshes, such as cloth, is the
large number of primitives which may collide with each other
in any given time step. Although a number of approaches
have been investigated, performance of CD is still a major
bottleneck.

GPU computing has demonstrated its potential benefit to
perform physics calculations, including CD. Recent work
has been on designing fast algorithms based on bounding
volume hierarchies (BVHs) [15,19,20,31] and spatial subdi-
vision schemes [6,9,25,36]. This paper focuses on the latter
that exhibits very high data parallelism and lends itself well
to the GPU’s parallel architecture.

Generally spatial subdivision methods suffer from two
common difficulties: uneven triangle sizes and uneven trian-
gle spatial distributions, both of which can easily impair the
subdivisions efficiency, leading to a large number of broad-
phase tests, which usually dominate the total running time.
The first problem can be addressed by a virtual subdivision
scheme (VSS) with a uniform grid [36]. However, the issue
of uneven spatial distributions is difficult for uniform grids,
because a uniform cell size can be too small for low-density
areas, and too large for high density areas, giving an ineffi-
cient subdivision (Fig. 1). Hence it is worth optimising sub-
division, if the cost to achieve it is low.

Some authors have presented approaches to address this
issue. Fan et al. [6] partition dense cells, but their hierarchical
grid only has two levels, so that the problem is just partially
solved. Other work [17] subdivides space into a hierarchy of
multiple cell levels, then each primitive is assigned to a level
whose cell size fits well. The hierarchical grid adopted by
these methods can be seen as a full octree, which lacks the

123

http://dx.doi.org/10.1007/s00371-014-0954-1

730 T. H. Wong et al.

Fig. 1 A scene with uneven triangle distribution is partitioned by a
a uniform grid and b a hierarchical grid according to the distribution
density

adaptability to reduce the number of tests as much as possible.
Ideally, a more adaptive octree is a beneficial approach to
this problem, and in fact is commonly used in CPU-based
algorithms. Unfortunately, parallel construction, update and
traversal of traditional trees on GPUs require complicated
operations [19,20], giving relatively low occupancy.

Motivated by these limitations, we investigate an adaptive
octree grid (OTG) to accelerate CD for deformable objects on
a GPU. The OTG takes advantages of both octrees and hier-
archical grids. The octree that adaptively subdivides space
based on triangle distribution is efficiently represented on a
GPU by a grid which is actually an array of a length equal
to the number of cells of the hierarchical grid (full octree).
Using the OTG yields a considerable decrease in the num-
ber of broad-phase tests. Thus, a two-stage scheme consist-
ing of a bottom-up stage and a top-down stage is used to
cheaply improve octree subdivision, minimising the number
of tests. Additionally, the number of levels in the OTG is
dynamically adjusted according to triangle spatial distribu-
tion instead of being fixed. Another benefit arising intrinsi-
cally from this method is that uneven triangle sizes are also
handled well, because uneven triangle sizes can be seen as
uneven spatial distributions most of the time. For example,
in a given scene, the triangle density of areas having refined
meshes is very likely higher than that of areas having coarse
meshes.

We also combine a number of techniques including newly
available GPU shuffle instructions to improve performance
of the parallel prefix sum (scan) [11], which is important in
many parallel applications, including CD.

We use the CUDA toolkit 5.5 and have conducted exper-
iments with a set of scenes using an NVIDIA GTX 780
GPU to investigate and analyse performance. The method can
perform discrete (DCD) and continuous collision detection
(CCD) of objects consisting of tens of thousands arbitrarily
distributed triangles in a few milliseconds. Results show that
the approach efficiently addresses issues of uneven triangle
sizes and uneven triangle spatial distributions.

2 Related work

There is extensive literature on CD, for which we refer the
reader to the survey in [35]. This section briefly reviews pre-
vious work most directly related to our work.

Bounding volume (BV) techniques are widely used to
quickly prune unnecessary tests. These include spheres [26],
axis-aligned bounding boxes (AABBs) [2], k-discrete ori-
ented polytopes (K-DOPs) [16] and oriented bounding boxes
(OBBs) [7]. BVHs are constructed based on these BVs, and
have proven to be a very efficient technique to accelerate col-
lision queries [3,21,27]. Efforts have been directed at opti-
mizing update of BVHs for deformable models [18,24]. Spa-
tial subdivision-based CD methods for deformable objects
are discussed in [5,34,38]. Many authors present techniques
to remove duplicate elementary tests [4,29,37] and reduce
the number of false-positive [30,32].

The focus in recent years has shifted to GPU computing
for CD. Earlier GPU-based CD algorithms use graphics shad-
ing languages [8,10,12,13,28]. Later, in order to more eas-
ily take advantages of GPUs’ parallelism, specialised GPU
computing languages and environments were designed, such
as CUDA and OpenCL. A hybrid CPU/GPU method using
CUDA is proposed in [15]. A complete GPU-based frame-
work to construct and traverse BVHs is discussed in [19].
Based on this method, [20] present an improved CD algo-
rithm. Tang et al. [31] abstract graphics hardware as a stream
processor to develop a CD algorithm. Grand [9] describes
how to use a uniform grid to perform broad-phase CD on
GPU with CUDA for particle systems. Later, Pabst et al. [25]
extend this method to handle CD for deformable triangular
meshes. Other spatial subdivision-based CD approaches on
GPUs include [1,6,17,36].

