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Abstract We present an interactive algorithm to model
physics-based interactions in dense crowds. Our approach
is capable of modeling both physical forces and interactions
between agents and obstacles, while also allowing the agents
to anticipate and avoid upcoming collisions during local navi-
gation.Wecombine velocity-based collision-avoidance algo-
rithms with external physical forces. The overall formula-
tion produces various effects of forces acting on agents and
crowds, including balance recovery motion and force prop-
agation through the crowd. We further extend our method
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to model more complex behaviors involving social and cul-
tural rules. We use finite-state machines to specify a series
of behaviors and demonstrate our approach on many com-
plex scenarios. Our algorithm can simulate a few thousand
agents at interactive rates and can generate many emergent
behaviors.

Keywords Multi-agent simulation · Physical interactions

1 Introduction

Multi-agent simulations are frequently used to model a wide
variety of natural and simulated behaviors, including human
crowds, traffic, groups of birds, bees, fish, ants, etc. In many
of these applications, it is important for the agents to interact
in a physical manner with each other and the environment.
Agents often collide, push, and impart forces on other agents
and on the obstacles in the environment, changing their tra-
jectory or behavior. The challenge is to model these interac-
tions in large multi-agent systems at interactive rates. Many
multi-agent simulation techniques focusmainly on local nav-
igation based on anticipatory collision avoidance and does
not explicitly take into account physical interactions between
agents or between agents and obstacles in the environment.
Moreover, collision-avoidance behavior towards the obsta-
cles is limited to the static obstacles.

Methods which focus only on collision avoidance can
work well in scenarios with low to medium density (e.g.
<2 agents/m2), where there is enough space for the agents to
navigate freely without collisions. However, there are many
situations such as political rallies, religious gatherings, or
public subway stations, where agents can get very close to
each other, and physical interactions between the agents fre-
quently occur. An agent may be pushed, or bumps into other
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Fig. 1 Simulation of Tawaf. We simulate pilgrims performing the
Tawaf ritual. In our scene, about 35,000 agents circle around the Kaaba,
performing a short prayer at the starting line while some of the agents
try to get towards the Black Stone at the eastern corner of Kaaba. We
model the interactions between the agents in a dense crowd, such as
when the agents are pushed by crowd forces (see video)

agents in dense scenarios. For these kinds of dense crowds, it
is important to model the direct physical interaction between
the agents. In addition, the indirect effect of the physical
impact transferred to neighboring individuals in the crowd,
such as the domino effect of people leaning against each
other, may impact the trajectory of a high number of agents in
a crowd. In extremely dense crowds, the forces from crowds
sometimes become very large and can completely change
the trajectory of an agent or make them fall. In these cases,
crowd disasters can occur [37]. For all these reasons, under-
standing and simulating physical interaction between agents
is necessary to simulate and analyze dense crowd scenar-
ios. As the density of the crowd increases, it is more likely
that even small motions can cause physical interactions with
neighboring agents.

Similarly, the forces frommany individual agents combine
to produce a large effect on the environment. For example,
crowds may push stacked boxes while moving through a nar-
row corridor and somebody may be hit by a falling boxes.
Dense, aggressive crowds bend fences or break walls. To
simulate such scenarios, we need to develop appropriate two-
way coupling techniques between autonomous agents and the
obstacles in the environment.

Main results In this paper,we present a newmethod tomodel
physical interactions between agents and objects in an inter-
active velocity-based multi-agent framework. Our approach
incorporates both an agent’s ability to anticipate and avoid
upcoming collisions, while alsomodeling physical responses
to external forces in a single unified framework.

Wecompute the velocity of each agent as a linear program-
ming problem in the velocity space. The resulting approach
is efficient and can be used to simulate dense scenarios with
thousands of agents at interactive rates. We further extend
our method to model more complex behaviors involving

Fig. 2 Wall breaking. We demonstrate the physical forces applied by
cylindrical agents to breakable wall obstacles. Our algorithm canmodel
such interactions between the agents and theobstacles in dense scenarios
at interactive rates

social and cultural rules. We use finite state machines to
define a series of behaviors as well as parameters for our
physical interaction model. These parameters are used to
distinguish between responsive collision-avoidance behav-
iors and force-based physical interactions. For example, we
use our approach to simulate various behaviors during the
Tawaf ritual (Fig. 1). We show that our velocity-based for-
mulation can reliably simulate tens of thousands of agents
in very dense scenarios (maximum density 8 agents/m), and
model the physical interactions. Furthermore, we show that
our approach is quite robust and we can use large time steps.
We have also integrated our approach with the Bullet Physics
Engine [1], and highlight the performance in many scenarios
(Fig. 2).

The rest of the paper is organized as follows. Section 2
gives a brief review of related work, Sect. 3 describes
velocity-based physical interaction model combining antic-
ipatory collision avoidance and physical forces, and Sect. 4
discusses high-level behavior modeling using a finite-state
machine. We highlight the performance on different scenar-
ios focusing on physical interactions in Sect. 7.

2 Related work

2.1 Multi-agent motion models

Many approaches have been proposed to simulate the motion
of large number of agents and crowds. Often these models
are based on rules, which are used to guide the movement
of each agent. An early example of such an approach is the
seminal work of Reynolds [29], which uses simple rules to
model flocking behavior.

Force-based methods, such as the social force model
[11], use various forces to model attraction and repulsion
between agents. These forces are not physically based;
rather, they provide a mechanism to model the psycholog-
ical factors that govern how agents approach each other.
Other approaches model collision-avoidance behavior with
velocity-based techniques [13,28,41] or vision-based steer-
ing approaches [26].

Other techniques have been proposed to model complex
social interaction. HiDAC [27] uses various rules and social
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forces to model interactions between agents and obstacles;
collision avoidance and physical interactions between agents
and objects are handled using repulsive forces. The compos-
ite agent formulation [43] uses geometric proxies to model
social priority, authority, guidance, and aggression. Many
other multi-agent simulation algorithms exist, using tech-
niques inspired by different fields such as sociology [24],
biomechanics [8], and psychology [7,9,16,30] to model dif-
ferent aspects of agent behaviors and decision models. These
approaches are able to generate realistically heterogeneous
behaviors for agents. Our approach to model physical inter-
actions can also be combinedwithmany of these approaches.

Other techniques use cognitive and decision-makingmod-
els to generate human-like behaviors [32,40,44], or use data-
driven approaches to the problem [19,21].

