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Abstract This work targets real-time recognition of both
static hand-poses and dynamic hand-gestures in a unified
open-source framework. The developed solution enables nat-
ural and intuitive hand-pose recognition of American Sign
Language (ASL), extending the recognition to ambiguous
letters not challenged by previous work. While hand-pose
recognition exploits techniques working on depth infor-
mation using texture-based descriptors, gesture recognition
evaluates hand trajectories in the depth stream using angu-
lar features and hidden Markov models (HMM). Although
classifiers come already trained on ASL alphabet and 16
uni-stroke dynamic gestures, users are able to extend these
default sets by adding their personalized poses and ges-
tures. The accuracy and robustness of the recognition system
have been evaluated using a publicly available database and
across many users. The XKin open project is available online
(Pedersoli, XKin libraries. https://github.com/fpeder/XKin,
2013) under FreeBSD License for researchers in human–
machine interaction.

Keywords Kinect · Hand pose · Gesture recognition ·
Open-source · XKin · Human computer interaction

1 Introduction

During the past years efforts have been made to achieve more
natural interactions between human and computer communi-
cation. In this context, gesture recognition capabilities play a
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key role in the design of innovative Human–Computer Inter-
action (HCI) systems. Among human body significant activ-
ities, the expressive power of hands will assume a pivotal
role. In particular, more sophisticated gesture-based inter-
faces will enable the user to overcome the limitations of
keyboard and mouse, increasing efficiency and realism, thus
empowering users to interact with a computer in a more intu-
itive way.

Beyond the automatic interpretation of hand sign lan-
guages such as American Sign Language (ASL) [2], a wide
range of real scenarios would benefit from novel paradigms
of natural interaction, especially medicine, domotics, and the
game industry. In addition to these, a gesture-based inter-
action system could boost users’ experience in all applica-
tions that suffer from the limitation imposed by traditional
mouse and keyboard-based interaction, like 3D modeling and
CAD/CAM.

Until few years ago the only non-intrusive HCI technology
able to accomplish the above tasks was vision-based hand-
gesture recognition. Due to the introduction on the consumer
market of low-cost devices such as the Kinect sensor, today it
is possible to improve the tradeoff between performance and
price in the design of gesture interfaces. Kinect approach is
non-intrusive, sensing is passive, silent, and permits to over-
come the limitation of robustness, speed, and accuracy of typ-
ical image processing algorithms by combining color images
and depth information. In fact the complementary nature of
the depth and visual (RGB) information in the Kinect sensor
opens up new opportunities to solve fundamental problems
in human activity recognition for HCI.

So far the ability of the Kinect of enabling full-body 3D
motion estimation has been exploited to track body joints,
while little attention has been directed towards small ges-
tures, in particular hand motions, especially because of the
difficulty of the task.
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1.1 Paper aims and organization

In this work we propose the first (and to the best of our knowl-
edge, the only available at the moment) open source solution
targeting real-time recognition of hand-poses and gestures
with Kinect sensor. As a first advance with respect to state of
the art, the proposed method targets recognition of both static
posture (hand-pose in the following) and dynamic movement
(hand-gesture in the following) in a unified framework, while
most of the existing methods focus either on static signs or
on dynamic gestures. As a result, being able to classify both
types of hand expressivity allows for understanding the most
of the non-verbal language.

Regarding hand-poses, the adoption of multi-scale Gabor
filters (as in [6] and [28]) applied on the depth image results in
an effective description for recognizing ASL finger-spelling
alphabet. Beyond obtaining high recognition accuracy on
commonly recognized ASL letters by a Support Vector
Machine classifier, we have also extended the recognition
capabilities on the whole ASL finger-spelling alphabet, thus
including also letters ‘j’ and ‘z’, which involve motion and
that were not challenged by previous work. For what con-
cerns dynamic hand trajectories, gesture recognition relies
on the use of angular features on trajectories in the depth
stream and hidden Markov models (HMM). We then com-
pare our recognition method on gestures against a geometric
template matcher named $1 described in [40] on the same
dataset of 16 uni-stroke gestures.

As a second novel contribution, although both hand-pose
and gesture classifiers come already trained on two default
datasets (i.e. the ASL alphabet, and the 16 uni-stroke dynamic
gestures as in [40]), users are able to extend these default
sets by adding their personalized poses and gestures. These
personalized training procedures are proposed as a possibility
for each user for “extending” the default sets of recognizable
postures and gestures to those that he/she decide should be
recognized by the system beyond the already provided sets,
or for improving the recognition performance with respect
to the standard non-personalized training.

Last, since the first solution described in [24], the open
source framework has been made freely available to the sci-
entific community on github [23] to encourage and support
contributions from other researchers and developers in build-
ing an open and effective system for empowering natural
modalities for human-machine interaction.