3 Approach

Like many existing efficient CD algorithms, our CD pipeline
consists of a broad phase and a narrow phase. The task of
the former is to cheaply prune unnecessary tests for triangle
and other elementary pairs, such as vertex-triangle (VT) and
edge–edge (EE) pairs that are far away from each other. In
the narrow phase, proximity tests are performed to compute
exact intersection information of elementary pairs, which are
also referred to as elementary tests. AABBs and K-DOPs
(specifically 18-DOPs) are used as the BV for the broad phase
and narrow phase, respectively, in our work. Contributions
of this paper relate primarily to the broad phase.

3.1 Adaptive space partition

As mentioned earlier, uneven triangle distributions can make
spatial subdivision very inefficient. Therefore, adaptively

123

An adaptive octree grid for GPU-based collision 731

partitioning space according to the distribution densities can
offer advantages. We use an OTG to represent the adaptive
subdivision, with triangles ultimately assigned to the leaf
cells determined not to be subdivided. The top (coarsest)
level is just a single cell which is defined as the AABB of
the scene at the current time step. Cell sizes of lower levels
are computed by halving the cell size of the parent level in x ,

Fig. 2 The subdivision reduces the number of tests

Fig. 3 The subdivision increases the number of tests

y and z directions. Now, criteria to determine whether a cell
should be subdivided is needed.

Since CD tests are performed only for triangle pairs in the
same cell, the number of tests of a cell containing n triangles
is n(n − 1)/2. It is reasonable to define simple criteria that a
cell needs to be subdivided if the number of tests decreases
after subdivision. For example, for the 2D case shown in
Fig. 2, subdivision reduces the number of tests from 36 to
8. In other words, a cell should be subdivided if subdivision
reduces the number of tests (Fig. 3). With these criteria, the
OTG can be built using a single-stage scheme. For example,
it can be constructed top-down from the root to leaves to
subdivide cells recursively until the criteria of reducing the
number of tests fail. Alternatively, a bottom-up scheme can
be used to construct the OTG. The OTG constructed by a
single-stage scheme is referred to as OTGs .

Although an OTGs offers a much better adaptation to
spatial distributions compared to previous CD methods on
GPUs, the efficiency of octree subdivision can be further
improved. In the example shown in Fig. 4, the first subdivi-
sion increases the number of tests, so subdivision would stop
with the simple criteria, although further subdividing three
of the cells significantly reduces the number of tests. Hence
deciding when to stop requires recording and comparing to
other alternative subdivisions. This can dramatically increase
the complexity since the number of subdivision combina-
tions grows exponentially as the number of levels increases.
A bottom-up scheme that determines if sub-cells need to be
merged suffers the same limitations (Fig. 5). Hence a scheme
that cheaply generates more efficient partitioning is required.
We achieve this using a two-stage scheme to construct the
OTG, which is referred to as OTGt .

Fig. 4 The limitation of a
simple top-down scheme

Fig. 5 A simple bottom-up
scheme suffers a similar
limitation

123

732 T. H. Wong et al.

The OTGt is built as follows. At first, a counter octree
and a type octree are built to record the triangle distribution
information and cell types (internal, leaf or inactive). The
counter tree is actually a hierarchy table stored as an array
of a length equal to the number of the hierarchical grid (full
octree) cells, in which each element corresponds to a cell in
the hierarchy and records the number of triangles overlapped
by this cell. Grid cells are marked as internal, leaf or inactive
cells to represent the octree; therefore, traditional operations
on tress such as adding, deleting and pruning are not needed,
and thus the array length does not change during simulation.
The type tree is treated as the same to store cell types. In fact
on GPUs, maintaining and managing trees in this way are
significantly more efficient in time than the traditional way
of operating a tree, albeit at the cost of memory, which we
found not to be a constraint in this work.

Next, all triangles are temporarily assigned to the base
(finest) subdivision level cells only. Since triangles are very
unlikely to overlap similar number of cells, this assignment
step is performed using the workload distribution scheme
proposed by [6]. During this process, the number of trian-
gles assigned to each base level cell is obtained using atomic
operations. For the number of triangles overlapped by higher
subdivision level cells, we only cheaply record the num-
ber in the counter tree by mapping triangles to higher cells
instead of expensively assigning them to higher cells. This
is done by employing a token position technique [6] which
efficiently removes the redundancy caused by the fact that a
triangle assigned to multiple base cells can map to the same
higher cell. Once the counter tree has distribution informa-
tion, empty cells are marked as inactive cells, and the number
of triangles overlapping each cell is converted to the number
of tests.