2.2 Dense crowd simulation

Density and crowd behaviors are closely related. The fun-
damental diagram is an empirically measured relationship
between the pedestrian density and speed [31]. Some crowd
simulation algorithms tend to adhere to the fundamental dia-
gram. Curtis et al. [5] propose a method to simulate density-
dependent behaviors for velocity-based collision-avoidance
technique. Lemercier et al. [20] focus on generating realistic
following behaviors based on varying densities.

Other approaches for modeling crowds are based on con-
tinuum or macroscopic models [12,25,39]. In particular,
Narain et al. [25] present a hybrid technique using contin-
uum and discretemethod for aggregate behaviors in large and
dense crowds. These continuum methods are mainly used
to simulate the macroscopic flow and may not model the
detailed interactions between the individuals and the obsta-
cles. In contrast, our approach simulates agent–agent and
agent–obstacles physical interaction.

Some force-based techniques are used to simulate the
interactions between agents in a dense crowd. Helbing
et al. [10] model panic behavior with two additional physi-
cal forces (body force and sliding friction) in addition to the
social forces. Yu and Johansson [45] propose a force-based
technique to model the turbulence-like motion of a dense
crowd by increasing the repulsive force.

2.3 Force-based techniques for character animation

There has been extensive work on using physics-based mod-
els to improve character animation. Sok et al. [36] use a
force-based approach to ensure that the resulting motions
are physically plausible. Other approaches consider geomet-
ric and kinematic constraints [35] or use interactive meth-
ods for character editing [14]. These techniques, which are
primarily based on enhancing motion-captured data, can be

used to simulate behaviors of and interactions between the
characters and obstacles in their environment.

Many hybrid techniques have been proposed that bridge
the gap between physics-based simulation of character
motion and pre-recorded animation of characters to model
responsive behavior of character [33,46]. Muico et al. [23]
propose a composite method to improve the responsiveness
of physically simulated characters to external disturbances
by blending or transitioning multiple locomotion skills.

Our approach is quite different from these methods.
Unlike character animation techniques that mainly focus on
generating the full-body motion of a relatively small number
of characters, we focus on generating physically plausible
interactions between a large number of agents in dense sce-
narios.

2.4 Crowd simulation in game engines

Some commercial game engines or middleware products can
simulate character motion or crowd behavior. This includes
NaturalMotion’s Euphoria, which simulates realistic charac-
ter behavior based on biomechanics and physics simulation.
There are also commercial AI middlewares for game engines
that combine crowd and physics simulation: Kynapse, Havok
AI, and Unreal Engine are examples of these. These systems
primarily focus on the local and global navigation of each
agent using navigation meshes and local rules. Other crowd
simulation software such as Miarmy, Massive, and Golaem
are integrated with modeling and rendering tools, and used
to create character animation. Our approach to generating
physical interactions can be combined with these systems to
improve local interactions between the agents and the obsta-
cles in the scene.

3 Velocity-based modeling of physical interactions

Our approach extends the approach described in [15] to
model the physical interactions between a large number of
agents and obstacles. In this section, we give an overview
and a summary of techniques used to compute the forces.

3.1 Overview

Local navigation and anticipatory collision avoidance of
agents can be efficiently modeled using reciprocal veloc-
ity obstacles, which impose linear constraints on an agent’s
velocity to help it navigate its environment. We extend this
framework by representing the effect of physical forces on
agents also as linearized velocity constraints. This allows us
to use linear programming to compute a new velocity for
each agent—one which takes into account both the naviga-
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Fig. 3 System overview. The motions for objects and agents are com-
puted by a rigid body dynamics solver and a constrained optimizer,
respectively. Physical interactions between agents and obstacles deter-
mine forces. For obstacles, the forces serve as inputs to the rigid body

system; for agents, they become force constraints. These force con-
straints are combined with the original ORCA planning constraints and
serve as inputs to optimization algorithm

tion and force constraints imposed upon that agent. Figure 3
gives an overview of the full simulation system.

Agents are assumed to have a preferred velocity. This is
the velocity at which the agent would travel if there were no
collisions to avoid or physical forces acting on the agent. At
each time step, an agent computes a newvelocity that satisfies
the velocity constraints, then updates its position based on the
preferred velocity. There are two types of constraints which
we impose on an agent’s velocity:

– ORCAconstraints guide the collision avoidance by spec-
ifying the space of velocities which are guaranteed to
remain collision-free for a given period of time [41].

– Force constraints account for forces which arise through
physical interactions with other agents and objects.

Given an agent A with neighbors B, the permitted veloci-
ties for A, PVA is the union of ORCA constraints and force
constraints. We can state our agent update algorithm as an
optimization problem. Formally:

PVA = FCA ∩
⋂

B�=A

ORCAA|B, (1)

vnew = argmin
v∈PVA

‖v − vpref‖, (2)

where vnew, vpref and FCA are the new velocity, preferred
velocity, and force constraints of A, respectively. ORCAA|B
is ORCA constraints of A given its neighbors B.

3.2 Anticipatory collision avoidance

There are some significant differences between an agent’s
interaction with a neighboring agent and a dynamic obstacle,
in terms of the motion computation. The motion of obstacles
(e.g. rigid bodies) is governed by Newtonian physics, since
these objects have nowill and are unable to initiatemovement
on their own. As a result, the agents cannot assume that the

obstacles will anticipate collisions and change trajectory to
avoid them. We take account such difference into agent’s
collision-avoidance behavior.

3.2.1 Agent–agent collision avoidance

ORCA constraints are defined by a set of velocities that are
guaranteed to avoid upcoming collisions with other nearby
agents. The constraints are represented as the boundary of
a half plane containing the space of feasible, collision-free
velocities. Given two agents, A and B, which we represent as
2D discs, we compute theminimum vector u of the change in
relative velocity needed to avoid collision. ORCA enforces
this constraint by requiring each agent to change their cur-
rent velocity by at least 1/2u. The ORCA constraint on A’s
velocity induced by B would be:

ORCAA|B =
{
v|

(
v − (vA + 1

2
u)

)
· û ≥ 0

}
, (3)

where vA is A’s current velocity and û is the normalized
vector u.

If A has multiple neighboring agents, each will impose
its own ORCA constraint on A’s velocity. Local navigation
is computed by finding the new velocity for A (vnew) which
is closest to its preferred velocity (vpref ) while respecting all
the ORCA constraints.

3.2.2 Agent–dynamic obstacle collision avoidance

The dynamic object O is represented, like the agents, as an
open disc that is a 2D projection of the bounding sphere of the
object. We use this bounding shape for collision avoidance
since the agent’s navigation is performed in 2D space, but the
underlying rigid body simulation uses an 3D object shape for
handling collisions with other rigid bodies in the scene.