Our proposed solution is complying with the following
requirements of HCI: first we meet the responsiveness [37]
criterium by building a real-time an effective interaction. In
addition, the system is usable by more users and not bounded
to a particular one (adaptability requirement in [37]). Hand-
pose in ASL and the 16 uni-stroke gestures in [40] are easy
to perform and remember; they also present a clear cognitive
association with the performed function (thus meeting learn-

ability criterium, as in [37]). Beyond showing high recogni-
tion accuracy [37], at least for this prototyping phase, the pro-
posed system also respects the come-as-you-are paradigm of
interaction [37], not posing requirement on the user to wear
marker, gloves, long sleeves, fix background or choose a par-
ticular illumination.

The rest of the paper is organized as follows. In Sect. 2
we explore recent advances in the use of Kinect for hand-
pose and gesture recognition. Section 3 provides the over-
all methodology, while Sect. 4 discusses the details of the
hand segmentation stage, which is preparatory for both pose
and gesture classification. Hand-pose recognition employ-
ing depth information only is discussed in Sect. 5, while
the statistical characterization of dynamic hand-gestures is
provided in Sect. 6. Section 7 describes the user tests which
have been carried out to assess performance and potentialities
of the proposed framework for Kinect. Finally, concluding
remarks are gathered in Sect. 8.

2 Previous work

Despite the recent release of the sensor, some attempts to
develop pose and gesture recognition systems employing
Kinect have been already made in the past. The Kinect ability
of providing full-body 3D motion capture has been initially
exploited to track body joints, as in the work by Microsoft
[35]. As an example, Biawas et al. [4] proposed a method to
recognize human body postures showing fair results. The first
operation consisted in the background removal from depth
image using an auto-thresholding technique on the depth his-
togram. Then a grid was placed on the foreground, and the
body pose parametrized using depth variation and motion
information of each cell of the grid. Finally, a multiclass
Support Vector Machine (SVM) was used to train the system
for the classification.

Further attempts started to shift the attention towards
smaller gestures, in particular hand motions. Ren et al.
[30,31] developed a hand-pose recognition system which
operates in uncontrolled environments and is insensitive to
hand-pose variations and distortions, by using both depth
and color information from Kinect. Hand segmentation is
accomplished using the depth stream and requires the user to
wear a black bracelet. For the hand-pose recognition, a novel
shape distance metric called Finger-Earth Mover’s Distance
(FEMD) able to distinguish among ten hand-poses was devel-
oped. In particular, FEMD represents the hand shape consid-
ering each finger as a cluster, and the dissimilarity distance
between two shapes is defined as the sum of work needed
to move the earth piles and the penalty on the unmatched
fingers.

As an attempt to recognize a larger set of hand-poses, [28]
implemented “Spelling It Out”, an interactive user interface
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for American Sign Language (ASL) finger-spelling recog-
nition. Hand-poses corresponding to letters of the alphabet
are characterized using appearance and depth images and are
classified using random forests. The best performance on 24
signs of the ASL, on a dataset collected on 5 users, reaches
a mean precision of 75 %. However, the system overcomes
classification problems by offering an easy way for the user
to select between ambiguous choices and is integrated with
an English dictionary for efficient writing.

Also Uebersax et al. [36] presented an effective sys-
tem for recognizing letters and finger-spelled words of the
American Sign Language (ASL) in real time. The novelty
of this method lies in the fact that letter classification—
based on average neighborhood margin maximization—
relies only on depth data coming from a Mesa SR400 TOF
camera.

Another approach recognizing ASL letters by working
only on depth information is described in [11]. Authors
adapted the methodology of body pose estimation used in
[35] to the hand, using Randomized Decision Forests (RDF)
for hand shape recognition. According to this scheme, every
pixel is classified with a specific hand-pose label, and the
final class label is determined by majority vote. At a price of
a huge amount of training samples, they achieve high recog-
nition accuracy.

Peris et al. [25] implemented a real-time pose recogni-
tion system for both hands reconstructing the 3D volume
of the hand shape using a sequence of multi-view depth
images acquired by Kinect. The hand detection is performed
using the Robot Operating System [32] and functionalities of
OpenNI libraries [21] that extract the hand position in a 3D
space as a point cloud. Then left- and right-hand volume sub-
spaces are calculated by the Kernel Orthogonal Mutual Sub-
space Method, a powerful algorithm for 3D object recogni-
tion that exploits the canonical angles between nonlinear sub-
spaces generated by a kernel Principal Component Analysis
(PCA).