Then, a two-stage scheme is used to obtain an improved
octree subdivision. At first a bottom-up stage, using the sim-
ple criteria, checks level by level if all eight child cells of
each parent cell should be merged or not, starting from the
base level. If they should the only thing required to do is to
mark the parent cell as a leaf cell. Otherwise, the eight child
cells are marked as leaf cells and the parent cell are marked as
an internal cell. Unlike the simple single-stage scheme, the
bottom-up stage does not stop until the top level is reached.
Therefore, in the counter tree, the number of tests of the inter-
nal parent cell should be replaced with the sum of numbers
of tests of its eight child cells. After this stage is done, the
highest level leaf cell in a branch is taken as the real leaf
cell.

In the top-down stage, the first step is for all leaf cells
to replace the number of tests stored in the counter tree
with the cell identifier (ID). Then, IDs of the highest leaf
cells are propagated down to elements corresponding to base
level cells (excluding inactive cells), so the cells that trian-
gles should be finally assigned to can be easily obtained by

accessing base level elements of the counter tree. Now the
OTGt that better subdivides space is built.

These two stages are implemented in two separate CUDA
kernels that traverse the hierarchy level by level. The number
of invoked threads in each iteration equals the number of cells
in the corresponding level.

A 1D example is given in Fig. 6. The two-stage scheme
easily removes the limitation of single-stage schemes.
Although cells 19, 20 and 10 are marked as leaf cells in pass
1, the bottom-up stage does not stop and cell 4 is marked as
a leaf in pass 2 as well. The top-down stage brings down IDs
of the highest leaf cells to their child cells, which corrects
the determination made in pass 1. An optimised subdivision
that reduces the number of tests from 120 to 41 is obtained.

Intuitively, it seems that incrementally changing the octree
by directly assigning triangles to leaf cells of previous step
rather than rebuilding the tree from the hierarchical grid by
assigning them to the base level of previous step might be
more efficient. Unfortunately, a triangle can belong to multi-
ple levels, so levels to which each triangle belongs to have to
be recorded for the next step, and for each triangle the assign-
ment step may need to be performed multiple times depend-
ing on how many levels the triangle belong to, leading to
an increase in costs for incremental update. Moreover, since
one thread handles the assignment of one triangle, uneven
workloads can further harm the performance because how
many times the assignment step is performed in every thread
can be different. Therefore, we do not assign triangles to leaf
cells directly.

3.2 The number of cell levels

Since building the OTG starts with a bottom-up stage, the
number of levels needs to be determined. Instead of using
a hierarchy with a fixed number of levels, we dynamically
adjust it during the simulation after the first time step. We
start with a grid of nine levels in the first time step. After the
two-stage scheme is done, how many triangles are assigned
to each level is known. In terms of efficiency, it would be
better to avoid calculations for inactive levels which are levels
without any triangle assigned. Therefore, the base and top
levels in the next time step can be determined from the levels
in the current time step.

Assuming that the highest and lowest active levels in the
current step are the i th and j th level (i < j), respectively,
the top level in the next step is set as the (i − 1)th level if
triangles assigned to the highest active level in the current
step are more than a customised threshold ε- (empirically
set to 0.1 %), or it is set as the (i + 1)th level if triangles are
less than a threshold ε+ (0.001 %), otherwise it remains as
the i th level. Similarly, the base level in the next step is set as
the (j + 1)th level if triangles assigned to the lowest active
level in the current step are more than a threshold λ+ (97 %),

123

An adaptive octree grid for GPU-based collision 733

(a) a counter octree (b) bottom-up phase: pass 1 (c) bottom-up phase: pass 2

(d) bottom-up phase: pass 3 (e) bottom-upphase:pass4 (f) top-down phase

Fig. 6 A 1D example that each cell can be subdivided into two child
cells is shown. In this counter octree, the number in a box represents a
cell ID, and the number in a circle indicates the number of tests in that
cell. a After the counter, octree which records the distribution informa-
tion is built. The bottom-up stage is performed starting from the base
level to check if all child cells (two cells in the 1D case) of every parent
cell should be merged or not, according to the simple criteria. b During
pass 1: cell 8, 10, 15, 16, 19, 20, 23, 24, 25, 26, 29 and 30 marked as

leaf (green) cells, cell 7, 9, 11, 12 and 14 are marked as normal cells.
For those parent cells that are normal, the number of tests is replaced
with the sum of numbers of tests of its child cells. c–e This step is per-
formed iteratively on upper levels until the top level is processed. Note
that the first iteration processes two levels. f Finally, an top-down stage
brings IDs highest leaf cells to their child cells level by level until the
base level is reached, which corrects determinations made in previous
passes

or it is set as the (j − 1)th level if triangles are less than a
threshold λ- (3 %), otherwise it remains as the j th level. The
two-stage scheme is only performed for levels between the
top and base levels.