Agents try to avoid collisions with dynamic obstacles
whenever the dynamic obstacles are within agent’s visual
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range. However, agents do not assume objects will recipro-
cate in avoiding collisions. Therefore, assuming that a change
in velocity ofu (Sect. 3.2.1) is required to avoid an anticipated
collision with an obstacle, the collision-avoidance constraint
for agent A induced by object O is:

ORCAτ
A|O = {v|(v − (vA + u)) · û ≥ 0}. (4)

3.3 Constraints from physical forces

We give brief description of the forces in this section.Contact
forces include pushing forces and collision forces, andmodel
collision response force or an attempted pushing. inferred
forces include deceleration force and resistive force, and
model the impact of forces on agent’s motion. For more
detail, please refer to [15].

3.3.1 Force computation

Pushing forces Pushing is one of the ways for agents to
physically interact with each other [27]. In our formulation,
the pushing force fpi |k exerted by an agent i pushing another
agent k can be given as:

fpi |k = ρk fp
pk − p+

i

‖pk − p+
i ‖ , (5)

wherepi andpk indicate the positions of agent i and k, respec-
tively, and p+

i = pi + vi�t is the pushing agent’s future
position at the next time step. fp is a magnitude of total
pushing force of agent i towards all interacting agents. It can
be defined by the designer, but in our examples, we compute
this value to be proportional to agent i’s current speed. ρk
is used to define the weight of pushing force towards each
interacting agent k. For our examples, we formulate it as an
inverse of number of agents that are pushed.

Collisions In case of collisions between agents, a collision
resolution force is applied. This force is computed based on
the physically based simulation approach proposed byBaraff
[2]. We consider only linear momentum and simulate agents
as radially symmetric discs. For an agent i colliding with
agent k, the collision force fc is computed as follows:

fc =
( −(1 + ε)vrel

1/mi + 1/mk
· n

)
/�t, (6)

wheren is the collision normal, pointing towards agent i from
agent j ; vrel is relative velocity; andmi andmk are themass of
agent i and agent k, respectively. ε is the coefficient of restitu-
tion. In our examples,we assign auniformmass to each agent,
but any reasonablemass value can be used for the simulation.

In case of a collision between an agent and a dynamic
object, the impulse force is computed in the same way. A

force with the same magnitude but with the opposite direc-
tion is applied to the object, which also results in change of
angular motion generated by the torque τ c:

τ c = fc × ro, (7)

where ro is the displacement vector for the contact point of
the object.

Deceleration forcesWhen an agent reduces speedwhile pre-
serving direction to within a certain threshold (θd), we intro-
duce a force into the system based on this velocity change.
The deceleration force generated by agent i’s deceleration is
defined as:

fdi =
{
kthreshmi�vi/�t if (�v̂i · v̂i ) < −cos(θd),
0 otherwise,

(8)

where �vi = vi − v−
i is the change in velocity from the pre-

vious time step to the current time step. Agents can absorb
or transform forces, which are approximated by a parameter
kthresh.We assume that the speed reduction arises from one of
two sources: self-will (e.g. sudden change of preferred veloc-
ity) or agent interaction (e.g. impending collision avoidance).
When there is no interacting agent, we assume it is the for-
mer case, and the deceleration force is applied back to the
agent itself. In the latter case, we distribute the deceleration
force among the neighbors. A neighboring agent k causes
such behavior if it lies within a cone centered on v−

i and is
within an angular space of 2θd degrees.

Resistive forcesResistive forces occur when an agent’s com-
puted velocity does not account for the entire change in veloc-
ity expected from the external force. This difference is prop-
agated to neighboring agents via the resistive forces. This
force is computed by the difference between the velocity v
computed by (2) and the velocity v f computed only from the
net force applied to the agent. The resistive force of an agent
i experiencing the discrepancy between v f and v is:

f ri =
{
kthreshmi (vi − vfi )/�t if vfi �= 0
0 otherwise.

(9)

As in the case of deceleration force, the resistive force is
applied to the agent i when there is no interacting agent.
Otherwise, the resistive force is distributed equally among the
interacting agents, whose position is inside a cone centered
on vfi and with an angular span of 2θr degrees.

The resistive force and deceleration force can be viewed as
complementary to one another. The resistive force is non-zero
only in the presence of external physical forces on an agent,
and the deceleration force is non-zero only in the absence of
such forces.

3.3.2 Force constraints

The net force f is the sum of all the forces applied to the
agent:
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f =
∑

fc +
∑

fd +
∑

f r +
∑

fp. (10)

The force constraint FC induced by the net force f is com-
puted as follows:

vf = v + f
m

�t (11)

FC = {v|(v − vf) · f̂ ≥ 0}. (12)

FC is a half plane whose boundary, a line through vf , is
perpendicular to the normalized force f̂ . It contains a set
of velocities that is equal to or greater than the minimum
velocity change required by the force f .

3.4 Benefits of force constraints

By introducing inferred forces, our method can model bal-
ance recovery motions that cannot be captured by physics-
based rigid body dynamics.

Balance recovery motion When forces are applied, rigid
body motion changes accordingly to the Newtonian dynam-
ics. However, humans have the ability to absorb and resist the
external forces even from unexpected events such as sudden
pushes or an impact from an obstacle. In these situations,
humans take effort to keep their balance creating a behavior
known as balance recovery in Biomechanics [22]. Balance
recovery is important to model human locomotion, and has
been studied in other fields like robotics for humanoid robots
[42] and in computer graphics for animated characters [34].

Typical balance recovery motions include taking addi-
tional steps or reaching and grasping an object for support.
When humans fails to recover the balance, they take further
adjustments to refine their initial responses. In other words,
the balance recovery can affect the motion, including the tra-
jectory, for a period of time. The balance recovery motion is
a result of both physical and cognitive activity, which also
depends on the environmental constraints and affordances
(e.g., space to step, objects to grasp for support) [22].

We define two forces, deceleration force and resistive
force that are used to simulate the behavior corresponding
to balance recovery. We infer these forces from the agent’s
motion at a given time, based on our assumption that the
motion of an agent can be decomposed into two compo-
nents: collision avoidance andNewtonian dynamics. Loosely
speaking, we treat the different between the velocity implied
by the physics forces and the resultant velocity produced by
the simulation as a recovery force which is applied on the
nearby environment and agents.

