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Abstract 3D face identification based on the detection and
comparison of keypoints of the face is a promising solu-
tion to extend face recognition approaches to the case of 3D
scans with occlusions and missing parts. In fact, approaches
that perform sparse keypoints matching can naturally allow
for partial face comparison. However, such methods typi-
cally use a large number of keypoints, locally described by
high-dimensional feature vectors: This, combined with the
combinatorial number of keypoint comparisons required to
match two face scans, results in a high computational cost that
does not scale well with large datasets. Motivated by these
considerations, in this paper, we present a 3D face recog-
nition approach based on the meshDOG keypoints detector
and local GH descriptor, and propose original solutions to
improve keypoints stability and select the most effective fea-
tures from the local descriptors. Experiments have been per-
formed to assess the validity of the proposed optimizations
for stable keypoints detection and feature selection. Recogni-
tion accuracy has been evaluated on the Bosphorus database,
showing competitive results with respect to existing 3D face
identification solutions based on 3D keypoints.
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1 Introduction

Recognition of persons’ identity using 3D scans of the face
has been proposed as an alternative or complementary solu-
tion to conventional face recognition approaches that exploit
the appearance of the face in 2D still images or videos. In
fact, since 3D face scans capture the full 3D geometry of
the face, they are expected to feature less sensitivity to light-
ing conditions and pose variations, thus allowing accurate
face recognition also in real-world applications. Though con-
solidated 3D face recognition solutions exist that achieve
high accuracy in cooperative scenarios (see the survey in [7],
and the literature review in [3,34]), solutions enabling face
recognition with uncooperative settings are now attracting an
increasing interest [26]. In semi-cooperative or uncoopera-
tive scenarios, probe scans are acquired under unconstrained
conditions that may result in face scans with missing parts
(due to non-frontal pose of the face) or occlusions (due to
hair, glasses, scarves, hand gestures covering the face, etc.),
thus demanding for methods capable of performing recogni-
tion just using parts of a 3D face scan. Indeed, works focus-
ing on this topic are still preliminary also due to the limited
number of 3D face databases that include partial/occluded
acquisitions of the face. From this point of view, the release
of the Bosphorus dataset [31] has boosted the research in this
direction, providing a large reference benchmark to evaluate
3D face recognition methods in the case of face scans with
expressions, missing parts and occlusions.

Some recent works attacked the problem of 3D face recog-
nition in the presence of occluded/partial scans, starting from
the observation that describing the face with local geometric
information extracted in the neighborhood of 3D keypoints
can naturally allow partial face comparison by sparse key-
points matching. In particular, such a framework has been
experimented either considering 2D solutions, which exploit
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SIFT-like detectors applied to 2D-maps of the face (e.g.,
depth maps or 2D-maps of some face descriptor) [5,16], or
directly detecting keypoints of 3D meshes of the face [21,32].
Though effective results have been obtained by the methods
which apply detectors to 2D maps of the face, these solutions
are limited by the need of a preliminary accurate registration
of the face scans to a common reference system, which is by
itself a difficult task requiring in many cases the detection of
facial landmarks. So, in perspective, methods based on 3D
keypoint detectors appear more promising, in that they do
not require any preliminary alignment of the mesh and can
exploit its full 3D geometry.

In general, following the definition given in [33], 3D key-
points (or interest points) are prominent points of a shape
according to a particular definition of interestingness or
saliency: They are extracted by a 3D detector, which analy-
ses local neighborhoods around the elements of a given sur-
face. In the case of 3D faces, it is relevant to evidence the
difference between keypoints and landmarks. Facial land-
marks are points of the face defined according to anatomical
studies of the facial bones and muscles, and correspond to
visible or palpable features (skin or bones) of the face [9].
Their localization represents a precursor operation for sev-
eral 3D face analysis applications, such as face recognition,
facial expression recognition, face registration and recon-
struction, etc. For example, in his anthropometric studies,
Farkas defined as many as 47 main facial landmarks, and
used them for facial measurements [14]. Due to their char-
acteristics, the localization of facial landmarks in 3D scans
can exploit the knowledge of the human face, so that they
can be manually annotated by a human operator. However,
few of them can be detected automatically in a reliable way.
For example, in the state of the art approach by Perakis
et al. [28], a method is proposed to automatically detect eight
landmarks (eye and mouth corners, nose and chin tips) on
3D facial scans that exhibit yaw and expression variations.
The main contribution of the method is its applicability to
large yaw variations (up to 82◦) that often result in missing
(self-occluded) facial data, and its tolerance against varying
facial expressions. Candidate landmarks are first detected by
exploiting the 3D geometry-based information of shape index
and spin images. The candidate landmarks are then identi-
fied and labeled by matching them with a Facial Landmark
Model of facial anatomical landmarks. The method is exten-
sively evaluated against a variety of 3D facial databases and
achieves state-of-the-art accuracy (4.5–6.3 mm mean land-
mark localization error).

Differently, 3D keypoints of the face are detected based
only on the geometric properties of the surface, without
any additional knowledge about the context, and without
requiring them to be located in correspondence to any spe-
cific anatomical trait of the face. As a consequence, many
keypoints are typically detected, and they are located in

scattered positions across the face, so that they cannot be
manually annotated by a human operator. According to this,
the most relevant aspect of a keypoints detector is the pos-
sibility to extract keypoints in repeatable positions across
different scans of a same face under a number of nuisances
that can affect the input data. Based on these considerations,
coincidence between landmarks and keypoints of 3D face
scans is possible just for the few landmarks characterized
by highly distinctive geometric variations that make them
detectable also as keypoints (e.g., this can be the case for
the eyes and mouth corners). In general, there is not any evi-
dent relationship between landmarks and keypoints of 3D
face scans and they are typically detected following different
approaches and are used for different purposes.

In the following, methods that rely on 3D keypoints detec-
tion and description for face recognition are summarized.

1.1 Related work

To the best of our knowledge, a few works used 3D keypoints
detectors for face recognition, using different descriptors and
matching policies.

The solution proposed in [24] was the first to exploit 3D
keypoints of the face, by considering as extrema the vertices
of the face mesh for which the difference between the max-
imum and minimum eigenvalues of a local principal com-
ponents analysis is over a given threshold. However, this
work was tested on the FRGC v2.0 dataset that does not
include occluded/partial scans. In [23,32], the framework of
SIFT keypoints detector has been reformulated to operate
on 3D face meshes by defining the meshSIFT detector and
local descriptor. This first performs a scale-space analysis of
the mesh through subsequent smoothing of the 3D geome-
try, and then identifies as 3D keypoints the local extrema of
the mean curvature extracted from the smoothed versions
of the original mesh through the scale. Local descriptors
are also defined at the keypoints using nine local regions
(arranged according to a daisy-like pattern) and computing
for each of them a pair of histograms (the shape index and
the angle between surface normals are used). The meshSIFT
has been used as keypoints detector also in [21]. In this case,
a quasi-daisy local shape descriptor of each feature point has
been obtained using multiple order histograms of differential
quantities extracted from the surface (these include gradient,
shape index and gradient of shape index). During the match,
these local descriptors are compared using the angle among
them. The approach in [6] used the meshDOG as detector of
relevant extrema of the face surface. After keypoints detec-
tion, different local descriptors have been extracted at the
keypoints and their performance has been evaluated and com-
pared. All the approaches in [21], [23,32] and [6] have been
experimented on the Bosphorus dataset, showing high face
recognition accuracies.
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A common limitation of the solutions above is represented
by the large number of detected keypoints. In general, this is
reported to be a positive and required behavior of keypoints-
based solutions, in that it is expected to increase the number of
valid keypoint correspondences across matching scans [33].
However, the larger the number of keypoints, the greater is
the probability to detect also unstable keypoints. This has
a twofold effect: on the one hand, the presence of unstable
keypoints is likely to increase the number of noisy keypoints
matching; on the other hand, the number of keypoints match-
ing grows quadratically with the keypoints, thus resulting in
a demanding computational cost (this latter effect being fur-
ther exacerbated by the high dimensionality of local keypoint
descriptors).