Mihali et al. [17] proposed a robust hand-pose recogni-
tion algorithm that makes use of two Kinect sensors. This
setup provides a rich point cloud within which the hand is
detected considering the volume included between the clos-
est point and a fixed empirical 3D offset. The volume is then
subdivided into 63, 83, 103 evenly distributed voxels. For
each sub-division two descriptors are taken, one related to
the point count in each voxel, and the other related to pres-
ence of one or more pixels in each voxel. Nearest neighbor
classifier in combination with majority rule voting scheme is
used to recognize the unknown posture.

To improve accuracy in hand-pose recognition, some
works started to target the problem of detection and track-
ing of single hand articulations. Li et al. [13] developed a
system based on Kinect that is able to detect hand-poses, to
identify single fingers, and to recognize nine postures exe-

cuted both with one or two hands. Hands are distinguished
from the background using a depth range between 0.5 to 0.8 m
and k-means algorithm is employed to obtain two clusters for
hand pixels. Fingertips are detected applying the three-point
alignment algorithm to points which are both on the hand-
contour and on the convex hull. Finger names are determined
according to their relative distance, while postures are recog-
nized using a three-layer classifier.

Oikonomidis et al. [19] proposed a novel approach to the
problem of 3D tracking of hand articulations making use of
Kinect. The problem was formulated as an optimization prob-
lem to minimize the discrepancy between the 3D structure
and appearance of the hypothesized 3D hand-pose model.
Optimization is performed by a variant of Particle Swarm
Optimization, while hand extraction is achieved by skin color
detection followed by depth segmentation.

Liang et al. [14] proposed a method to estimate six hand
poses evaluating a simplified inverse kinematic of fingers.
This method exploits temporal constraints and spatial fea-
tures of the input depth sequence to detect the 3D fingertip
position. Hand segmentation is performed through a pixel
labeling procedure based on Bayesian inference, while fin-
gertip localization is based on the geodesic extrema extrac-
tion and employs a novel path rewriting and k-means clus-
tering.

A key challenge for hand-pose and gesture recognition is
that they need to operate in complex scenes with cluttered
backgrounds. Doliotis et al. [7] proposed a clutter-tolerant
hand segmentation algorithm where 3D pose estimation is
formulated as a retrieval problem: given a segmented hand
the best matches are extracted from a large database of syn-
thetically generated hand images. However, the need to solve
optimization problems for computing the axis of elongation
(minimum enclosing ellipsoid) and the local regressions for
smoothing the sequence of widths during the hand segmen-
tation process do not allow the algorithm to achieve real-time
performance, by admission of the same authors.

Again Doliotis et al. [8] used Kinect to target dynamic
hand-gesture recognition as a natural way of communication
between humans and devices. They proposed a method to
detect hands in complex and cluttered background, using the
scene depth information from the Kinect, and a dynamic pro-
gramming method, namely Dynamic Time Warping (DTW)
for gesture recognition. According to this framework, the
gesturing hand is detected using a motion detection method
based on frame differencing and depth segmentation. Tra-
jectory recognition instead is performed using the nearest
neighbor classification framework which uses the similarity
measure returned by DTW.

With the aim to extend the set of recognizable ges-
tures, Wan et al. [38] proposed a method to recognize
five gestures: start, no hand, left, right, back using Kinect.
The procedure consists of gesture segmentation, feature
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extraction, trajectory extraction, and classification. A hand is
detected through the depth thresholding of the closest object
using a fixed empirical value that represents the thickness of
the palm. To uniquely identify the gesture start, the algorithm
uses a feature vector that takes into account the hand area, the
number of non-zero pixels, and the farthermost points of the
convexity defects to the convex hull. The left, right, and back
gestures are identified by the trajectory in the (x, z) sub space
and classified by means of linear discriminant analysis. How-
ever, one severe limitation of this work is the impossibility
to detect vertical gestures.

Regarding software solutions, Microsoft released the
Kinect device with a Software Development Kit (SDK) [16],
which is oriented to skeleton and joint tracking, not consid-
ering specific hand movement recognition. As an alterna-
tive multi-platform solution, PrimeSense [27] has created
NiTE [26], a middleware which provides almost the same
features as the Microsoft SDK, but again constitutes a closed
source software. In addition to this, NiTE is not a complete
solution: in order to work it needs to be included in OpenNI,
an open source framework which provides Application Pro-
gramming Interfaces (APIs) for natural interaction applica-
tions. In addition NiTE also requires ad-hoc drivers to com-
municate with other devices.