This dynamic adjustment mechanism works well in our
benchmarks. Active levels are between the fourth and sev-
enth levels for most of the benchmarks. In fact, levels higher
than the third level and levels lower than the eighth level are
inactive for all benchmarks.

3.3 Remainder of the CD pipeline

Once the space subdivision step is completed, a cell-triangle
pair array is easily built, and then sorted by cell ID using
the parallel radix sort algorithm [11]. Next, a workload dis-
tribution scheme [6] that assigns one broad-phase test to a
thread is adopted to balance computation load among con-
current threads. In each thread, the token position technique
is employed to determine if the test of this thread is redun-
dant, since a triangle pair can overlap multiple cells. If not,
a BV test for the triangle pair is performed. If the BVs inter-
sect, R-triangle tests that remove redundant elementary tests
are carried out. The last step of the broad phase is to perform

Fig. 7 The pipeline of the CD algorithm

a BV test for each elementary pair to further improve the
culling efficiency. The collision pipeline up to here yields a
considerable reduction in the number of elementary tests.

In the narrow phase which is the same to the VSS method,
proximity is checked for VT and EE pairs’ output by the
broad phase to compute exact intersection separately by
launching two different kernels to avoid low occupancy.
Before the proximity test, a cubic equation needs to be solved
to compute the first contact time in the case of CCD [27].
Figure 7 shows the overview of the collision pipeline.

123

734 T. H. Wong et al.

4 Scan with shuffle operations

Parallel scan is an important primitive in implementing many
GPU algorithms. Its function is to return an output array with
each element being a cumulative result of a binary associative
operator applied on all previous elements of an input array.
Additionally, two other useful parallel primitives, stream
compaction and radix sort, also use parallel scan. These paral-
lel primitives are called several times in every step in our algo-
rithms. These operations are available in external libraries,
such as CUDPP. We make a small change in CUDPP 2.1
[23] to improve performance of scan by taking advantage of
newly available GPU shuffle operations.

The shuffle instruction is available on NVIDIA GPUs
with compute capabilities 3.0 or above. It enables threads to
directly read data from other threads within a warp instead of
using shared memory, leading to performance gain, because
only one instruction is required, whereas using shared mem-
ory requires three instructions: write, synchronize and read.
Additionally, it frees up shared memory.

The small change is simple, and like that discussed in
[22]. Data in a block are broken into several small warp sized
groups (32 threads per warp), and a scan method proposed by
[14] is used to scan the data of each warp using shuffle instruc-
tions. Because instructions within a warp are executed syn-
chronously, explicit synchronization is not required. After the
scan inside each warp is done, the partial result of all warps
is stored in shared memory, then a single warp of threads
loads the data and performs a scan on the partial results.
Results computed by this single warp are correspondingly
added to threads of each warp. Since [22] is designed for
small size arrays, existing techniques are used to make it
practical for larger arrays. Hence a pyramid type approach
[11] is employed when multiple blocks are needed. Addition-
ally, as [11] suggests, eight elements are processed by each
thread to gain further optimisation.

Although the small change improves overall performance
of our CD algorithm by just around 2 %, a reduction
of computational time of scan itself of up to 16 % is
observed (Fig. 8). We believe that it is worth mentioning this
small change as it would likely benefit many other parallel
algorithms.

5 Implementation and results

The method is implemented using the CUDA toolkit 5.5
with experiments run on a computer with an NVIDIA GTX
780 GPU which supports shuffle operations. The method is
purely GPU-based, and data transfer between CPU and GPU
is performed only once at the simulation beginning, so that
performance completely depends on the GPU. We also run
experiments on a GTX 470 GPU for comparison with previ-

Fig. 8 The reduction of computational time of scan using shuffle
instructions

ously reported methods, in which case CUDPP 2.1 is used to
perform parallel scans.

5.1 Benchmarks

To demonstrate the performance of the method, a set of stan-
dard benchmarks with different scenarios is used. Refer to
Online Resource 1 for the animation.

1. Funnel (20 K triangles): A piece of cloth falls into a nar-
row funnel and goes through it (Fig. 9a).

2. Cloth on ball (92 K triangles): A cloth with a large num-
ber of triangles drapes on a sphere, which starts rotating
(Fig. 9b).

3. Flamenco (49 K triangles): A dancing character wearing
a skirt with multiple layers of cloth (Fig. 9c).

4. N-body (146 K triangles): Hundreds of spheres and five
cones are colliding with each other (Fig. 9d).

5. Reef knot (20 K triangles): Two pieces of ribbon are tied
into a reef knot, resulting in a very uneven triangle dis-
tribution (Fig. 10).

The triangle spatial distribution density in these benchmarks
is uneven in the most time steps. For example, in the cloth on
ball and reef knot benchmarks, triangle distributions of areas
under the sphere and near the knot are very dense, while trian-
gle distributions of other areas are relatively sparse. Similarly
in the flamenco test, the triangle density of the skirt of multi-
ple layers of cloth is higher than that of the shirt, because the
skirt consists of multiple layers of cloth. In addition, some
benchmarks consist of meshes whose triangle sizes vary con-
siderably.