In fact, none of these keypoint detectors addressed the
problem of how to select the 3D keypoints that are most
significant, relating at the same time the significance of the
keypoints with the stability of the corresponding descriptors.
Moreover, the different relevance of individual features of
local descriptors is not considered, and solutions to reduce
the dimensionality of the descriptors are not considered (for
example by selecting just the most relevant features). Actu-
ally, a combined analysis of these aspects would have the
potential of finding a better compromise between the num-
ber of keypoints, the features included in the local descriptors
and the accuracy of recognition.

1.2 Contribution and paper organization

Moving from the considerations above, in this work we pro-
pose and experiment original solutions which aim to address
the current limitations of 3D face recognition methods based
on 3D keypoints. To this end, we first report about a 3D face
recognition method that we recently proposed in [6], which
is capable of performing subjects identification also in the
presence of facial expressions, occlusions and missing parts
of the face. In particular, the approach extracts meshDOG
keypoints and locally describes the face around them using
a multi-ring Geometric Histogram. Robust keypoint corre-
spondences are then obtained in the match of two faces using
outliers rejection with the RANSAC algorithm. We elaborate
on such approach in several ways. On the one hand, we pro-
vide an improved keypoints extraction procedure that permits
the selection of distinctive keypoints, with the advantage of
a lower computational cost. On the other, we propose an
original analysis, which permits: (i) improving the keypoints
detection by relating the scale of the keypoints to the stability
of the local descriptor; (ii) reducing the number of keypoints
by accounting for their distribution and clustering; (iii) identi-
fying the most relevant features of the local keypoint descrip-
tor through a feature selection analysis. Though presented for
the meshDOG keypoints detector and GH descriptor, these

solutions can be regarded as general methods that, in princi-
ple, can be applied to different 3D keypoints detectors and
descriptors as well, thus covering a broad range of applica-
bility. In so doing, we emphasize that the main goal of this
work is to address 3D face recognition in the case of sta-
tic high-resolution scans with expressions, missing parts and
occlusions. Our solution is not targeted for the new genera-
tion of dynamic low-resolution low-cost consumer cameras,
like Kinect. These devices are likely to produce 3D dynamic
sequences with missing parts and occlusions, but at a resolu-
tion and noise level which are currently not addressable by
our solution. Ad-hoc methods should be used in this case,
like those proposed in recent works [15,20,25].

The rest of the paper is organized as follows: The face rep-
resentation based on meshDOG detector and multi-ring geo-
metric histogram (GH) descriptor is summarized in Sect. 2,
together with an effective face comparison algorithm that
performs outliers removal using RANSAC; Investigation of
the keypoints stability and relevance, and the selection of the
most relevant features of the local descriptors are reported in
Sect. 3. Evaluation and comparison of our work with respect
to state of the art solutions on the Bosphorus dataset are given
in Sect. 4; In the same section, we report verification results
on the FRGC dataset, and provide evidence on the effect that
noisy scans have on recognition. Finally, results and future
research directions are discussed in Sect. 5.

2 Face representation and comparison

In the following, we present a framework for representing
and comparing 3D scans of the face, which is based on
meshDOG keypoints detection and local description using
GHs. This framework was originally proposed in our previ-
ous work [6]: Here, it is modified and extended. In particu-
lar, the keypoints detection is modified through an improved
scale-space approach for keypoints detection, which allows
reducing the number of scale levels (and so their computa-
tion time) without affecting the number of keypoints and their
repeatability. Further, the approach is extended and substan-
tially improved through an original investigation that permits
the selection of stable keypoints and of the most discriminat-
ing features of the local descriptor, as detailed in Sect. 3.
In so doing, a subset of 80 subjects of Binghamton Univer-
sity 3D facial expression database (BU-3DFE) [36] has been
used as training dataset. For each subject, six different facial
expressions at four gradations (from moderated to exagger-
ated), plus the neutral one have been considered (25 scans per
subject, 2,000 scans in total). This permitted us to keep sep-
arated the dataset used in the development from those used
in the face recognition experiments (i.e., the Bosphorus and
the FRGC datasets).
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2.1 3D keypoints detection

Among 3D keypoint detectors [8,33], the meshDOG algo-
rithm [37] has proven its effectiveness in locating repeatable
extrema on 3D meshes [8]. In the following, the method is
adapted to the particular case of extracting keypoints from
3D meshes of the face.

Given a 3D mesh M, a scalar function f (v) : M → R
can be defined, which returns a scalar value for any vertex
v ∈ M. In our case, we defined f (v) as the mean curvature at
vertex v, computed according to [29]. Though such function
is not completely invariant to local isometric deformations,
the keypoints detected using this function turned out to be
more stable on 3D face data than keypoints obtained using
Gaussian curvature. Similar results were also reported in [33]
for meshDOG and in [23,32] for meshSIFT. Once the func-
tion f is computed for each vertex of the mesh, the keypoints
detection proceeds in three steps.

Scale-space In the first step, a scale-space representation
of the function f is constructed. At each scale t , the function
f at vertex vi is convolved with a Gaussian kernel, which
depends on the scale through σ(t):

gσ(t)(x) = 1

σ(t)
√

2π
· exp(−x2/2σ(t)2), (1)

being x = ‖v j − vi‖, with vertices v j confined to the neigh-
borhood rings of vertex vi . In particular, the ring of a vertex
rg(v, n) is the set of vertices that are at distance n from
v on M, where the distance n is the minimum number of
edges between two vertices. Thus, rg(v, 0) is v itself and
rg(v, 1) is the set of direct neighbours of v. The neighbour-
hood Nn(v) is the set of rings {rg(v, i)}i=0,...,n . In the prac-
tice, t = {1, 2, . . . , o · s}, using o = 4 octaves and cover-
ing each octave in s = 6 steps (24 scales in total), so that

σ(t) = 2
1

s−2 ·�t/s� · eavg, with eavg the average length of mesh
edges.

Using the convolution kernels defined above, the scale-
space of f is built incrementally on L+1 levels, so that: f0 =
f , f1 = f0 ∗ gσ(1), f2 = f1 ∗ gσ(2), . . . , fL = fL−1 ∗ gσ(L).
The difference of Gaussian (DOG) is then obtained from
the difference of adjacent scales, e.g., DOG1 = f1 − f0,
DOG2 = f2 − f1, . . . , DOGL = fL − fL−1 (L = o · s,
DOG is computed in total). In so doing, it is relevant to note
that the geometry of the face does not change, but the different
scalar functions fk and DOGk defined on the mesh. Once the
scale space is computed, the initial set of extrema is selected
as the maxima of the DOG across scales.

An example of the scale-space construction is reported in
Fig. 1. In (a), fk values at different scales ( f0 being the mean
curvature) are shown for a sample face. In (b), gray levels are
used to represent the DOG values at different scales (scales
2, 8, and 16 are reported).

(a)

(b)

Fig. 1 a Values of fk at different scales ( f0 is the mean curvature);
b 3D face scan and DOGk values at different scales (detected keypoints
at each scale are depicted in red)

Fig. 2 Extrema points detected after each of the three steps of the
keypoints detection algorithm

Percentage threshold In the second step, the extrema of the
scale space are sorted according to their magnitude, and only
the top 4 % are retained.