Currently, the proprietary solution from 3Gear [1] can be
considered the state-of-the-art for hand-tracking software. In
particular, 3Gear focuses on a small number of simple hand
poses and gestures (pinching and pointing poses in particu-
lar) so that at the moment poses outside of the database may
be tracked poorly. The system, as largely described on the
work in [39], works best when the user is seated at a desk
and the camera (or the Kinect in the most recent release)
is looking down at the user’s hands. As a big advantage,
this configuration allows the user to rest his hands on the
desk most of the time. However, this setup limits interactivity
only to desktop scenarios, excluding, for example, medical
applications in operating rooms, interactive games (Kinect,
Xbox, etc.), and all systems that are not constrained by the
usage of a desktop station. By the same authors’ admission,
3Gear system is not yet a general purpose hand-tracking sys-
tem, since it solves the pose estimation problem by querying
a precomputed database that relates hand silhouettes to 3D
configurations.

Despite these proprietary high-level solutions, the open
source community has been recently developing a low-level
module for acquiring raw data stream from the Kinect:
libfreenect [20]. Libfreenect is developed by the OpenK-
inect community and exclusively targets Kinect hardware. It
represents a simple, clean, and easy to use solution that pro-
vides the possibility to use the device with PCs running either
GNU/Linux, MacOS or Windows. It comes also with many
wrappers towards programming languages such as C++, C#,
Python, Java, Matlab, and Ruby. Building up on libfreenect,
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Fig. 1 Examples of a different hand-poses and b different hand-
gestures. Note that gestures are temporally included within a sequence
hold-movement-hold [15], independently by the hand shape assumed
during the gesture

we are able to acquire raw Kinect data streams and build up
the first available open-source, reliable, and real-time solu-
tion to hand-pose and gesture recognition, as described in the
following.

3 Overview of the system

In order to provide a complete solution to hand motions,
we developed a system that recognizes both poses and ges-
tures. While with pose we intend the static appearance of the
hand, a gesture is meant as a dynamic sequence that com-
prises the information related to the hand trajectory in time.
Dynamic gesture assumes the presence of a sequence hold-
movement-hold (using the terminology of [15]), which many
sign phonologists have claimed to be the sequence of three
elements necessary to account for the form of a sign in which
the hand moves from one location to another. Examples of
different hand-poses are given in Fig. 1a, while examples of
hand-gestures are provided in Fig. 1b.

The proposed system consists of three main modules, each
specifically dealing with a defined problem: hand segmenta-
tion (Fig. 2a), hand-pose classification (Fig. 2b), and gesture
recognition (Fig. 2c).

The hand segmentation stage relies only on depth infor-
mation supplied by the Kinect and provides as output a depth
image with the segmented hand, while other objects and
background are removed. Depending on the recognition goal,
the obtained depth hand image acts as input of either the
hand-pose processing chain or the hand-gesture classifier.

In order to distinguish among a number of different pos-
tures, the hand-pose module first extracts from the depth
image features based on multi-scale Gabor filtering which
provide insights into hand local patterns. Learning and clas-
sification are then performed by using a Support Vector
Machine (SVM).
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Fig. 2 Overview of the system workflow and its principal modules: a
hand segmentation, b hand-pose classifier, and c hand-gesture classifier

The hand-gesture module instead receives as input a con-
tinuous stream of depth hand-segmented images. Classifica-
tion is then performed by means of HMM adopting a descrip-
tion of gesture trajectories based on angular features com-
puted between successive trajectory points extracted from
the depth stream.

The switch between the two modalities (pose versus ges-
ture) depends on the higher level application making use of
the framework libraries. As an example, a word processor
application for the composition, editing, and formatting of
written material would make better use of the hand-pose
module, to translate into text the performed ASL finger-
spelling. Conversely, in medical applications or in domotics,
the adoption of gesture-based commands would be more con-
venient, as an example, for browsing tomographical content,
or to act as handy remote controllers, respectively.

Currently, the two classifiers are released as independent
modules. Therefore, there are no technical constraints avoid-
ing the two of them to run simultaneously and returning a
sequence of distinguished poses captured while the hand per-
forms a dynamic gesture. Depending on the final application,
it will be required to develop a higher logical module for com-
bining the outputs of the two classifiers in the desired manner.

4 Hand segmentation

The process of segmenting the user’s hand is depth-based, as
shown in Fig. 2a. The role of this procedure is critical since
it provides a hand depth image which is a fundamental input
for both pose and gesture classifications. This segmentation
processing has to be fast to be employed in a real-time appli-
cation, and robust to illumination changes, skin color vari-
ations, and user’s position. Furthermore, this method must
not pose any particular limitations on the user, to meet the
come-as-you-are paradigm of interaction. The only obvious

Fig. 3 a Reference rgb image (not used), b corresponding depth map,
c depth image after Otsu’s thresholding, d image H̃ containing a
roughly segmented hand by mean shift segmentation, e density image
D and palm detection by circle fitting, f finally segmented hand region
(image H )

constraint to successfully complete this step is that no large
object should be interposed between the user and the Kinect.
The hand segmentation process is composed by two prin-
cipal steps: a mean shift segmentation, followed by a palm
detection procedure. Examples of the outputs of the different
stages of the hand segmentation process are given in Fig. 3.