5.2 Results and analysis

Active levels of the OTG are adjusted depending on the dis-
tribution of triangles in the hierarchy. In all benchmarks, the
ratio between the number of frames in which each level is
active and the number of total frames, and the ratio between

123

An adaptive octree grid for GPU-based collision 735

(a) Funnel (b) Cloth on ball (c) Flamenco (d) N-body

Fig. 9 Benchmarks used for performance measuring

Fig. 10 Two pieces of ribbon are tied into a reef knot

the number of triangle-cell registrations in each level and
the number of the total triangle-cell registrations are given
in Table 1. Levels 1, 2 and 9 are inactive during the whole
simulation for all benchmarks. In contrast levels, 4, 5 and 6
are always active. Most triangle-cell pairs are registered in
levels 6 and 7.

The key idea of the OTG method is to reduce the number
of unnecessary broad-phase tests resulting from an uneven
triangle spatial distribution. We compare the average number
of broad-phase tests per frame between the OTGt method and
the VSS method which drastically reduces the broad-phase
tests for a uniform subdivision. As Fig. 11 shows, the OTGt

method yields a significant reduction in tests, by at least 39 %,
across all benchmarks. The largest reduction, of 64 %, is
observed in the reef knot test. This is because the density of
the knot area is very high and the density of remaining areas
is low, resulting in an inefficient subdivision for a uniform
grid as expected. In contrast, the OTGt adaptively partitions
the space according to the distribution density.

Table 1 The ratio (in percentage) between the number of time steps in
which each level is active (A) and the number of total time steps, and the
ratio (in percentage) between the number of triangle-cell registrations
(R) in each level and the number of the total registrations are given

Level

3 4 5 6 7 8

Funnel

A – 100 100 100 23.6 –

R – 4.7e−3 2.1e−1 70.8 29.1 –

Cloth ball

A 1.6 100 100 100 87.5 3.4

R 1.6e−3 5.4e−2 3.5e−1 2.2 92.7 4.9

Flamenco

A 4.9 100 100 100 87.2 –

R 1.5e−3 6.1e−2 5.4e−1 43.6 56.3 –

N-body

A 12.5 100 100 100 96.0 10.1

R 2.9e−3 8.3e−2 4.7e−1 6.5 80.2 13.3

Reef knot

A – 100 100 100 75.3 –

R – 4.5e−2 2.0e−1 10.7 88.3 –

To demonstrate the further improvement of OTGt , the
number of broad-phase tests produced by the OTGs method is
also given in this figure. In all benchmarks, the OTGt method
partitions space for a better adaptation to triangle distribu-
tions, yielding less tests compared to OTGs by up to 36 %,
and an average of 20 %.

A common feature of CD methods employing space
subdivision techniques is the large memory requirement,
because of the large number of broad-phase tests. This fea-
ture becomes a major limitation for GPU-based methods.
However, memory usage for tests is not our main concern,
because the two-stage scheme is designed to generate as few

123

736 T. H. Wong et al.

Fig. 11 Comparison of the average number of broad-phase tests in
CCD among the VSS method, the OTGs method and the OTGt method

Table 2 Timings of the two-stage scheme method for DCD and CCD,
measured on a GTX 470 GPU and a GTX 780 GPU

GTX 470 GTX 780

Triangles DCD CCD DCD CCD
×1,000 (ms) (ms) (ms) (ms)

Funnel 18 4.7 5.1 3.7 3.4

Cloth ball 92 10.5 13.3 8.3 9.2

Flamenco 49 16.1 17.4 11.7 10.8

N-body 146 30.2 24.8 20.8 19.1

Reef knot 20 4.7 4.9 3.2 3.0

as possible broad-phase tests. However, memory is required
for two octrees. Maintaining a tree grid as a table requires
a relatively large amount of memory. Since each node only
stores an integer value, the memory size of the counter octree
of nine levels is 512 MB, and the size of the type octree of
nine levels is 64MB because the base level is unnecessary
(the type of base level cells can be obtained from their parent
cells). Fortunately, for the test scenes, this is not a limitation
in an environment with a GTX 780 GPU whose memory is
3 GB. The number of OTG levels for all these standard bench-
marks never reaches nine, which means a memory of 72 MB
satisfies two octrees. For extreme situations, spatial hashing
can be adopted to easily avoid using more than nine levels.

5.3 Performance

The performance of the OTGt method for DCD and CCD on
benchmarks is given in Table 2. The results demonstrate that
this method works well with scenes with uneven triangle
spatial distributions. Execution times of CCD on steps for
cloth on ball are presented in Fig. 12. The most expensive
part is the broad phase which takes 40 %, while computation
time of building the OTG takes 19 % of the total running time.