Corner analysis In the last step, unstable extrema are
removed by retaining only those with corner characteristic,
according to the Hessian computed at each vertex v of the
mesh [22]. The ratio between the maximum λmax and the
minimum λmin eigenvalues of the Hessian matrix is a good
indication of a corner response, which is independent of the
local coordinate frame (λmax/λmin = 10 has been used as a
minimum value of threshold responses).

Figure 2 shows the extrema detected at the end of each of
the three steps of the detection algorithm.

2.2 Multi-ring geometric histogram

Local description of the surface at the keypoints is obtained
by relying on the concept of ordered ring facets (ORFs) and
using geometric histogram (GH) [2].

Given a central facet tc at which a keypoint has been
detected, the ORF defines a ring-wise neighbourhood through
a sequence of concentric rings of facets emanating from tc.
The facets are arranged circular wise within each ring and the
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Fig. 3 ORFs with different
neighbourhood size constructed
at a facial keypoint

Fig. 4 GH computation: a Central facet t1 and its neighbour facets;
b Geometric measurements used to characterize the relationship
between two facets ti and t j . For each pair (t1, t j ) in (a), the angle
α between the two facets’ normals, the minimal and the maximal of the
perpendicular distance from the plane of t1 to the facet t j are computed.
The pairs (α, d) derived from these measurements are accumulated in
a 2D matrix so as to obtain a geometric distribution

size of the neighbourhood is simply controlled by the number
of rings. When the triangular mesh is regular and the facets
are nearly equilateral, the ORFs approximate iso-geodesic
rings around the central facet tc. The ORFs are constructed
with linear complexity (detailed algorithms for ORF compu-
tation are given in [35]). As an example, Fig. 3 shows ORFs
with increasing neighbourhood size.

Let us consider a triangular mesh approximation M̂ =
{t1, . . . , tM } of a 3D surface. Given a central triangular facet
ti , the basic idea of the GH is to construct a discrete geo-
metric distribution, which describes the pairwise relation-
ship between ti and each of the surrounding facets within a
predefined neighbourhood. The range of the neighbourhood
controls the degree to which the representation is a local
description of shape.

Figure 4 shows the measurements used to characterize the
relationship between a central facet ti and one of its neigh-
bouring facets t j . These measurements are the relative angle
α between the facet normals; the range of perpendicular dis-
tances d from the plane in which the facet ti lies to all the
points on the facet t j . The range of perpendicular distances
is defined by [dmin, dmax], where dmin and dmax are, respec-
tively, the minimal and the maximal of the distance from the
plane in which ti lies to the facet t j . In practice, these values
are obtained by calculating the distances to the three vertices
of the facet t j and then selecting the minimal and the max-
imal distance. Since the distance measurement is a range,
a single value dmin ≤ d ≤ dmax is derived, based on the
amplitude of the range [dmin, dmax] and the resolution used
for distance quantization. The set of pairs (α, d) computed
between a given facet and its neighbours are entered to a 2D

discrete frequency accumulator that encodes the perpendic-
ular distance d and the angle α. This accumulator has size
I × J , where I and J are the number of quantization (bins)
for α and d, respectively (8 and 10 in our case). Finally, val-
ues of the accumulated matrix are normalized so as to sum
up to 1. The resulting distribution is invariant to rigid trans-
formations of the surface and is also stable in the presence
of surface clutter and missing data. In our approach, a GH
is constructed in an incremental way for each of the rings
in the ORF of a keypoint. According to this, a multi-ring
GH (mr-GH) is obtained as a set of GHs constructed on the
sequence of rings which surround a keypoint. This improves
the descriptiveness of the GH by capturing information on
how the local surface changes at increasing distance from the
keypoint.

In the comparison of any two mr-GHs, the normalized
GH is regarded as a probability density function, and the
Bhattacharyya distance (dB) is used as metric for evaluating
the similarity between GHs at each ring. According to this,
given two GHs in the form of linear arrays with K = I × J
elements, A(l) = {a1, . . . , aK } and B(l) = {b1, . . . , bK },
their distance at ring-l is computed as:

dB(A(l), B(l)) =
√
√
√
√1 −

K
∑

k=1

√

(ak · bk). (2)

The overall distance between two mr-GHs computed on L
rings is then obtained by accumulating the distances between
the GHs at different rings.

2.3 Face comparison

Given two face scans, their comparison is performed by
matching the mr-GHs of keypoints under the constraint that
a consistent spatial transformation exists between inlier pairs
of matching keypoints.

To this end, the mr-GHs at the keypoints detected in probe
and gallery scans are compared using the accumulated Bhat-
tacharyya distance so that, for each keypoint in the probe,
a candidate corresponding keypoint in the gallery is iden-
tified. In particular, a keypoint kp in the probe is assigned
to a keypoint kg in the gallery, if they match each other
among all keypoints, that is if and only if kp is closer to
kg than to any other keypoint in the gallery, and kg is closer

123



1280 S. Berretti et al.

(a) (b)

Fig. 5 Comparison between face scans: a same subject; b different subjects. The detected keypoints are shown with a plus symbol (“+”) colored
in blue. Green lines indicate matching keypoints, while red lines are the inliers matching after RANSAC

to kp than to any other keypoint in the probe. In so doing,
it is also required that the second best match is significantly
worse than the best one, i.e., a match is accepted if the ratio
between the best and the second best matches is lower than
0.7. The use of this threshold follows the idea appeared in
other methods based on finding correspondences between
pairs of keypoints (i.e., it was first proposed by Lowe in the
SIFT matching algorithm for 2D still images [22]). As a result
of the match, a candidate set of keypoint correspondences is
identified: The actual set of correspondences is then obtained
using the RANSAC algorithm [38] to remove outliers. This
involves generating transformation hypotheses using a min-
imal number of correspondences and then evaluating each
hypothesis based on the number of inliers among all features
under that hypothesis. In our case, we modeled the problem
of establishing correspondences between sets of keypoints
detected on two matching scans as that of identifying points
in �3 that are related via a rotation, scaling and translation
(RST) transformation. According to this, at each iteration,
the RANSAC algorithm validates sampled pairs of match-
ing keypoints under the current RST hypothesis, updating at
the same time the RST transformation according to the sam-
pled points. In this way, corresponding keypoints whose RST
transformation is different from the final RST hypothesis are
regarded as outliers and removed from the match. The num-
ber of keypoint matches is then used as similarity measure
between two scans.

Matching examples are reported in Fig. 5a, b, for scans
of same and different subjects, respectively. In this figure,
detected keypoints are marked with “+” and highlighted in
blue; corresponding keypoints based on GH matching are
connected by green lines; the inlier keypoint correspon-
dences, which pass the RANSAC test, are shown with red
lines. It can be observed as applying RANSAC, just the
matches that show a coherent RST transformation among
each other are retained, thus avoiding matches of keypoints
that are located in different parts of the face in two scans.

The effect on recognition due to varying the threshold on
the ratio between the best and the second best matches in a
keypoints correspondence has been evaluated in a face iden-
tification experiment. In this experiment, the neutral scans
of 80 subjects of the BU-3DFE database are included in
the gallery, and the 12 scans at the first two gradations of
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Fig. 6 BU-3DFE: Face identification accuracy as a function of the
threshold on the ratio between the best and the second best matches for
accepting a keypoint correspondence

expression intensity per subject are used as probes (960
probes in total). Results are reported in Fig. 6, where the
rank-1 accuracy is plotted against the variation of the thresh-
old (values from 0.4 to 1 are used, with step 0.1). Best results
are achieved for the threshold equal to 0.7.