4.1 Mean shift segmentation

The mean shift algorithm [5] performed on the depth data
constitutes the first step of the hand segmentation process.
This algorithm is a non-parametric clustering technique
which does not require prior knowledge of the number of
clusters. Its peculiar ability lies in being attracted by the prin-
cipal modes (local maxima) of an underlying density func-
tion. Aiming at segmenting the depth image, we apply it to
the empirical probability density function (pdf) of the depth
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image. Starting from a full tessellation of the feature space
by Gaussian windows with profile as in [5]

kN (x) = exp

(
−1

2
x

)
, x > 0 (1)

the algorithm forces the kernel windows to evolve towards
the modes of the considered depth density function by itera-
tively computing the mean shift vector m(x) as the difference
between the weighted mean of the density in the kernel win-
dow, and x , i.e. the center of the kernels:

m(x) =
∑

i g(‖ x−xi
h ‖2) · xi∑

i g(‖ x−xi
h ‖2)

− x, (2)

where g(x) = −k′
N (x) and h is the bandwidth. The mean

shift vector thus always points towards the direction of max-
imum increase in the density. By associating each pixel with
its significant mode, we are able to segment a rough hand
region as constituted by all pixels associated with the mode
at minimum mean depth. As a result, the returned rough hand
region is stored as a binary image H̃ , as shown in Fig. 3d.

Because the classic mean shift algorithm is time intensive,
to meet the requirement of having a real-time interaction, two
practical schemes are adopted. First the depth density func-
tion is computed after a masking process by Otsu’s algorithm
[22] for isolating the foreground depths from the background
ones (Fig. 3c). Second, the mean shift is not run on all sin-
gle depth frames, but on a periodical update interval of 1 s.
Under the realistic assumption that the number of principal
modes of the pdf does not abruptly change within the update
interval, the number of k principal modes returned by the
mean shift algorithm is exploited to run an efficient k-means
clustering algorithm on each depth frame contained in the
update interval.

4.2 Palm detection

In order to better isolate the hand from the rest of the forearm,
the hand image in H̃ is then refined by estimating the largest
circle fitting the palm region. By assuming that the palm
should have a higher density than the finger and the forearm
areas, we first compute the density image D as the convolu-
tion between H̃ and a Gaussian kernel G. By thresholding in
D high-density regions, we select the center for circle fitting
as the centroid of the densest one, as shown in Fig. 3e. Then
the circle fitting procedure expands a circular window from
the region centroid until a large majority of the points inside
it belongs to H̃ . Then, similarly to the mean shift algorithm,
the center is shifted towards the direction that maximizes the
density in the window. The expansion and shifting process
is iteratively repeated until the largest fitting circle is found.
Depending on both the orientation of the principal axes of

the rough hand in H̃ and the mutual position of fingers and
forearm with respect to the isolated palm, the information
provided by the palm detection is exploited to cut the hand
region by the wrist, obtaining the final segmented hand region
H (as in Fig. 3f).

5 Hand-pose recognition

When the objective is to distinguish among many non-trivial
poses (as those belonging to the ASL alphabet shown in
Fig. 4), a representative set of features for describing the
hand shape is needed. The hand-pose features we use are
based on Gabor filtering of the depth image, while the learn-
ing and classification stage of the hand pose is performed by
a SVM classifier, as shown in Fig. 2b. Operations of feature
extraction are fastened by restricting the processing to the
small region identified by the minimum bounding box that
fully encloses the hand depth image.

5.1 Gabor features

The application of Gabor filters with different frequencies
and orientations allows to reveal local patterns in images.
Their use in image analysis is supported by the fact that they
model the response of the receptive fields of the orientation-
selective simple cells in the human visual cortex [6]. In 2D-
images a Gabor filter is a Gaussian kernel function modulated

Fig. 4 ASL finger-spelling alphabet (reproduced from [3])
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Fig. 5 System set-up in a real-time scenario. In the bottom-left corner,
the number corresponding to the currently performed hand-pose (in this
case number ‘3’) is shown

by a sinusoidal plane wave, that is,

g(x, y, λ, θ, ϕ) = exp

(
− x ′2 + y′2

2σ 2

)
cos

(
2πx ′

λ
+ ϕ

)
,

(3)

where 1/λ is the spatial frequency, ϕ the initial phase, x ′ =
x cos θ + y sin θ , y′ = −x sin θ + y cos θ , where θ is the
orientation. Note that the spatial frequency and the variance
σ 2 are not completely independent: in our experiments we
use σ = 0.56λ (corresponding to bandwidth b = 1, see [6]
for details).