5.4 Comparison

We first compare the OTGt method against the VSS method,
not only because the VSS method provides the fastest results

Fig. 12 Time proportions of each step for cloth on ball benchmark

Table 3 The DCD and CCD timings of the VSS method run on our
experimental environment with a GTX 780 GPU, and speedups of the
two-stage scheme method

DCD Speedup CCD Speedup
(ms) (times) (ms) (times)

Funnel 4.4 1.2 4.0 1.2

Cloth ball 10.2 1.2 11.1 1.2

Flamenco 11.2 0.9 11.0 1.0

N-body 18.7 0.9 24.5 1.3

Reef knot 4.3 1.3 4.4 1.5

for most benchmarks among previous methods we are aware
of, but also the OTGt method is designed to address the
uneven triangle spatial distribution issue, the main limitation
of the VSS method. To remove uncertain factors arising from
different hardware and environments, the VSS method is run
on our experiment environment (scan with shuffle operations
is used). Their performance measured on a GTX 780 GPU is
given in Table 3 to provide a straightforward comparison.

Performance of the OTGt method for CCD on all bench-
marks is faster with speedups of 1.5× and 1.3× for the reef
knot and N-body benchmarks. For DCD, the VSS method
gives slightly better performance for the flamenco and N-
body benchmarks, while the OTGt method is around 1.3×,
1.2× and 1.2× faster for the reef knot, cloth on ball and
funnel tests respectively. Although these benchmarks con-
sist of triangles whose size also varies significantly and the
VSS method is designed to handle this problem, the OTGt

method is superior for the VSS method for most tests, which
demonstrates that the OTG is able to address the uneven tri-
angle size issue as well. However, the improvement in per-
formance is not as remarkable as the significant reduction in
the number of broad-phase tests, and even not observed for
two of the DCD tests. This is mainly because the control bits
scheme employed by the VSS method to remove the redun-
dancy arising from the fact that a triangle pair can overlap
multiple cells is more efficient than the token position tech-

123

An adaptive octree grid for GPU-based collision 737

nique used in the OTG approach, which cancels out part of
the performance gain. It is also noticeable that the increase in
CCD performance is greater than that in DCD. The reason is
that by following [3], the BV is enlarged by a cloth thickness
in the DCD case, while in the CCD case the BV is enlarged
by a error tolerance which is much smaller than the cloth
thickness. Therefore, BVs of triangle pairs are more likely
to overlap in the case of DCD, thus there is less potential for
the OTG to reduce the number of tests. This is also why the
OTGt method is faster for CCD of the N-body benchmark,
but slower for DCD.

Fan et al. [6] address the issue of uneven spatial distribu-
tion in part by presenting a two level hierarchical grid. Their
reported performance results are measured on a GTX 480
GPU, whilst we compare with results measured on a slightly
slower GTX 470 GPU. The OTGt method is faster for CCD
in all except for the flamenco benchmark. For the cloth on
ball, funnel and N-body tests, speedups of from 1.3× to 1.9×
are observed. We do not provide a comparison of DCD per-
formance, because for DCD in the narrow phase they only
check collisions between triangle pairs, while we perform
collision tests on VT and EE pairs to compute exact collision
and contact information.

To the best of our knowledge, Tang et. al. [31] report the
fastest results among GPU-based methods employing BVHs.
They also run experiments on a GTX 480 GPU. CCD perfor-
mance of the OTGt method measured on a GTX 470 GPU
is better in cloth on ball, flamenco and N-body benchmarks:
13.3 vs. 18.6 ms, 17.4 vs. 32.7 ms and 24.8 vs. 79.0 ms,
respectively, although is slightly slower for the funnel test.

Finally, by comparing our CCD timings on a GTX 470
GPU to the fastest multicore CPU-based method [33] where
experiments are run on a PC with four quad-core CPUs (16
cores) at 2.93 GHz, speedups of 1.6× and 1.3× are observed
for the flamenco and cloth on ball tests, on which the multi-
core CPU-based method takes 27 and 32.5 ms. Performance
of the OTGt method on a GTX 780 GPU for these two tests
is 2.5× and 1.7× faster. DCD timings of these methods are
not provided.

6 Conclusion and future work

We present a GPU-based method using an OTG to accel-
erate CD of deformable objects by adaptively subdividing
space according to triangle distributions. The OTG is dynam-
ically built and adjusted. A two-stage scheme is introduced
to optimise octree spatial subdivision and to reduce the num-
ber of broad-phase tests. This method addresses the issue
of uneven triangle spatial distributions, a common limi-
tation not addressed well in previous spatial subdivision-
based CD approaches on GPUs. Further, the uneven trian-
gle size problem can be addressed by this method as well,

since it can be seen as a subcase of uneven spatial distri-
butions. We have investigated the method by conducting a
set of standard benchmarks, and observed increases in per-
formance compared to previous CPU-based and GPU-based
approaches.