3 Stable keypoints and descriptors

Previous works that use keypoints for 3D face recognition
directly applied extracted extrema and their descriptors to
perform face comparison, without any further analysis aim-
ing to select stable keypoints and descriptors [5,24,32]. In
practice, the effectiveness of the face representation is shown
in these works by recurring to the overall accuracy of recog-
nition. Actually, defining appropriate methods to identify sta-
ble keypoints and select the most effective features from the
local descriptors could permit the optimization of the process
of selection/description of the keypoints. In particular, three
aspects are worth of investigation:

– Optimal scale selection for keypoints description;
– Keypoints distribution and clustering;
– Feature selection of local descriptors.

In the remaining part of this section, we present original
methods addressing the three aspects above.
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Fig. 7 Examples of scale selection: a The graphs show the change
in the local description as a function of the scale of four keypoints;
b The scale for which the functions in (a) have global minima is shown

on the scan with different colors (red, blue, green and yellow are used,
respectively, for keypoints in the eyes, nose, mouth and cheek region of
the face)

3.1 Optimal scale selection for keypoints description

In the following, we propose an approach to optimize key-
points detection according to the stability of the local descrip-
tor. The basic idea we follow here is to select the scale at
which keypoints are detected, and consequently the extent of
the local support for computing the GH descriptor, based on a
concept of maximal stability of the descriptor throughout the
scales. In practice, maximal stability is obtained when the dif-
ference between descriptors extracted for consecutive scales
reaches a minimum. In this respect, our analysis shares some
common concept with the approach proposed in [10] for SIFT
on 2D still images. Therefore, the resulting detector uses the
descriptor to select the characteristic scale. This is obtained
in two steps: in the first step, the extrema are detected at mul-
tiple scales to determine informative and repeatable locations
as reported in Sect. 2.1; in the second step, the characteristic
scale for each location is selected by identifying maximally
stable mr-GH descriptors. In so doing, we use description
stability as criterion for scale selection: The scale for each
location is chosen such that the corresponding mr-GH repre-
sentation changes the least with respect to the scale.

Figure 7 illustrates some results of the proposed scale
selection criterion for meshDOG keypoints and GH descrip-
tor. Plots in (a) show how the descriptor changes as the
scale (i.e., the number of rings) increases, for four keypoints
located, respectively, in the eyes, nose, mouth and cheek
region of a face scan. To measure the difference between
mr-GHs at different scales, we used the accumulated Bhat-
tacharyya distance as defined in Sect. 2.2. The absolute min-
imum of the function in each plot determines the scale at
which the descriptor is the most stable for each keypoint.
The scales (regions) selected for the four keypoints in (a) are
depicted by color patches on the face scan in (b). From the
figure, it can be observed as the selected scale changes for
different keypoints. For example, in the eyes region it results
that the best scale for computing the local descriptor is quite
small (just four rings) due to the effect of noise, while the
extent of the scale increases for the keypoints located in the

nose and cheek regions (in this latter case, the scale extends
up to ten rings).

3.2 Keypoints clustering and distribution

Observing the distribution of keypoints across different facial
scans, it results that they are not fully dispersed but, on the
opposite, a considerable portion of them shares quite close
locations. This spatial clustering aspect of the keypoints dis-
tribution is attractive as it has the potential of reducing the
combinatorial number of keypoint matches that occur in face
comparison. In our case, a cluster of keypoints Skc is defined
as the group of keypoints that are within the spherical neigh-
borhood of radius r of a keypoint kc of the set, that is:

Skc = {ki : |ki − kc| < r, i = 1, . . . , nkc , nkc > 1}. (3)

According to this, a set with a single keypoint can-
not be considered as a cluster, but a cardinality greater
than one is required. The radius is set to r = ρ · eavg,
where eavg is the average length of mesh edges and ρ is
an integer. The computation of the clusters is performed
with a neighborhood grouping procedure. The hypothe-
sis we consider here is that keypoints in a cluster should
present similar or at least quite close descriptors, so that
just the central keypoint kc can be considered in the match-
ing, rather than all the keypoints in the cluster. The degree
of compliance of a cluster with this assumption can then
be adopted as a validity criterion on whether or not to
use that cluster in the face comparison. For instance, if a
cluster obtained with a low r has quite disparate descrip-
tors at its keypoints, it might result in conflicting match-
ing. Following this intuition, we examined the behavior of
the clusters, at increasing radii of the sphere, in terms of:
(i) variation of their number; (ii) homogeneity with respect
to the GH descriptor that is the extent to which the local
descriptors computed at keypoints in a cluster keep close
as r increases (ideally, the descriptors should be identical
for all the keypoints within a cluster). These two aspects
have been captured by computing the following quanti-
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Table 1 The four groups of clusters as a function of the values of the
intra-cluster distance μ

Cluster group μ

group-1 μ ≤ 0.2

group-2 0.2 < μ ≤ 0.5

group-3 0.5 < μ ≤ 0.8

group-4 0.8 < μ

ties (with ρ ranging from 1 to 5, and thus for increasing
radius r ):

– The keypoints reduction α = (N − (η + χ))/N , where
N , η and χ are the number of keypoints, clusters and iso-
lated keypoints, respectively. Since the numerator repre-
sents the number of keypoints that would be used in the
matching if a cluster is substituted by its central keypoint,
the ratio α can be regarded as the amount of keypoints
reduction due to clustering;

– The intra-cluster distance μ, that is the mean of the pair-
wise distances between the GH descriptors of any two
keypoints in a cluster. Depending on the value of μ, clus-
ters are divided into four groups as reported in Table 1.
The threshold 0.2 has been chosen upon a statistics in
which we estimate the maximum distance between GH
descriptors computed at the same locations for differ-
ent scans of a same person. This subdivision reflects the
homogeneity of the GH descriptors within a cluster: clus-
ters in group-1 are the most homogenous; At the other
extreme, clusters of group-4 exhibit the highest disparity
and thus should be discarded from the match.

Results of a statistical analysis performed using the above
measures are summarized in Fig. 8. In Fig. 8a, the mean and
standard deviation of the keypoints reduction α are plotted
against the radii of the spherical neighborhood (values of
ρ from 1 to 5 have been used). We notice that for ρ = 1,
that is for clusters practically confined within a facet and its

adjacent neighbors, the percentage of keypoints reduction is
around 30 % on average. This value increases up to more
than 50 % for ρ = 2. This is encouraging if we assume that
the local shape is not expected to change too much in a such
reduced neighborhood.

Figure 8b reports the percentage of clusters belonging to
the four groups listed in Table 1, with respect to the spherical
neighborhood size ρ. We notice that the average number of
clusters having an intra-cluster distance μ in group-1 remains
above 60 % up to the third spherical neighborhood. This is
encouraging as it means that the homogeneity, and thus the
trustworthiness of the clusters, for a considerable number of
clusters is not compromised when the extent of the neigh-
borhood increases. On the other hand, we notice that the
number of non-homogenous groups remains less than 30 %
up to the second neighborhood size, especially for group-2.
Extremely non-homogenous clusters (group-3 and group-4)
have very low proportions, yet they are present across all the
neighborhood sizes. These can be viewed as outliers or insta-
ble clusters (group-4 in particular), for which the descriptors
show large disparity. Therefore, including in face compari-
son clusters belonging to group-3 and group-4 can jeopar-
dize the recognition accuracy. This statistical analysis pro-
vides insights into the clustering of keypoints, evidencing
the potential of exploiting this characteristic for reducing the
combinatorial number of keypoints matching. The ultimate
goal of this analysis is to eliminate unreliable keypoints, thus
increasing the number of matches between corresponding
keypoints. Based on the previous considerations and results,
the keypoints are ranked in the following way: (i) keypoints
belonging to clusters of group-1; (ii) isolated keypoints; (iii)
keypoints belonging to clusters of group-2.