Force propagation Forces applied to an agent can propa-
gate through a dense crowd, since one agent is likely to exert
forces on others for support to recover from the external push-
ing force. The propagation forces can be inferred when the
motion computed using constrained optimization does not

match the motion expected from external physical forces.
In this case, we assume that the agent’s action of balance
recovery took place to resist the external physical forces. For
example, when an agent decelerates at a faster rate than that
implied by the external forces, we infer that the agent must
be pushing against other agents or obstacles to be able to
slow down so quickly. Likewise, when an agent accelerates
at a rate less than that implied by external forces, we infer
the agent must be pushing against other agents or obstacles,
while resist the effect of the forces. These inferred propaga-
tion forces are applied to the appropriate neighboring agents
during the subsequent time step.

4 Higher level behavior modeling

In many cases, the crowd or individual behaviors change
over a period of time. Cultural, social norms, as well as
personal goals and intentions can change a person’s behav-
iors over time. Likewise, individuals can exhibit role-specific
behaviors, in a variety of situations which can fundamentally
change how they interact with each other. A clear example
of this can be seen in sporting events, where the behavior
towards the players of their own team members are coop-
erative (and avoid collisions), whereas the behavior towards
members of the opposite team often includes blocking, tack-
ling and other forms of physical collisions. Ideally, we would
like to model a full variety of such behaviors using our phys-
ically based interactions, while accounting for changes in
behavior.

Incorporating such a variety of behaviors changing over
time, and depending on the situation or social, cultural
norms requires a way to model higher level decision-making
process and behavior rules. A common approach to achieve
state-dependent behaviors in general is to use finite-state
machines (FSMs). In this section, we show how our sim-
ulation approach can be combined with FSMs to model such
complex physical behaviors in multi-agent simulations. The
resulting framework provides a natural way to define differ-
ent behavior patterns and changes of those behaviors over
time and in different situations.

4.1 The behavior finite-state machine

An FSM is a machine or a model which has finite number
of state and transitions between the states. FSMs have been
widely used as away tomodel intention and decision-making
process for agents in crowd simulation and games [3,38].
For example, FSMs can describe a set of behaviors for an
agent with certain social status (e.g., a leader) along with
the transition of these behaviors in certain situations (e.g.,
safe state or dangerous state) based on the leader agent’s
perceived information. Recent work has integrated such an
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Fig. 4 Overview of FSM-based behavior modeling. FSM states are
used to specify a set of available actions, alongwith the parameters used
for physics-based interaction and local collision avoidance. Transitions
between the FSM states are made based on the result of our physical
interaction model combined with local collision-avoidance method

FSM-based behavior specification with velocity-based local
collision-avoidance schemes to simulate crowds displaying
various behaviors [4].We present an improved algorithm that
extends this framework to produce complex simulations with
physically based agent interactions.

Figure 4 shows the overall architecture of the FSM-based
behavior modeling for our physical interaction model. We
specify a set of actions (behaviors) for each state, along with
interaction parameters that change the behavior of the indi-
vidual agents and the crowd. Transitions between the FSM
states are made based on the result of our physical interac-
tion model combined with local collision-avoidance method.
This corresponds to the decision-making process of an agent,
which is based on the perceived information about the agent
itself and its neighbors. The perceived information and the
decision of current action altogether are used to compute
agents’ local navigation planning. In other words, we model
agents behavior using FSM by specifying the interaction
parameters that define perception and local planning.

Importantly, it is the combined interplay between an
agent’s perceived information and its behavioral simulation
parameters that determine its actions in a simulation. For
example, if we reduce an agent’s perception by only allow-
ing it to sense very close neighbors, the agent will be less able
to plan ahead to avoid collisions and more likely to run into
neighbors. However, when the two agents collide, themagni-
tude of the interactionwill be controlled by the physical inter-
action parameters. Therefore, a rude or hurried agent state can
be created by reducing the perception range, and increasing
the pushing forces, and a more polite or relaxed agent state
can by made by increasing the perception range and decreas-
ing pushing. In this way, we use the same motion model
(Eqs. 1 and 2) across all the states of the FSM, but leverage
the agent parameters to diversify the agent interactions.

Because of this relationship between collision-avoidance
parameters and physical interaction parameters, both should
be considered together when designing the FSM. Table 1
shows what both of these components should be like in terms
of intentional behaviors and responsive behaviors. For inten-
tional interactions, the agent’s primary goal is to approach the
target and apply intended forces. In this case, higher antici-

Table 1 Different interaction parameters for intentional behaviors and
responsive behaviors

Intentional physical
interaction

Responsive behaviors

Preferred
velocity

Towards the target (Local, global)
destination

Collision
avoidance

No overlap Anticipated collision
avoidance

Physical
interaction

Applying forces
(Varying magnitude
and direction)

Collision response or
balance recovery

patory collision-avoidance behavior prevents the agent from
getting closer to the target. Rather, the agent should be able
to approach the target even when they perceive impending
collision with the target. For example, a soccer player would
even run towards the ball even when the ball is approaching
the player at a high speed. To model such behavior, local
collision-avoidance behavior should be minimized to allow
the agent to physically interact with the target, but still be
able to prevent overlap with the target object.

5 Results

In this section, we highlight the performance of our algo-
rithm in different scenarios. We first show some results of
our physical interaction model, and then present FSM-based
behaviormodelingwith dodge-ball game scenario and Tawaf
ritual scenario. We also analyze the approach and compare
it with other techniques. We direct the readers to the video
or the preliminary version paper [15] for more results on
physical interaction models.

5.1 Agent–agent interaction

We demonstrate a few scenarios which highlight the effect of
physical interactions between agents and how those effects
propagate through crowds.

Running through scenario We demonstrate a scenario
where an agent runs at a high speed and push through a dense
crowd of 25 agents that are standing still. Figure 5 compares
the result of our method to those achieved using multi-agent
simulation without any physical interactions.