In order to extract the local patterns in the image, a fil-
ter bank consisting of Gabor filters with various scales and
rotations is created with a procedure similar to [28], but per-
formed only on depth information. Starting from the isolated
hand in image H , the hand bounding box with the depth
data is resized to 128 × 128 and convolved with a bank of
Gabor filters at four scales (s = 1/2, 1/4, 1/8, 1/16) and
four orientations (θ = 0, π/4, π/2, 3π/4). Filter responses
are then averaged by 8 × 8 overlapping Gaussian functions
positioned on the 16 resulting images on a regular grid to
obtain the resulting feature vector of 1,024 elements used for
classification.

5.2 SVM classification

Hand-pose recognition is performed using a SVM classifier.
Since the system is supposed to work in a real-time scenario,
the classified hand-pose is determined as the most recur-
rent pose within a classification sliding window on temporal
frames, which ensures the system performance even in the
most difficult conditions, such as those with fast hand move-
ments or rapid pose changes. An example of the system setup
in a real-time scenario is given in Fig. 5.

For each hand-pose a multiclass SVM is trained on the
combined feature set using the one-against-one approach,

thus creating the models for the classification task. For each
SVM, the penalty term C and parameter ξ of a standard RBF
kernel K (x, y) = exp(−ξ‖x − y‖2) are obtained performing
cross-validation on the training set via a process of grid search
to maximize cross-validation accuracy. The best couples
(Ĉ , ξ̂ ) are then used to learn the training sets and generate
the final models.

6 Hand-gesture recognition

An accurate hand-gesture classification requires both a cor-
rect temporal segmentation of the action and an accurate
recognition of hand trajectory. For what concerns the tempo-
ral segmentation, for each hand-gesture we look for the pres-
ence of a hold-movement-hold sequence: the three phonolog-
ical elements necessary to account for a gesture, according to
[15]. Therefore, while in our previous work [24] a gesture was
included in the temporal interval between two specific poses
(start and a stop-pose, respectively), in the proposed solution
gesture segmentation is based on measures of motion activ-
ity. In order to evaluate recognition performance we adopt the
set of 16 uni-stroke gesture types [40] shown in Fig. 6 and
perform gesture classification by means of Hidden Markov
models working on trajectory angular features of the hand
centroid.

6.1 Temporal segmentation

According to the hold-movement-hold phonological seq-
uence, we assume that a person interposes a punctuating
pause in the middle of two distinct gestures. The localization

Fig. 6 The set of 16 uni-stroke gestures used in several works, such as
in the $1 system (reproduced from [40])
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of the temporal endpoints of a gesture relies on spotting the
presence of local minima in the total activity of the sequence,
as proposed by Le et al. [12]. With respect to other methods
for gesture segmentation based on the location of peaks of
motion activities [11], the adopted method which works on
depth data only, ensures higher performance (recall 94 %,
precision 98 % on CHALEARN dataset [10]).

6.2 Trajectory description

Once the gesture has been segmented, we extract angular
features from the hand trajectory, intended as the sequence
of points corresponding to the hand centroid in consecutive
frames. However, if we regularly sample a real-time acquired
gesture sequence, this is constituted by points that are not
evenly distributed along the spatial trajectory. This is due to
the acceleration introduced by the user when performing a
gesture that requires big changes of direction (e.g. for ges-
tures such as ‘triangle’, ‘delete’, etc. in Fig. 6). If we extracted
angular features from one of these trajectories, feature val-
ues would not faithfully reflect the characteristics of the ideal
gesture evolution. Therefore, a resampling step similar to that
proposed in [40] ensures that the entire sequence of trajectory
points is resampled at equal distance.

From the point sequence of the resampled hand trajec-
tory, we extract two angular features which are invariant
to position and scale. In fact, the trajectory itself, if taken
as a sequence of points corresponding to the hand centroid
{(xt , yt ), t = 0, 1, . . . , T − 1} in consecutive samples, does
not satisfy the property of invariance to translation and scale.

The first proposed feature is given by the sequence of
angular variations between the hand centroid in consecutive
samples, as shown in Fig. 7.