In the analysis above, the position of the clusters across
different zones of the face is not accounted. Actually, this
position can affect the relevance of the clusters in face com-
parison. This aspect has been investigated through a statis-
tical analysis of the relationship between the spatial distrib-
ution of the clusters across the facial surface and the intra-
cluster distance μ. A preliminary observation of the spatial

Fig. 8 a Mean keypoints
reduction α, in percentage, with
respect to the spherical
neighborhood size
(parameterized by ρ);
b Percentage of clusters
belonging to groups 1, 2, 3, and
4, for increasing spherical
neighborhood size ρ. In both
plots, the vertical bars report the
standard deviation at each ρ
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Fig. 9 Distribution of cluster centers for subjects in group-1 (top) and group-3 (bottom)

Table 2 Percentage of clusters in group-3 and group-4 that are distrib-
uted in different zones of the face for increasing values of ρ

ρ

1 2 3 4 5

Lip (%) 23.4 23.1 27.3 25.0 22.9

Nose (%) 28.2 25.8 23.7 19.8 22.5

Eyes-eyebrows (%) 47.1 49.7 48.2 54.3 54.5

Other (%) 1.3 1.4 0.8 0.8 0.1

distribution of the four groups of clusters showed that clus-
ters in group-1 and group-2 are spread over the entire face,
whereas clusters in group-3 and group-4 are restricted to the
lips, eyes-eyebrows and the base of the nose. Examples are
given in Fig. 9 for group-1 and group-3.

To investigate this aspect, we counted the number of clus-
ters in group-3 and group-4 (merged together) located in each
of the afore-mentioned zones of the face. The corresponding
statistics is depicted in Table 2. The reported percentages
confirm the visual observation, with about half of the clus-
ters located in the eyes-eyebrows zone and the rest distributed
in the lips and the base of the nose (more specifically, within
and around the irregular mesh locations caused by nostrils).

A second statistical analysis was conducted on the clus-
ters in group-1 obtained with a spherical neighbourhood of
ρ = 3. In this analysis, we considered four facial zones
ranked according to their sensitivity to facial expressions,
namely, the nose and the border of the face (zone 1, least
affected by facial expressions), the cheeks (zone 2), the eyes
and eyebrows (zone 3), and the mouth (zone 4, most affected
by facial expressions). These zones are sketched in Fig. 10a.
We computed the distribution of the clusters for four sub-
ranges of group-1, namely, μ ≤ 0.15, μ ≤ 0.1, μ ≤ 0.05,
and μ ≤ 0.02. The corresponding statistics is depicted in
Fig. 10b, showing the histograms of the number of clusters
obtained in each zone and for the different sub-groups. The
variation of the clusters distribution across the different sub-
groups shows an increase in the percentage of stable clusters
in the zone 1, reaching more than 50 % for μ less than 0.05.
An opposite behaviour is observed for the mouth (zone 4),
where the related clusters get below 14 % for the same afore-
mentioned range of μ. The number of clusters at the cheek,
while significant, shows a relatively little variation. The same

Fig. 10 a Facial zones numbered from 1 to 4 according to their increas-
ing sensitivity to facial expressions; b The related clusters distribution
(in percentage) across the different sub-groups of group-1

can be noticed for the eyes (zone 3), though it shows a little
number of clusters across the different sub-groups.

Results suggested us that there is an association between
the homogeneity of the clusters and the sensitivity to facial
expressions (and so, to some zones of the face). This aspect
is particulary noticeable at the extreme ranges of μ, where
the most (respectively, least) stable clusters tend to be located
in the zones of the face which are least (respectively, most)
sensitive to facial expressions. This also suggested us that the
quantity μ of a cluster reflects, to some extent, the likelihood
of that cluster of being located at a particular zone of the
face and, therefore, can be utilized for establishing plausible
correspondences in the face matching procedure.

To support these hypothesis, we performed a face identi-
fication experiment that accounts for keypoints clustering in
different groups according to the coherence of their descrip-
tors (clustering for ρ = 2 is considered). This experiment
has been performed on the BU-3DFE database following the
same settings discussed in Sect. 2.3. Results for the rank-1
recognition rate (rank-1 RR) and the related number of key-
point matches (#matches) obtained for different groups of
clusters and their combinations are reported in Table 3.

It can be observed that clusters in group-1 provide robust
recognition. Their combination with the match of isolated
keypoints and clusters in group-2 permits to further increase
the accuracy of recognition. Instead, considering all the key-
points in face comparison without clustering (row “all key-
points” in the Table) results in a reduction of the accuracy
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Table 3 Rank-1 recognition rate (RR) and number of keypoint matches
using different groups of keypoints

Cluster group rank-1 RR (#matches)

group-1 83.1 % (49)

group-1 & isolated keypoints 85.0 % (58)

group-1, 2 & isolated keypoints 88.2 % (79)

All keypoints 85.4 % (133)

with a considerable increase in the number of matches. These
results are in agreement with the hypothesis that clustering
keypoints based on their spatial proximity and the coherence
of the descriptors can enhance the recognition performance
both in terms of accuracy and computational cost. Results
also support the conclusion that considering only clusters of
group-1 and group-2 plus isolated keypoints has a positive
effect on the recognition. According to these results, in the
experiments of Sect. 4, we will consider only clusters of key-
points that fall in group-1, group-2, and isolated keypoints.

3.3 Feature selection of local descriptors

Local descriptors used to represent the face at 3D keypoints
are typically in the form of feature vectors (i.e., histograms)
with high dimensionality [21,24,32]. This, combined with
the combinatorial number of keypoint correspondences to be
computed in the comparison of two faces, can result in a
computational cost that does not scale well with large face
galleries. In the proposed framework, we considered GHs of
80 bins per ring (see Sect. 2.2), with an overall dimensionality
of the mr-GHs that depends on the number of rings used at
the local scale (see the analysis of stability in Sect. 3.1).

To reduce the overall number of features used in the com-
parison of two mr-GH, we propose to use a feature selec-
tion analysis. This required us to cast the keypoints match-
ing into a classification scenario. The idea we follow here
is to select features that are maximally relevant and mini-

mally redundant in the match of inlier keypoints (i.e., key-
points resulting after RANSAC rejection). To this end, we
considered the matches between all the scans in a subset of
the BU-3DFE dataset, and recorded the individual distance
components in the match of every pairs of keypoints (using
the Bhattacharyya distance). In so doing, inlier correspon-
dences between keypoints are marked by a positive label,
whereas outlier correspondences are considered as examples
with a negative label. These training data are used as input to
the minimal-redundancy maximal-relevance (mRMR) fea-
ture selection model [27]. For a given classification task, the
aim of the mRMR algorithm is to select a subset of fea-
tures by taking into account the ability of features to identify
the classification label, as well as the redundancy among the
features. These concepts are defined in terms of the mutual
information between features. The selected features sorted
according to a relevance score are obtained as output of the
algorithm.

Results of this analysis are shown in Fig. 11. In (a), the
relative relevance of the features is reported as a function of
the feature number, where the feature number is obtained by
considering the mr-GH descriptor as a one-dimensional array
(i.e., the 2D-matrix of each GH is represented as a 1D-array,
and these arrays are further concatenated, from the 1st-ring
to the last ring). From this plot, it can be observed as several
features in the first rings of the mr-GH are less informative
than those included in the central and outer ones. Results are
shown also in (b), by sorting the features according to their
relevance. This provides an indication of the number of fea-
tures that should be selected if a threshold on their relevance
is fixed. For example, 160 features should be selected if a
relevance greater than about 35 % is targeted.

The final goal of selecting relevant features is to identify
a trade-off between accuracy and effectiveness of the repre-
sentation. In other terms, the challenge is to identify m out
of the n features which yield similar, if not better, accura-
cies as compared to the case in which all the n features are
used. The effect of using only the selected features instead

Fig. 11 Relative relevance of
the features of the mr-GH
descriptor as a function of:
a The features (identified by
their number ); b The features
sorted according to their
relevance
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of the overall descriptor in the comparison of 3D face scans
is further investigated in the next section, by considering the
impact on the face recognition rate.