There are a number of avenues for our future work. We
would like to develop CD methods that exploit new features
of GK110 based GPUs including dynamic parallelism, hyper
Q and grid management unit. Further utilising shuffle instruc-
tions to accelerate scan and other parallel primitives is also
an area for further work.

Acknowledgments The cloth on ball and N-body benchmarks is cour-
tesy of the UNC Dynamic Scene Benchmarks collection. The flamenco
benchmark is courtesy of Walt Disney Animation Studios and was pro-
vided by Rasmus Tamstorf. The reef knot model was provided by David
Harmon.

References

1. Alcantara, D.A., Sharf, A., Abbasinejad, F., Sengupta, S., Mitzen-
macher, M., Owens, J.D., Amenta, N.: Real-time parallel hashing
on the GPU. ACM Trans. Graph. 28(5), 154:1–154:9 (2009)

2. van den Bergen, G., Van, G., Bergen, D.: Efficient collision detec-
tion of complex deformable models using aabb trees. J. Graph.
Tools 2, 1–13 (1998)

3. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of col-
lisions, contact and friction for cloth animation. In: ACM SIG-
GRAPH 2005 Courses, SIGGRAPH ’05. ACM, New York (2005)

4. Curtis, S., Tamstorf, R., Manocha, D.: Fast collision detection for
deformable models using representative-triangles. In: Proceedings
of the 2008 symposium on Interactive 3D graphics and games. I3D
’08, pp. 61–69. ACM, New York (2008)

5. Eitz, M., Lixu, G.: Hierarchical spatial hashing for real-time colli-
sion detection. In: Proceedings of the IEEE International Confer-
ence on Shape Modeling and Applications 2007, pp. 61–70. IEEE
Computer Society, Washington, DC (2007)

6. Fan, W., Wang, B., Paul, J.C., Sun, J.: A hierarchical grid based
framework for fast collision detection. Comput. Graph. Forum
30(5), 1451–1459 (2011)

7. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchi-
cal structure for rapid interference detection. In: Proceedings of
the 23rd Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’96, pp 171–180. ACM, New York
(1996)

8. Govindaraju, N.K., Redon, S., Lin, M.C., Manocha, D.: Cul-
lide: interactive collision detection between complex models in
large environments using graphics hardware. In: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, HWWS ’03, pp. 25–32. Eurographics Association
(2003)

9. Grand, S.L.: Broad-phase collision detection with cuda. In: GPU
Gems 3 (2007)

10. Greß, A., Guthe, M., Klein, R.: GPU-based collision detection for
deformable parameterized surfaces. Comput. Graph. Forum 25(3),
497–506 (2006)

11. Harris, M.: Parallel Prefix Sum (Scan) with CUDA. In: GPU Gems
3 (2007)

12. Heidelberger, B., Teschner, M., Gross, M.: Detection of collisions
and self-collisions using image-space techniques. J. WSCG 12(3),
145–152 (2004)

123

738 T. H. Wong et al.

13. Heidelberger, B., Teschner, M., Gross, M.H.: Real-time volumetric
intersections of deforming objects. In: VMV, pp. 461–468 (2003)

14. Hillis, W.D., Steele G.L., Jr.: Data parallel algorithms. Commun.
ACM 29(12), 1170–1183 (1986). doi:10.1145/7902.7903

15. Kim, D., Heo, J.P., Huh, J., Kim, J., Yoon, S.E.: Hpccd: hybrid par-
allel continuous collision detection using CPUs and GPUs. Com-
put. Graph. Forum 28(7), 1791–1800 (2009)

16. Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.:
Efficient collision detection using bounding volume hierarchies of
k-dops. IEEE Trans. Vis. Comput. Graph. 4, 21–36 (1998)

17. Kroiss, R.R.: Collision detection using hierarchical grid spatial par-
titioning on the GPU. ProQuest Dissertations and Theses, Univer-
sity of Colorado at Boulder, p 45 (2013)

18. Larsson, T., Akenine-Mller, T.: A dynamic bounding volume hier-
archy for generalized collision detection. Comput. Graph. 30(3),
450–459 (2006). doi:10.1016/j.cag.2006.02.011

19. Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., Manocha,
D.: Fast BVH construction on GPUs. Comput. Graph. Forum 28(2),
375–384 (2009)

20. Lauterbach, C., Mo, Q., Manocha, D.: gProximity: hierarchical
GPU-based operations for collision and distance queries. Comput.
Graph. Forum 29(2), 419–428 (2010)

21. Mezger, J., Kimmerle, S., Etzmu, O.: Hierarchical techniques in
collision detection for cloth animation. J. WSCG 11(2), 322–329
(2003)

22. NVIDIA.: Cudashuffle: Cuda parallel prefix sum with shuffle
intrinsics. In: Cuda samples (2013)

23. NVIDIA.: Cudpp: Cuda data parallel primitives library (2013)
24. Otaduy, M.A., Chassot, O., Steinemann, D., Gross, M.: Balanced

hierarchies for collision detection between fracturing objects. Vir-
tual Reality Conference, IEEE 83–90 (2007)