By computing from the sequence of T centroids the
sequence of (T − 1) angles between consecutive couples

Trajectory (xt,yt)

hold hold

movement

Fig. 7 An example of a gesture trajectory, characterized by a sequence
hold-movement-hold and the angular variations θi

of samples

θt = atan2 (yt − yt−1, xt − xt−1) t = 1, 2, . . . , T − 1 (4)

each angle θt is quantized to a value θq among 16 possible
directions:

θq = i ∈ [1, 2, . . . , 16] if θt ∈
[

2π i

16
,

2π(i + 1)

16

]
(5)

so that the first feature is �̄ = [θq
1 , θ

q
2 , . . . , θ

q
T −1]T. The

second feature is defined as the integral of the quantized angle
differences:

ψt =
t∑

i=1

θ
q
i , t = 1, 2, . . . , T − 1, (6)

which introduces a memory element in the trajectory descrip-
tion. As a result, the sequence of trajectory points is repre-
sented by a two-dimensional feature vector in which each
element represents the angle and the summation of differ-
ence of all previous angles.

6.3 Classification by HMM

The classification of a gesture trajectory is accomplished by
means of hidden Markov models (HMM) [29]. These are
discrete state-space stochastic models which work well for
temporally correlated data streams, where the observations
are a probabilistic function of a hidden state. The idea in this
case is to break up a trajectory into different traits of homoge-
nous motion direction, and model each trait by a different
HMM state, so that the total number of HMM states corre-
sponds to the number of peculiar traits of the gesture. Possible
transitions from one state are towards the same state, if the
hand trajectory endures in the same trait (with high proba-
bility between consecutive frames), or towards the state that
describes the next trait (with lower probability) in case of
changed direction. For example, imagining the trivial exam-
ple of a gesture that consists of a straight horizontal line, the
trajectory is made up of only one homogeneous trait, corre-
sponding to a single-state HMM.

Due to the fact that each gesture follows a deterministic
path through the HMM states, this choice gives us the pos-
sibility to model a trajectory in a way that does not depend
on the length of the sequence, allowing us to classify ges-
tures with invariance with respect to the execution speed. In
particular, we model each gesture with a left–right hidden
Markov model 
 = (A, b, π), endowed with the following
distributions:
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– the state transition probability distribution A is left–right
initialized:

A =

⎡
⎢⎢⎢⎣

a b c d · · · e
0 f g h · · · i
...
...

...
... l m

0 0 0 0 0 1

⎤
⎥⎥⎥⎦ , (7)

and initial probability values are uniformly distributed
(summing up to one);

– the observation symbol distribution b is initially uni-
formly distributed among all the possible observation
symbols, because the system is not aware of the trajec-
tory direction that will be gestured;

– the initial state distribution is uniformly distributed
among all states.

To train the HMM, the Baum–Welch re-estimation algo-
rithm [29] is applied. Classification is finally performed
by means of the forward algorithm [29] by evaluating the
maximum likelihood of an unknown hand-gesture sequence
against all HMM models.

7 Experimental results

To evaluate the performance of the proposed system, we have
carried out a series of experiments on both hand-pose and
hand-gesture recognition. The first test considers a hand-pose
scenario of 24 different letters of the ASL dataset in [28], as
those shown in Fig. 4. With respect to hand-gesture recog-
nition, the two performed experiments employ the 16 uni-
stroke gestures used in [40] and shown in Fig. 6, which we
analyze in both single-user and multi-user scenario. We then
compare our recognition method on gestures against a geo-
metric template matcher named $1 on the same dataset [40].
In the last experiment, exploiting our unified framework for
hand-pose and gesture classification, we extend the recogni-
tion capabilities on the whole ASL finger-spelling alphabet,
thus including also letters ‘j’ and ‘z’, which involve motion
and that were not challenged by previous work.

7.1 Test I: Hand-pose recognition

In order to compare the system capabilities against previ-
ous work, we carried out the following experiment on the
publicly available ASL dataset used in [28]. It consists of
65,000 depth and color hand images acquired from Kinect
stream, corresponding to 24 of the 26 ASL letters (omitting
non-static letters ‘j’ and ‘z’) performed by five subjects, with
a good variety in size, background, and orientation. In our
work we keep only depth images and disregard the color ones.
Pugeault et al. [28] report their results on this dataset using

Table 1 Comparison of our method with the approach in [28]

Method Data 50 vs. 50 % Cross-valid.

[28] Color & depth 75 % 47 %

Our Depth 91 % 56 %

both leave-one-subject-out cross-validation and using half of
the set for training and half for testing employing multi-class
random forest classification. Therefore, we similarly split the
entire database randomly in training and testing using a ratio
of 0.5, learning the models on the training part and classi-
fying the testing half and then repeat the experiment using
the same cross-validation procedure. Obtained performance
achieves 91 % of recognition rate for the half versus half
split and 56 % for the leave-one-subject-out cross-validation,
respectively. A comparison of the proposed method based on
Gabor filtering and SVM classifier with the latter method is
provided in Table 1, showing the superiority of our presented
approach. With respect to the work in [28], our better per-
formance is probably justified by the fact that Pugeault et al.
do not operate background subtraction before the hand-pose
classification stage.