4 Experimental results

The proposed approach has been evaluated under different
aspects. First, we investigate the number and repeatability of
detected keypoints and clusters of keypoints (see Sect. 4.1).
Then, we report face identification results on the Bosphorus
database (see Sect. 4.2), also showing the effect of the crite-
ria proposed in Sect. 3 to improve the stability of keypoints
detection and description, and comparing our approach with
respect to state of the art solutions. A face authentication
experiment following the ROC III protocol on the FRGC
v2 dataset and a related comparative analysis is reported
in Sect. 4.3. In Sect. 4.4, the effect on the recognition pro-
duced by noisy scans acquired with low-resolution cameras is
reported. Finally, the possibility to use the detected keypoints
as estimators of facial landmarks is investigated in Sect. 4.5.

4.1 Keypoints repeatability

The idea of representing the face by computing local descrip-
tors from a set of detected keypoints relies on the assumption
of intra-subject keypoints repeatability: keypoints extracted
from different facial scans of the same subject are expected
to be located approximately in the same positions of the face.

This assumption has been tested on the BU-3DFE data-
base, following the approach proposed in [24]. According
to this, we measured the correspondence of the location of
keypoints detected in two face scans by performing ICP reg-
istration: Two 3D scans of the same subject are automati-
cally registered and the errors between the position of near-
est neighbors keypoints (one from each scan) are recorded.
Figure 12 shows the results by reporting the cumulative rate
of repeatability as a function of increasing distances. The
repeatability reaches a value greater than 90 % for frontal
faces with neutral and non-neutral expressions at a distance
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Fig. 12 Repeatability of keypoints

Table 4 Average number of keypoints and clusters of keypoints for
different classes of scans in the BU-3DFE database

class (#scans) #keypoints #clusters (for ρ =)

1 2 3

neutral (80) 219 197 112 52

expressive (1,920) 269 222 137 77

total (2,000) 267 221 136 76

error of 5 mm (267 keypoints detected per scan on average).
In the same figure, the results obtained by considering the
repeatability of the center of the keypoint clusters are also
reported, for ρ = 1, 2, 3. It can be observed that the repeata-
bility of the cluster centers is lower than that obtained for the
keypoints, This can be motivated with the lower number of
cluster centers compared to the number of keypoints. How-
ever, this reduction is lower than the difference between the
number of keypoints and clusters: For example, with ρ = 2
at distance 5 mm, the reduction of the repeatability is less
than 10 %, whereas the number of clusters is about 50 %
than the original number of keypoints (see also the number
of keypoints and clusters reported in Table 4). The net result
of clustering keypoints and replacing them with cluster cen-
ters is the possibility to achieve a robust matching using a
lower number of correspondences.

The average number of detected keypoints is also reported
in Table 4. It can be observed as non-neutral expressions
slightly affect the number of detected keypoints, which
remains comparable to that obtained for neutral scans. In
general, the number of detected keypoints is quite large. This
is in accordance with the results reported in the recent sur-
vey on 3D keypoint detectors by Tombari et al. [33], where
it is mentioned that meshDOG tends to extract a high num-
ber of keypoints, that accumulate around areas character-
ized by high local curvature. Similar results are also obtained
with other 3D keypoint detectors, like that defined by Mian
et al. [24], and the meshSIFT [32] (in both the cases, hundreds
of keypoints are detected).

In Table 4, the number of clusters of keypoint (#clusters)
obtained using the solution proposed in Sect. 3.2 for ρ =
1, 2, 3 is also reported. A reduction of about 50 % in the
number of keypoints is observed using clustering for ρ = 2
(compare also with the keypoints reduction α in Fig. 8a). This
effect, combined with the high repeatability, permitted us to
increase the overall face identification accuracy reducing, at
the same time, the computational cost in comparing two face
scans.

4.2 Face identification on the Bosphorus database

Recognition experiments have been performed on the
Bosphorus database. This dataset has been collected at
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Boǧaziçi University and released in 2008 [31]. It consists of
3D facial scans and images of 105 subjects acquired under
different expressions, various poses and occlusion condi-
tions. Occlusions are given by hair, eyeglasses or predefined
hand gestures covering one eye or the mouth. Many of the
male subjects have also beard and moustache. The majority
of the subjects are Caucasian aged between 25 and 35, with
a total of 60 males and 45 females. The database includes
a total of 4,666 face scans, with the subjects categorized as
follows:

– 34 subjects with up to 31 scans (including 10 expressions,
13 poses, 4 occlusions and 4 neutral);

– 71 subjects with up to 54 different face scans. Each
scan is intended to cover one pose and/or one expres-
sion type, and most of the subjects have only one neu-
tral face, though some of them have two. Totally, there
are 34 expressions, 13 poses, 4 occlusions and one or
two neutral faces. In this set, 29 subjects are profes-
sional actors/actresses, capable of more realistic and pro-
nounced expressions.

The variability of the scans in terms of subjects’ pose,
expressions and occlusions motivated us to use this dataset
in the experiments. In addition, this dataset has been used
by several state of the art solutions for 3D face recogni-
tion. In the experiments, we used the same protocol proposed
in [21], [32] and [6], thus allowing a direct comparison of the
results. For each subject, the first neutral scan was included
in the gallery, whereas the probe scans have been organized
in different categories as reported in Table 5 (the number of
probes per class is also indicated).

The first class groups probes according to their facial
expression, distinguishing between neutral probes and
expressive probes, plus some not-classified probes. Probes
where subjects exhibit face action units (FAU) are accounted
in the second class, by considering scans with lower FAU
(LFAU), upper FAU (UFAU), and combined action unit
(CAU). Finally, the last class reports probes with missing
parts due to yaw rotation (YR), pitch rotation (PR) and cross
rotation (CR), plus probes with Occlusions (O). For methods
in [21,32] and [6], the rank-1 RR is reported as appears in the
respective publications. Results of our approach are reported
using the optimizations proposed in Sect. 3.

4.2.1 Computational cost

The proposed solution is capable of scoring the same perfor-
mance of state of the art approaches, reducing at the same
time the computational cost. This latter aspect is evidenced in
Table 6, where the computational cost in comparing two face
scans is approximated by the overall number of distances
computed between bins of the local histogram descriptors

Table 5 Bosphorus DB: Rank-1 RR for different probe categories

Probes (#) Li et al.
[21] (%)

Smeets et al.
[32] (%)

Berretti et al.
[6] (%)

This work
(%)

Neutral (194) 100.0 – 97.9 98.5

Anger (71) 88.7 – 85.9 88.7

Disgust (69) 76.8 – 81.2 81.2

Fear (70) 92.9 – 90.0 91.4

Happy (106) 95.3 – 92.5 94.3

Sad (66) 95.5 – 93.9 95.5

Surprise (71) 98.6 – 91.5 94.4

other (18) – – 100.0 94.4

LFAU (1,549) 97.2 – 96.5 97.5

UFAU (432) 99.1 – 98.4 99.1

CAU (169) 98.8 – 95.6 96.4

YR (735) 78.0 – 81.6 82.6

PR (419) 98.8 – 98.3 98.8

CR (211) 94.3 – 93.4 95.3

O (381) 99.2 – 93.2 95.8

All (4,561) 94.1 93.7 93.4 94.5

Our approach is compared with the work of Li et al. [21], Smeets
et al. [32], and Berretti et al. [6]

Table 6 Bosphorus DB: Computational cost in comparing two face
scans for our method, and the works in [21], [32] and [6]

Number of Li et al.
[21]