The left side of each image shows a pushing agent (red)
passing through the crowd, and the right side of each image
shows the position of all other agents in the crowd after
the fast-moving agent has passed. As Fig. 5 demonstrates,
agents simulated without physics-based interaction use min-
imal motion to avoid collisions. In contrast, agents simulated
using our physically based formulation resist the pushing
motion (in an attempt to stand still) and propagate the effects
of being pushed to other agents.
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Fig. 5 Rushing through still agents. The red agent tries to rush through
a group of standing agents, simulated awith only anticipatory collision
avoidance andbwith physical interactions.Usingourmethod, the forces
are propagated among the agents, resulting in a new distribution pattern
(b)

Fig. 6 Two bottlenecks scenario. We simulate and compare crowd
behavior at two narrow bottlenecks, which are marked with red dot-
ted lines. Bottleneck (1) is barely wide enough for one person to pass
through; bottleneck (2) is about twice that width and allows two agents
to pass through it at a time. The result from collision-avoidance-only
simulation results in an arch-shaped arrangement of agents in the crowd
(highlighted with a yellow circle), which causes congestion at the bot-
tleneck. Our method breaks the congestion by allowing the agents to
push one other in congested conditions

Two bottlenecks scenario In this scenario, long lines of
closely spaced walking agents attempt to pass through two
narrow bottlenecks, as illustrated in Fig. 6. The first bot-
tleneck (denoted in the figure as (2)) is about the width of
two agents; the second is narrower, about wide enough for
one agent (denoted as (1)). A local navigation algorithm that
performs collision avoidance frequently results in conges-
tion at both the bottlenecks due to stable-arch formation of
agents (highlighted with a yellow circle) in Fig. 6a. However,
agents simulated by our physically based method are able to
break this congestion at the bottleneck area by pushing the
blocking agents. The ability to break through bottlenecks also
results in a quantitatively higher rate of flow for agents using
our approach. After seconds, twice as many agents make it
through both the bottlenecks, using our algorithm.

Fig. 7 Wall breaking simulations with different wall properties.
aWhen the blocks are tightly attached, the wall is not broken. Instead,
it is moved and rotated by crowd forces, and made a gap for the crowd
to escape through. bWhen the wall consists of much heavier blocks, it
does not break or move easily even after all the crowds (1,200 agents)
entered the isle. In this example, sometimes crowd makes a wave-like
movement where sparse density crowd movement is propagated front
to back and vice versa

5.2 Agent–object interaction

We also demonstrate the effect of forces between dynamic
objects and agents. We used the Bullet Physics engine [1]
to compute the motion of dynamic obstacles (3D rigid body
dynamics). The results demonstrate several features of our
approach:

– Dynamic obstacle avoidance: Agents try to avoid colli-
sions with other agents and with dynamic obstacles.

– Agent–object interactions: Our method takes into account
the collisions which occur between the agents and the
objects. The forces generated by these collisions affect
both the objects and the agents.

– User interactions: Our method is fast enough for real-
time interactive simulation. Users can participate in the
simulation by moving rigid bodies inside the scene; this
movement dynamically changes the environment for the
moving agent.

Wall breaking scenario In this scenario, long lines of agents
come at a constant rate into the simulated region, which is
blocked off with a movable wall made of 200 blocks glued
together. This wall can be broken into separate blocks if a
large external force is applied by the agents. Agents initially
stop to avoid hitting the wall, but as other agents start to push
from behind, the wall breaks apart and gets carried awaywith
the agents. Figure 2 shows stills from the simulation.

Changing the various properties of the wall changes how
the crowd interacts. Figure 7 shows the result of simula-
tion with two different configurations of the wall. In the first
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Fig. 8 Office scenario. Agents navigate to avoid office furniture. As
users insert flying pink boxes into the scene, the agents get pushed,
collide into each other, and avoid falling objects (see video)

configuration,when the blocks are tightly attached, thewall is
not broken. Instead, it is moved and rotated by crowd forces,
and makes a gap for the crowd to escape through. In the sec-
ond configuration, when the wall consists of much heavier
blocks that are glued together tightly, it does not break or
move easily even after the crowd (1,200 agents) has entered
the isle. In this configuration, the crowd sometimes makes a
wave-like movement where the sparse density crowd move-
ment is propagated from front to back and vice versa.

Cluttered office scenario In this scenario, several decom-
posed 3D models—a table, a chair, and a shelf, and several
rigid bodies (e.g. boxes) stacked on top of each other—are
placed in the way of the agents. A long stream of agents
attempts to navigate past the obstacles. Users can throw
boxes, which push the agents and knock over objects in the
environment. Figure 8 shows a still from the simulation.

5.3 Dodge-ball scenario

As an example of state-based, physical interaction, we show
how our FSM-based algorithm can be used to control behav-
ior changes in simulated gameof dodge ball.Here,we created
an interactive dodge-ball game, where a user can control one
of the game characters, and the computer program controls
the other character(s). A two-state FSM is used to specify the
behaviors (see Fig. 9), with the states consisting of a defense
state and an attack-state. During the attack-state, a charac-
ter chases a ball and kicks it to its opponent. A character in
defense-state tries to avoid the ball until the ball rolls on the
ground. State transitions occur based on the location of the
ball and the kicking action performed by the characters.

Figure 10 shows part of the scenario highlighting the
change in interaction between the agent and the ball. The
first two images, Fig. 10a, show the agent behavior in the
defense-state. The user-controlled green character on the left
kicks the red ball at the FSM-controlled orange character
on the right. Initially the red character tries hard to avoid
the ball, with the local collision-avoidance algorithm for this
character considering a large perception radius, with a long
time duration, when computing its motion. In cases where
the agent is not able to avoid the collision (e.g., the ball is

Fig. 9 FSM for dodge-ball scenario.We use a simple two-state FSM to
specify the game rule. The states consist of defense-state and an attack-
state. During the attack-state, the character chases a ball and kicks it to
its opponent. A character in defense-state tries to avoid the ball until
the ball fell down on the ground. State transitions occur based on the
location of the ball and the kicking (applying force to the ball) action
performed by the character

(a)

(b)

Fig. 10 Behavior examplesmodeled by ourmethod. aGreen character
(user-control, left) kicks the red ball to the orange character (computer
control, right). Orange character is in the defense-state at that moment,
and tries to avoid the ball. bWhen the ball falls down, the orange char-
acter’s state is changed to the attack-state. Collision-avoidance behavior
is changed just to meet non-overlapping condition with the ball and the
character’s preferred velocity is updated towards the ball. The orange
character approaches the ball and kicks the ball to the green character

moving too fast), there is a physically simulated collision
response between the ball and the agent. Due to relatively
smaller mass (0.4 kg) of the ball compared to the charac-
ters (70 kg), the effect of collision and resulting forces is
much larger on the ball. If the FSM agent is successful in
avoiding the collision, its state will change to the attack-state
(Fig. 10). Here, the agent’s collision-avoidance behavior is
changed allowing it to approach the ball as fast as possible
(e.g., small sight radius and large preferred velocity), then to
kick the ball towards the green character. The force applied
to the ball is computed based on the speed of the character,
and its direction is towards the user-controlled agent.
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As can be seen in this example, our overall approach
can model collision avoidance, collision response, apply-
ing intentional forces, and decision making for the character
(e.g., goal position and transition of the state). In the supple-
mentary video, we show an expanded version of this scenario
with increased number of balls. We can observe a character
chasing a ball while avoiding other dynamic obstacles, and,
at times, pushing through them to attack the other charac-
ter. Properly simulating these interacting behaviors requires
physical interaction, local collision avoidance, and behav-
ioral states to be combined together in the same framework
as we have presented here.