25. Pabst, S., Koch, A., Straer, W.: Fast and scalable CPU/GPU colli-
sion detection for rigid and deformable surfaces. Comput. Graph.
Forum 29(5), 1605–1612 (2010)

26. Palmer, I.J., Grimsdale, R.L.: Collision detection for animation
using sphere-trees. Comput. Graph. Forum 14(2), 105–116 (1995)

27. Provot, X.: Collision and self-collision handling in cloth model
dedicated to design garments, vol. 97, pp. 177–189. Citeseer (1997)

28. Rodrïguez-Navarro, J., Sainz, M., Susïn, A.: GPU based cloth sim-
ulation with moving humanoids. In: Actas XV Congreso Espaol de
Informtica Grfica, pp. 147–155 (2005)

29. Tang, M., Curtis, S., Yoon, S.E., Manocha, D.: Interactive con-
tinuous collision detection between deformable models using
connectivity-based culling. In: Proceedings of the 2008 ACM sym-
posium on Solid and physical modeling. SPM ’08, pp. 25–36.
ACM, New York (2008)

30. Tang, M., Curtis, S., Yoon, S.E., Manocha, D.: Interactive con-
tinuous collision detection between deformable models using
connectivity-based culling. In: SPM ’08: Proceedings of the 2008
ACM symposium on Solid and physical modeling, pp. 25–36.
ACM, New York (2008)

31. Tang, M., Manocha, D., Lin, J., Tong, R.: Collision-streams: fast
gpu-based collision detection for deformable models. In: Sympo-
sium on Interactive 3D Graphics and Games, I3D ’11, pp. 63–70.
ACM, New York (2011)

32. Tang, M., Manocha, D., Tong, R.: Fast continuous collision detec-
tion using deforming non-penetration filters. In: Proceedings of the
2010 ACM SIGGRAPH symposium on Interactive 3D Graphics
and Games. I3D ’10, pp. 7–13. ACM, New York (2010)

33. Tang, M., Manocha, D., Tong, R.: Mccd: multi-core collision detec-
tion between deformable models using front-based decomposition.
Graph. Models 72(2), 7–23 (2010)

34. Teschner, M., Heidelberger, B., Müller, M., Pomerante, D.,
Gross, M.H.: Optimized spatial hashing for collision detection of
deformable objects. VMV 3, 47–54 (2003)

35. Teschner, M., Kimmerle, S., Zachmann, G., Heidelberger, B.,
Raghupathi, L., Fuhrmann, A., Cani, M.-P., Faure, F., Magnenat-
Thalmann, N., Strasser, W., Volino, P.: Collision detection for
deformable objects. Comput. Graph. Forum 24(1), 61–81 (2005).
doi:10.1111/j.1467-8659.2005.00829.x

36. Wong, T., Leach, G., Zambetta, F.: Virtual subdivision for GPU
based collision detection of deformable objects using a uniform
grid. Vis. Comput. 28, 829–838 (2012)

37. Wong, W.S.K., Baciu, G.: A randomized marking scheme for con-
tinuous collision detection in simulation of deformable surfaces. In:
Proceedings of the 2006 ACM international conference on Virtual
reality continuum and its applications. VRCIA ’06, pp. 181–188.
ACM, New York (2006)

38. Zhang, D., Yuen, M.F.: Collision detection for clothed human ani-
mation. In: Computer Graphics and Applications, 2000. Proceed-
ings. The Eighth Pacific Conference on, pp. 328–337 (2000)

Tsz Ho Wong is a PhD student
in Computer Science at RMIT
University. He received the mas-
ter’s degree in RMIT Univer-
sity, Australia, in 2010. His
major research interests include
physics simulation and GPU
computing.

Geoff Leach is a lecturer in
the School of Computer Sci-
ence and Information Technol-
ogy at RMIT University. His
major research interests include
computer graphics and distribu-
tion system.

Fabio Zambetta is a senior lec-
turer in the School of Com-
puter Science and Information
Technology at RMIT University.
In 2004, Dr Zambetta earned
his PhD degree in Universitë
degli Studi di Bari. His major
research interests include com-
puter graphics, artificial intelli-
gence and applied mathematics.

123

http://dx.doi.org/10.1145/7902.7903
http://dx.doi.org/10.1016/j.cag.2006.02.011
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x

	An adaptive octree grid for GPU-based collision detection of deformable objects
	Abstract
	1 Introduction
	2 Related work
	3 Approach
	3.1 Adaptive space partition
	3.2 The number of cell levels
	3.3 Remainder of the CD pipeline

	4 Scan with shuffle operations
	5 Implementation and results
	5.1 Benchmarks
	5.2 Results and analysis
	5.3 Performance
	5.4 Comparison

	6 Conclusion and future work
	Acknowledgments
	References