Smeets et al.
[32]

Berretti et al.
[6]

This
work

bins per descriptor 216 288 640 160

keypoints 648 560 377 145

matches (·103) 419.9 313.6 142.1 21.0

bin distances (·106) 90.7 90.3 90.9 3.4

(last row of the Table). In turn, this number is obtained as
product of the average number of matches between keypoints
(matches)—quadratic in the number of keypoints—and the
number of bins of the local descriptors (bins per descriptor).
For our approach, the number of bins of the local descriptor
is considered on average, since it can change from keypoint-
to-keypoint depending on the extent of the selected optimal
scale, as discussed in Sect. 3.1 (here, the features of the
descriptor with relevance greater than 35 % are selected).
In our case, we have considered keypoints clustering with
ρ = 2 and, according to the results of Sect. 3.2, just clusters
in group-1, group-2 and isolated keypoints are retained (the
sum of these two is reported in the keypoints row of the Table).
It can be noted as the optimizations proposed in this work
combined with the meshDOG/GH are capable of reducing
the computational cost to about 1/25 of the values reported
in the other cases, without compromising the identification
accuracy.
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Fig. 13 Comparison between a
gallery scan, and scans of the
same subject with: a expression,
b missing parts, c occlusion

(a) (b) (c)

4.2.2 Robustness to expressions, missing parts and
occlusions

In general, expressions, missing parts and occlusions of the
face are the main factors that impair 3D face recognition
methods. These factors act with different modalities on our
approach.

Large facial expressions modify locally the 3D shape of
the face. This can alter locally the position where keypoints
are detected, thus reducing their repeatability. Local descrip-
tors at the keypoints in the deformed region of the face can
also change, thus making more difficult to find robust corre-
spondences between keypoints in expressive probe and neu-
tral gallery scans. Robustness of the approach to expressions
mainly derives from the capability to match the pairs of key-
points that are least or not at all modified by expressions.
In this respect, the clustering analysis reported in Sect. 3.2
is important to reduce the number of instable keypoints. An
example of positive match in the case of facial expressions is
shown in Fig. 13a. It can be observed as the largest number of
matches is located in the nose region, which is less affected
by the expression (i.e., fear).

Missing parts of the face affect the approach by reducing
the number of detected keypoints (i.e., the surface where they
are detected is reduced). In this case, robustness of the match
derives from the fact that keypoints detected on the remaining
part of probe scans can still correctly match with those in
gallery scans. Figure 13b shows the case of a correct match
of a probe with part of the right side of the face missing.

In the case large portions of the face are occluded (by hair,
glasses, scarf, hand, etc.), keypoints are detected also in the
occluded regions. The local descriptors at these keypoints
are likely to not match with the keypoints detected in the
corresponding non-occluded regions of gallery scans due to
the modification that occlusions determine in the 3D surface.
Ultimately, this reduces the number of inlier correspondences
between probe and gallery scans. However, correspondence
between keypoints located in non occluded parts of the face
can still be sufficient to grant a correct match. Figure 13c
reports the case of a hand covering the right eye and cheek of
the face. The good match between keypoints located in the
regions of the face that are not occluded can be appreciated.

All in all, expressions and occlusions act mainly on the
repeatability of several keypoints of the face and their local

Table 7 Bosphorus DB: Average number of keypoints (#keypoints)
and keypoints matching (#keypoints matching) for scans of different
categories

Type #keypoints #keypoints matching

Overall Inlier

neutral 158 117 93

expressions 165 108 81

occlusions 174 101 60

missing parts 97 68 41

descriptors; missing parts, instead, reduce the number of key-
points. The above considerations are supported quantitatively
in Table 7, where the number of valid matches in the different
cases is reported. In particular, the column #keypoints reports
the overall number of keypoints (i.e., cluster centers and iso-
lated keypoints) which is used to describe scans of different
types, whereas the columns overall and inlier refer, respec-
tively, to the initial number of keypoint correspondences, and
to the number of keypoints matching after outliers rejection
using RANSAC. It can be observed that the highest num-
ber of keypoint matches is obtained for frontal neutral and
expressive scans. In the case of occlusions, the number of
matches is reduced, since the keypoints that are detected on
the occluded part do not match. Scans with missing parts are
the most critical (especially for rotations of more than 45◦),
since the reduced surface determines a significant decrease
in the number of keypoints and their matches.

4.3 Face verification on the FRGC dataset

The FRGC v2 dataset includes 3D face scans of 466 sub-
jects partitioned in the Fall2003 and Spring2004 sets, respec-
tively, with 1,893 and 2,114 scans (4,007 scans in total). Face
scans are given as matrices of points of size 480 × 640, with
a binary mask indicating the valid points of the face. Due
to different distances of the subjects from the sensor dur-
ing acquisition, the actual number of points representing a
face can vary. Individuals have been acquired with frontal
view from the shoulder level, with very small pose varia-
tions. About 60 % of the faces have neutral expression, and
the others show expressions of disgust, happiness, sadness,
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Fig. 14 FRGC v2: ROC III experiment

Table 8 FRGC v2: comparative analysis on the ROC III experiment

Approach TAR @0.001 FAR (%)

Kakadiaris et al. [18] 97.0

Faltemier et al. [13] 94.8

Al-Olsaimi et al. [1] 94.1

Wang et al. [34] 98.0

Drira et al. [11] 97.1

Lei et al. [19] 96.7

Smeets et al. [32] 77.2

Our approach 86.6

and surprise. Some scans include hair [30]. In the follow-
ing, we report results obtained by our method on the ROC III
face verification experiment of the FRGC v2 protocol. In this
experiment, the gallery includes the scans of the Fall2003 set,
whereas the probe scans are from the Spring2004 set. Due to
the time lapse between the acquisition of probe and gallery
scans, this experiment is regarded as the most difficult one of
the FRGC protocol. Verification results are shown in Fig. 14
using the ROC curve.

Table 8 compares results obtained in the ROC III exper-
iment by our approach and other state of the art solutions
(the True Acceptance Rate at 0.1 % False Acceptance Rate,
TAR @0.001 FAR is reported). In this experiment, keypoints-
based methods, like ours and that in [32], provide lower accu-
racy than several other solutions. As also noted in [32], in part
this derives from the fact that measuring the similarity based
on the number of keypoints matching makes difficult to find a
threshold on this number capable of discriminating between
matches of same and different subjects. As a consequence,
these solutions are more suited to face identification than
to face verification. An additional motivation for the perfor-
mance drop of keypoints-based solutions is that many of the
works in the Table have been developed mainly to address
expression variations in frontal scans, rather than occlusions
and missing parts, and so can better adapt to the FRGC frontal
neutral and expressive scans.

4.4 Robustness to noisy data

The proposed approach targets face recognition from high-
resolution 3D scans. Since keypoints detection relies on cur-
vature computation, large acquisition noise can negatively
affect keypoints detection and description. To investigate this
aspect, we performed two experiments as reported in the fol-
lowing.

4.4.1 Synthetic noise on high-resolution scans

This experiment aims to investigate the effect of adding syn-
thetic noise to high-resolution scans. To this end, we consider
high-resolution face meshes and create their noisy counter-
parts by displacing the position of the vertices along the direc-
tion of the surface normal (such displacements are the most
destructive for the mesh). This operation is repeated 10 times,
each time adding noise of increasing maximum magnitude
to the original high-resolution scan (i.e., the maximum noise
magnitude varies from 1 to 10 mm). On these noisy scans,
keypoints detection and description are performed. Figure 15
shows some noisy scans and the corresponding detected key-
points for a given subject.