5.4 Large-scale simulation: Tawaf scenario

Because our method has only a small computational cost per
agent, and is stable even in dense scenarios, it can be used to
produce complex, large-scale simulations with agents phys-
ically interacting across a variety of different behaviors. To
illustrate this, we performed a case study in simulating the
large, dense crowd performing the Islamic ritual of pilgrim-
age called the Tawaf.

During the Tawaf, pilgrims walk in a circle around the
Kaaba, the large central structure, seven times counter-
clockwise for prayers. While circulating, many pilgrims try
as part of the ritual to reach the central black stone located at
the eastern corner of the Kaaba; alternatively, they perform a
short prayer while facing the Kaaba at the beginning of each
circuit. The walkable area surrounding the Kaaba, is known
as the Mataf and can support upwards of 35,000 pilgrims
gather to perform the Tawaf [4].

We have extended the simulation ofCurtis et al. [4], to pro-
duce a simulation of the Tawaf ritual with about 35,000 FSM-
driven, physically interacting agents as described in Sect. 4.

The FSM we use, both sets the goals of the agents to fol-
low the steps of the ritual and modifies the agent’s behavioral
parameters to help achieve these goals. For example, some
of the agents will probabilistically choose to move closer
to the central Kaaba structure to approach a religiously sig-
nificant black stone. Agent in the “Move to Black Stone”
state are allowed to exert physical pushing forces on their
nearby neighbors to successfully move through the dense
crowd to reach the stone. Figure 11 shows all the FSM states
and transition conditions, along with the descriptions about
a few important variables conditions for the local navigation
and physical interactions for the corresponding state. Most
notably, agents exert pushing forces on the crowd if they are
trying to touch to the black stone on the Kaaba or are trying
to exit the Mataf after completing the ritual.

Flow Analysis We measured the average speed and density
of the agents from our simulation. First, we computed the
average speed in different regions of Mataf shown in [4];

Fig. 11 Agent states and transitions. The Tawaf states are represented
as blue circles and transition condition between these states are marked
with arrows.We associate different properties likewalking speed, push-
ing condition, etc., with the agent behavior

Fig. 12 Density from the simulated result. Reported densities on the
Mataf floor can be as high as 8 people/m2 [4]; our method gives a
maximum density around 7.4 agents/m2

there is an overall trend towards higher speed in region 6 and
towards a lower speed in regions 1 and 7 when compared to
the speeds of their neighboring regions (see Fig. 14). These
highest speed and lowest speed regions also match with the
real-world data provided by Koshak and Fouda [17]. Second,
we computed the density in different regions of Mataf based
on our Tawaf simulator. Empirically, the density on theMataf
floor can be as high as 8 people/m2 [4]; our method gives a
maximum density around 7.4 agents/m2 (see Fig. 12).

5.4.1 Effect of physical interactions

We perform two experiments to show the benefit of phys-
ical interactions in large, dense crowd settings. The first
experiment shows crowd forces acting on agents. The sec-
ond experiment compares the overall crowd flow simulated
during the Tawaf ritual under increased pushing behaviors
between agents.
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Fig. 13 Pushed by crowd. Green circles represent the agents in the
queue waiting to touch the black stone. The green agents slow down and
the result in heavy congestion at the beginning of the queue. Without
physical interactions, agents are stuck in the beginning of the queue
although there is a space in front of the queue to proceed. By adding
physical interactions, the agents in the queue are pushed by the crowds,
and move towards the black stone without breaking the queue

Pushing in the queue to the black stone As part of the
Tawaf, we simulate the movement of pilgrims waiting in
lines to touch or kiss the Black Stone (the eastern corner-
stone of Kaaba). Pilgrims in this region makes distinctively
slow motion patterns compared to the other pilgrims circling
around the Kaaba. After they touch the Black Stone, these
pilgrims join the rest of circling flow and adjust to the speed
of other neighbors.

In the real-world video (see the supplementary video), we
can observe that some of the pilgrims in the queue are often
pushed by neighboring pilgrims. We attempted to simulate
such crowd force that are applied to the agents in a dense
crowd. To see the effect of crowd force, we assign lower pre-
ferred speeds to the agents who have entered the beginning of
the queue. Figure 13 shows the 2D comparison between the
simulated queuing behavior for the Black Stone, (a) when
no physical interactions added and (b) with physical inter-
actions. Green circles represent the agents in the queue, red
circles represent the agents circling around the Kaaba, blue
circles represent the agents leaving the queue and start cir-
cling after given waiting time.

Due to the sudden slowdown caused by the green agents,
heavy congestion ismade at the beginningof the queue.With-
out adding physical interactions, we cannot capture the effect
of crowd force applied to these agents even in such high den-
sity. Agents are stuck in the beginning of the queue although
there is a space in front of the queue to proceed. By adding
physical interactions, the agents in the queue are pushed by
the crowds, and move towards the black stone without break-
ing the queue.

Fig. 14 Region speed from the simulation result. Average speed of
each region of theMataf area. Itmatches the overall trend corresponding
to higher average speed (region 6) and lower speeds (regions 1 and 6)
observed by Koshak and Fouda [17]

Fig. 15 Comparison of average region speeds. Blue bars correspond
the average speeds of the agents in each region when we introduce
excessive pushing behavior to the exiting agent and queuing agents.
Red bars correspond the average speeds when only the queuing agents
push forwardswhilemoving towards the black stone. Increasing number
of pushing behaviors brought a 20–40 % increase in average speed

Pushing towards exitsWe also evaluate the effect of physi-
cal interactions in large crowds. First, we compare the aver-
age speed of the agents with and without physical interac-
tions. Figure 14 shows the average speed of the agents mea-
sured in the several different regions as proposed in [17]. The
overall trend of relative speeds between regions is the same
with and without pushing, but the average speed increase as
agents push more. In both cases, the trends match well with
those reported in the Tawaf literature [17].