Then, we evaluated keypoints repeatability between noisy
and original scans at varying levels of noise. Results are
reported in Fig. 16. It can be observed that keypoints repeata-
bility does not vary significantly for the first level of noise
and decreases to about 70 % (at distance 6 mm) at level 3
(i.e., maximum noise magnitude of 3 mm). This level of noise
is typically greater than the noise that can be originated by
high-resolution acquisition devices of common use. Larger
falls of the repeatability are observed for levels of the noise
that are destructive for the mesh (i.e., level 5 or greater, as
can be also appreciated in Fig. 15d).

4.4.2 Low-resolution noisy scans

In this experiment, we evaluate the combined effect of
low-resolution scans and noise by considering real probes
acquired by dynamic 3D cameras, like Kinect. The idea
here is to model a realistic scenario, where gallery scans
are acquired off-line with high-resolution scanners, whereas
probes are acquired on-line using low-resolution sensors. To
test this application context, we used the The Florence Super-
face (UF-S) dataset [4] that, to the best of our knowledge, is
the only dataset which includes both low- and high-resolution
scans of the same subjects (there are a few other datasets for
face analysis from consumer cameras, like the EURECOM
Kinect Face dataset [17], or the The 3D Mask Attack data-
base [12], but they do not include high- and low-resolution
scans of the same subjects). The version 1.0 of the UF-S
dataset includes 20 subjects, with the following data captured
in the same session: two 3D high-resolution face scan with
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(a) (b) (c) (d)

Fig. 15 Effect of adding noise of increasing magnitude in the direction
of the normal to the original mesh in (a). From b–d face scans obtained
by adding noise of maximum magnitude, respectively, 1, 3 and 5 mm are

reported (in each case, the noisy scan and the corresponding detected
keypoints are reported)
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Fig. 16 Keypoints repeatability at different distances as a function of
the noise level varying from 0 (no noise) to 9 mm

about 40,000 vertices and 80,000 facets, acquired with the
3dMD scanner; A video sequence acquired with the Kinect
camera, with the person sitting in front of the sensor at an
approximate distance of 80 cm. In this latter acquisition, the
subject is also asked to rotate the head around the yaw axis
up to an angle of about 50◦–60◦, so that both the left and right
sides of the face are exposed to the camera during acquisi-
tion. This results in video sequences lasting approximately
10–15 s, at 30 fps.

Developing a complete method capable of working with
Kinect data is not the focus of this work. Rather, using the
Kinect frames, we want to show the effect that data with low
resolution and large noise can have on 3D keypoints detec-
tion and description and on the recognition process. To this
end, we defined a pilot recognition experiment, where the 20
high-resolution scans of the UF-S are included in the gallery,
and 40 frames of the Kinect sequences in frontal position (2
frames per subject) are considered as low-resolution probes.
Examples of high- and low-resolution scans are shown in
Fig. 17a and b, respectively. In both the cases, the detected
keypoints are also shown. Using this dataset, a rank-1 recog-
nition rate of 57.5 % has been obtained (compared to a
100 % obtained performing the same experiment with high-
resolution scans). This evidences the challenge posed by low-
resolution noisy scans that can be only partially addressed by
our method. An intermediate solution that can alleviate the
difficulties arising from consumer cameras can be obtained

(b)(a)

Fig. 17 Florence Superface: a High-resolution scan; b low resolution
acquisition of the same subject in (a). In both (a) and (b), the scans with
the detected keypoints highlighted in red are also shown

by deriving super-resolved models from a sequence of low-
resolution frames, so as to improve the resolution and reduce,
at the same time, the effect of noise [4].

4.5 Keypoints and landmarks of the face

As discussed in Sect. 1, landmarks and keypoints of 3D
faces are typically detected following different approaches
and with different objectives. However, some keypoints are
detected in the close position of landmarks, so that it is pos-
sible to investigate the correspondence between keypoints
and landmarks of the face. In so doing, we do not aim to
provide a complete method for landmarks detection; rather,
we want to show further potential applications of keypoints
detection on 3D face scans. In this experiment, we used the
Bosphorus dataset that provides the 2D and 3D coordinates
of up to 24 labelled facial landmarks. These are manually
marked on 2D color images, provided that they are visible
in the given 3D scan, and the 3D coordinates were then cal-
culated using the 3D-2D correspondences. In our case, we
concentrate on nine landmarks (seven of these are also con-
sidered in the state of the art work on 3D landmarks detection
in [28], and commonly considered as sufficient for many 3D
face applications), namely: Outer/inner, left/right eye cor-
ners (7,8,9,10); left/right mouth corners (16,18); left/right
nose peaks (13,15); nose tip (14)—the names and numbers
of the landmarks reported in the Bosphorus dataset are used.
In our experiment, we considered the location of the land-
marks provided in the dataset as ground truth and verified the
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Table 9 Bosphorus DB: The mean and the standard deviation of the
the absolute distance error (ADE) and the detection success rate (at
10mm distance) computed for 9 landmarks of the face

Landmark name (#scans) ADE (mm)

Mean SD ≤ 10 mm (%)

outer left eye (4,221) 3.04 2.91 97.2

inner left eye (4,146) 3.39 2.92 97.0

outer right eye (4,458) 3.59 3.14 95.2

inner right eye (4,360) 2.68 2.03 98.9

left mouth corner (4,317) 3.89 3.87 93.3

right mouth corner (4,429) 3.42 3.21 95.4

left nose peak (4,113) 5.58 3.89 92.3

right nose peak (4,454) 3.87 3.07 96.3

nose tip (4,662) 8.51 5.37 71.3

The first column reports the landmarks’ name and the number of scans
for which the landmark is annotated in the ground truth

distance at which a keypoint is detected. Similar to [28], two
error measures are used: Absolute distance error (ADE), that
is the Euclidean distance in millimeters between the position
of a keypoint and the manually annotated landmark, which
is considered ground truth; Detection success rate, which
represents the percentage of successful detections of a land-
mark over the test database considering a distance threshold
of 10 mm.

Results are listed in Table 9. It can be observed that, apart
for the nose tip, which scores a detection success rate at a
distance of 10 mm of about 71 %, for all the other landmarks,
this value is greater than 92 % with a maximum of about
99 % for the inner right eye. Values of the ADE mean and
standard deviation are also small, confirming the possibility
to use the proposed 3D keypoints detector as a preliminary
step to locate facial landmarks.

5 Conclusions and future work

Face recognition based on the idea of capturing local infor-
mation around a set of keypoints directly detected in 3D is
a promising solution, especially in the case of occlusions or
missing parts. However, approaches developed so far that
use such framework just proposed basic solutions that do
not consider any optimization capable of enabling a better
selection of the keypoints and a more effective description
of the surface at keypoints’ neighborhood. Based on these
premises, in this work we have proposed an original analysis
that permits an improved stability of the keypoints detection
and description. Remarkably, the proposed methods are of
general applicability. For a concrete evaluation, they have
been applied to a specific approach that includes meshDOG
keypoints detector and local GH descriptor. In summary, the

approach proposed in this work presents some new solutions
in the perspective to make 3D face recognition deployable
in real application contexts: The approach is fully-3D, and
does not require any costly pose normalization or alignment;
the meshDOG keypoints combined with the GHs provide a
good solution to achieve robustness to expression changes
and to occlusions/missing parts of the face; the proposed
methods for selecting stable keypoints and for their cluster-
ing, combined with the selection of optimal features of the
local descriptors, have permitted an increased accuracy as
well as a lower computational cost of the recognition.

In perspective, the proposed framework could be easily
adapted to include appearance of the face, so as to define a
multi-modal solution that combines together, in the function
used for meshDOG detection, 2D and 3D data. Promising
appears also the use of 3D keypoints to locate landmarks
of the face. Additional investigations are instead required to
make this approach effective in the case of data acquired by
low-resolution depth cameras.
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