In addition, we run the same scenario with increased num-
ber of aggressive pushing agents. When an agent finishes the
ritual, the agent is assigned a randomly selected exit (from
the five exits in the Mataf area) as their goal position, and
tries to push through the crowd. Since the exiting agents have
to escape through a very dense crowd while also moving
in the circular flow, their pushing forces affects the average
speed of entire region. At any given point in the simulation,
about 2 % of the total number of agents are trying to exit.
By adding more pushing agents, the average speed increased
about 0.2 m/s. Figure 15 summarizes the speed of the agents
in each of the Tawaf regions.
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Table 2 Performance on a single core for different scenarios

Scenario Num.
agents

Dynam.
Obsts.

Static
Obsts.

fps

Two bottlenecks 1,000 0 20 829.7

Wall breaking 1,200 200 2 50.1

Office 1,200 65 0 69.0

Dodge ball 2 500 4 90.9

Tawaf Sim. 35,000 0 23 5.7

Our algorithm can handle all of them at interactive rates

6 Analysis

Our approach is mainly designed for interactive applica-
tions that require plausible physical behavior (e.g., games
or virtual worlds) as well as real-world scenarios with high
crowd densities. Using a combination of force and naviga-
tion constraints that affect agents’ behavior, our approach
can simulate many useful effects and emergent behaviors.
For example, our formulation allows for intentionally unco-
operative agents to physically push theirway through a crowd
by imparting physical forces to nearby agents. In addition,
agents can use navigation constraints to avoid collisions with
dynamic obstacles as well as other agents. By expressing all
interactions as linear velocity constraints, we can naturally
combine the two different simulation paradigms of forces
and navigation into a unified framework and compute the
new velocity for each agent using linear programming.

Performance We measured the simulation timings for the
demos we presented in earlier sections (see Table 2). The
timings were computed on a 3.4 GHz Intel i7 processor with
8 GB RAM. Our method efficiently simulates large numbers
of agents, and also exhibits interactive performance when
integrated with the Bullet Physics library.

Stability analysis It is well known that many forced-based
simulation models, such as social force models commonly
used to simulate crowd (e.g., [11]) are prone to stability
problems that can even occur at small step sizes [18]. These
problems include oscillation and loss of accuracy in terms of
trajectory computation. Using bigger time steps can make
the problem worse. In contrast, velocity-based collision-
avoidance techniques have been shown to produce stable
simulations in large, dense crowds [6]. Our approach pre-
serves this stability across time steps while still accounting
for physical forces.

Oneway to analyze the stability of our approach is by ana-
lyzing the number of times we are unable to find a feasible
velocity that satisfies all the constraints, e.g., both anticipated
collision-avoidance constraints and force constraints. When
this occurs, it means an agent can choose a potentially col-
liding velocity or is not respecting the physical constraints.

Fig. 16 Number of constraint optimization failures. We analyze the
stability of our method by measuring the number of constraint opti-
mization failures. At the peak of congestion in the simulation, 95 % of
the agents are able to find velocities that satisfy all their constraints.
Importantly, this stability holds across a variety of time steps. As the
time-step size varies from 0.01 up to 0.2, most of the agents are still
able to find constraint-satisfying velocities

We perform a test using a scenario similar to Fig. 5. An
aggressive agent pushes through 50 standing agents, and the
pushed agents sequentially exert forces on adjacent neighbors
by generating physical interactions. During the simulation,
we measure the number of times when linear optimization
fails to find the feasible velocity satisfying all the constraints.
In this case, we perform higher order optimization to find a
solution.

As can be seen in Fig. 16, at the peak of congestion in the
simulation 95 % of the agents are able to find velocities that
satisfy all their constraints. Importantly, this stability holds
across a variety of time steps. As the time-step size varies
from 0.01 up to 0.2, most of the agents are still able to find
constraint-satisfying velocities. In general, the behavior does
not change significantly across this wide range of time steps.

Benefits of our method Many techniques have been pro-
posed in the literature for simulating large numbers of agents
that display a wide variety of emergent behaviors. How-
ever, the primary emphasis of these methods is on colli-
sion avoidance—avoiding any physical contact between the
agents. In other words, they model how agents move around
each other, but do not usually model explicit physical con-
tacts, interactions, and external forces.

Force-based methods such as [11] use forces to model
social factors (e.g., attraction and repulsion) between the
agents, not physical interactions. Most closely related to
our work are methods such as [10,27,45]. These methods
model crowd turbulence or physical interactions among pan-
icking agents by adding explicit physical force or by increas-
ing repulsive forces. These methods are capable of repro-
ducing some important emergent crowd phenomena, but do
not account for the anticipation needed to efficiently avoid
upcoming collisions with other agents and obstacles.

Force-based methods can also suffer from stability issues
in dense scenarios, which require careful tuning and small
time steps in order to remain stable [4,18]. Our method
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provides stable anticipatory motion for agents while incor-
porating agent responses to forces. It can be easily combined
with other velocity-based approaches.

In terms of large, dense crowd simulation, continuum-
based methods such as [12,39] or hybrid method coupling
continuum-based method and velocity-based method [25]
can be effective solutions. However, these methods do not
model physical interactions between the agents or obstacles.
Moreover, it is hard to extend these methods to model indi-
vidually varying behaviors or high-level social behaviors.

Limitations We use a physically inspired approach to sim-
ulate the interactions between a high number of agents and
the obstacles. However, it is only an approximation and may
not be physically accurate. Secondly, we assume that agents
are constrained to move along a 2D plane, and we use the
projected positions of 3D dynamic objects to compute the
interactions. Third, like other agent-based simulation meth-
ods, we use a rather simple approximation for each agent
(a 2D disc). This means that we cannot accurately simulate
physical interactions with human-like articulatedmodels and
3D objects.

7 Conclusions and future work

We have proposed a novel method to combine physics-based
interactionswith anticipatory collision-avoidance techniques
that use velocity-based formulation. Our method can gen-
erate many emergent behaviors, physically based collision
responses, and propagation of forces to the agent’s nearby
neighbors. In combinationwith the Bullet Physics library, we
were able to simulate complex interactions between agents
and dynamic obstacles in the environment. We also showed
that our approach can be extended to model more complex
behaviors involving a decision-making process. In addition,
we simulated real-world examples of massive crowds such
as in the Tawaf ritual. Our method was able to generate many
emergent behaviors compared with real-world behaviors.

As future work, we would like to further explore our
method by comparing the results with real-world crowd
behaviors and performing more validation. Moreover, in
many scenarios, the external forces could change an agent
behavior. For example, applying intentional forces such as
pushing, kicking can slow down an agent. Such a phenom-
ena could be well incorporated in our approach given studies
about how such forces can limit human behavior (e.g., from
biomechanics). Furthermore, we need better techniques to
collect data about real-world crowds in dense settings and
use them to validate the simulation algorithms. We would
also like to extend ourmodel to agents moving in 3D space or
multi-layer frameworks, and to consider usingmore complex
shapes, or even articulated body models, to represent agents,
as this would allow for more accurate force computation.

Finally, we would like to use more accurate physically based
modeling algorithms to generate appropriate behaviors.
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SIGGRAPH 2006, pp. 1160–1168. ACM (2006)

40. Ulicny, B., Thalmann, D.: Towards interactive real-time crowd
behavior simulation. In: Computer Graphics Forum, vol. 21, pp.
767–775. Wiley Online, Library (2002)

41. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal
n-body collision avoidance. In: Robotics Research: 14th ISRR
(STAR), vol. 70, pp. 3–19 (2011)

42. Wei, Y., Gang, B., Zuwen, W.: Balance recovery for humanoid
robot in the presence of unknown external push. In: International
Conference on Mechatronics and Automation, 2009. ICMA 2009,
pp. 1928–1933 (2009). doi:10.1109/ICMA.2009.5246563

43. Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin,
M.: Composite agents. In: Symposium on Computer, Animation,
pp. 39–47 (2008)

44. Yu, Q., Terzopoulos, D.: A decision network framework for the
behavioral animation of virtual humans. In: Symposium on Com-
puter, Animation, pp. 119–128 (2007)

45. Yu, W., Johansson, A.: Modeling crowd turbulence by many-
particle simulations. Phys. Rev. E 76, 046105 (2007)

46. Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic
response for motion capture animation. ACM Trans. Graph. 24(3),
697–701 (2005)

Sujeong Kim is a doctoral
student in Computer Science in
University of North Carolina at
Chapel Hill. She received her BS
in Computer Science and Engi-
neering andMS inComputer Sci-
ence from Ewha Womans Uni-
versity in Korea. Her research
interests include Crowd Simu-
lation, Physically based Simula-
tion, Interactive computer graph-
ics and Mobile 3D Graphics.

Stephen J. Guy is an assis-
tant professor in the Department
of Computer Science and Engi-
neering at the University of Min-
nesota. His research focuses on
the areas of interactive com-
puter graphics and multi-robot
coordination. His work has been
licensed for use in commercial
applications, and received best
paper awards and nominations.
Prior to joining Minnesota, he
received his Ph.D. in Computer
Science in 2012 from the Uni-
versity ofNorthCarolina,Chapel

Hill with support from fellowships from Google, Intel, and the UNCF,
and his B.S. in Engineering with honors from the University of Virginia
in 2006.

123

http://www.gkstill.com/ExpertWitness/CrowdDisasters.html
http://www.gkstill.com/ExpertWitness/CrowdDisasters.html
http://dx.doi.org/10.1007/978-1-4471-4450-2_5
http://dx.doi.org/10.1007/978-1-4471-4450-2_5
http://dx.doi.org/10.1109/ICMA.2009.5246563


Velocity-based modeling of physical interactions in dense crowds 555

KarlHillesland conducts graph-
ics research for Advanced Micro
Devices, Inc. His research inter-
ests are real-time rendering and
simulation. He earned his Ph.D.
from theUniversity ofNorthCar-
olina at Chapel Hill in 2005.

BasimZafar is theViceDean of
The Custodian of the Two Holy
Mosques Institute For Hajj and
Umrah Research, at Umm Al-
Qura University, Makkah, KSA.
Previously, Zafar was CIO of the
Commission of the development
of Makkah, Madinah, and holy
sites. He directed the center of
Consulting Research and Studies
at 2009.He has aB.Sc. in Electri-
cal Engineering (Umm Al-Qura
University), anM.Sc. and aPh.D.
in Electrical Engineering (Col-
orado state university). Zafar’s

research interests include Crowd Management, Radar Systems, Data
Mining, Artificial Intelligent system, IT, and GIS.

Adnan Abdul-Aziz Gutub is
currently working as Director of
the Center of Research Excel-
lence in Hajj and Omrah (Hajj-
CoRE) within Umm Al Qura
University (UQU), Makkah Al-
Mukarramah. Adnan is a pro-
fessor in Computer Engineer-
ing within UQU. He received
his Ph.D.(2002) in Electrical
and Computer Engineering from
Oregon State University, USA.
He has his BS in Electrical Engi-
neering and MS in Computer
Engineering fromKFUPM,Saudi

Arabia. Adnan’s research interests include optimizing, modeling, sim-
ulating, and synthesizing VLSI hardware for crypto and security com-
puter arithmetic operations. Heworked on designing efficient integrated
circuits for the Montgomery inverse computation in different finite
fields.

Dinesh Manocha is currently
the Phi Delta Theta/Mason Dis-
tinguished Professor of Com-
puter Science at the University
of North Carolina at Chapel Hill.
He has co-authored more than
330 papers in the leading confer-
ences and journals on computer
graphics, robotics, and scientific
computing. He has also served
program chair for many con-
ferences and editorial boards of
many leading journals. Manocha
has received awards including
Alfred P. Sloan Fellowship, NSF

Career Award, Office of Naval Research Young Investigator Award,
and 12 best paper awards. He is a Fellow of ACM, AAAS, and IEEE
and Distinguished Alumni Award from Indian Institute of Technology,
Delhi.

123


	Velocity-based modeling of physical interactions in dense crowds
	Abstract 
	1 Introduction
	2 Related work
	2.1 Multi-agent motion models
	2.2 Dense crowd simulation
	2.3 Force-based techniques for character animation
	2.4 Crowd simulation in game engines

	3 Velocity-based modeling of physical interactions
	3.1 Overview
	3.2 Anticipatory collision avoidance
	3.2.1 Agent--agent collision avoidance
	3.2.2 Agent--dynamic obstacle collision avoidance

	3.3 Constraints from physical forces
	3.3.1 Force computation
	3.3.2 Force constraints

	3.4 Benefits of force constraints

	4 Higher level behavior modeling
	4.1 The behavior finite-state machine

	5 Results
	5.1 Agent--agent interaction
	5.2 Agent--object interaction
	5.3 Dodge-ball scenario
	5.4 Large-scale simulation: Tawaf scenario
	5.4.1 Effect of physical interactions


	6 Analysis
	7 Conclusions and future work
	Acknowledgments
	References