Table 2 details the confusion matrix for all letters using the
proposed SVM radial classifier. This shows that the most sig-
nificant amount of confusion comes from letters ‘o’ (87 %),
‘s’ (83 %), ‘t’ (84 %), ‘u’ (86 %), while the most certain
classes are ‘b’ (96 %), ‘i’ (97 %), and ‘y’ (97 %).

For the purpose of comparison with other state-of-the-art
methods, we have also tested categorization performance on
the same database using the Random Forest Classifier, as
performed in [11]. In this experiment we achieve a recog-
nition rate of 79.0 % for the half–half configuration, while
[11] report 97.8 %. Regarding the performance using leave-
one-subject-out cross-validation we score a recognition rate
of 46.0 %, while [11] reports 84.3 %. Per letter details can
be inspected in the confusion matrix of Table 3, where defi-
nitely inferior performance with respect to those declared in
[11] (and with respect to those obtained by our method) is
probably due to different choices in the classifier parameter
configuration.

Last, our proposed method, showing average recogni-
tion accuracy (ARR) of 91 %, slightly outperforms the
approach presented in [36], which employs a MESA SR4000
TOF camera, average neighborhood margin maximization
(ANMM) on segmented hand depth images, and declares an
ARR of 88 %, even if on a different database.

7.1.1 Limitations

Like all classifiers, our proposed pose-recognizer has lim-
itations. First the candidate hand-pose is compared against
previously trained SVM classes. Therefore, if the user per-
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Table 2 Confusion matrix for the ASL letter classification task using SVM radial (Ĉ = 10, ξ̂ = 0.001) on the dataset [28] with 24 letters and five
subjects

a b c d e f g h i k l m n o p q r s t u v w x y

a 0.90 0.02 0.02

b 0.96

c 0.91 0.02 0.02

d 0.90 0.02

e 0.03 0.90

f 0.94 0.03

g 0.91 0.03

h 0.95

i 0.97

k 0.89 0.04

l 0.94

m 0.90 0.02

n 0.05 0.88 0.02

o 0.03 0.87

p 0.90 0.04

q 0.07 0.88

r 0.91 0.03

s .03 0.04 0.83 0.04

t 0.03 0.03 0.03 0.05 0.84

u 0.06 0.86 0.07

v 0.04 0.91

w 0.02 0.93

x 0.02 0.02 0.90

y 0.97

forms an unknown hand-pose, the system will anyway return
the most likely one. Second, the hand segmentation process
is critical to the entire process. Despite our approach does not
require any manual segmentation or aid by bracelets, gloves,
markers or other invasive tool, any error in the palm detec-
tion procedure inevitably harms the hand-pose classification.
Third, the selected features for hand-pose description are not
rotation invariant. Last, in real-time pose classification, the
optimal choice of the parameters such as the length of the
sliding window on frames used for classification, and the
related delay for returning the classification result in a usable
interactive interface, still needs an accurate investigation.

7.2 Test II: Hand-gesture recognition

To test the hand-gesture classifier, ten users are asked to per-
form the 16 gestures in Fig. 6 ten times each, using indiffer-
ently his/her right or left hand. Having ten users performing
160 gestures each, this results in a total amount of 1,600 ges-
tures available for classification, showing high variability in
hand-writing style among users.

Table 4 shows the confusion matrix by using for each
gesture a half versus half split of the database, therefore, in
a multi-user scenario (i.e. using a unique training set for all
users).

Inspecting Table 4, it is noticeable that among the 16 ges-
tures there are at least five classes which are above 90 %
of recognition rates (i.e. ‘triangle’, ‘rectangle’, ‘caret’, ‘]’,
‘star’), while 3 gestures are far from being acceptable, since
below the level of 50 % of recognition rates, that are ‘check’,
‘[’, and ‘{’. While it was easily predictable that simple uni-
stroke gestures such as ‘triangle’, ‘rectangle’, ‘caret’ would
correspond to the most certain classes, the high recognition
rate on the ‘star’ gesture is probably due to the fact that no
other signs is characterized by such a high number of traits (5)
along different directions. Conversely, it looks rather pecu-
liar that while class ‘]’ has a high recognition rate (93 %), its
counterpart class ‘[’ performs so badly (33 %).

Table 5 shows instead the confusion matrix obtained
when each user trains the classifier with his/her own train-
ing sequences (single-user scenario), averaged on all users.
In particular we adopted a leave-one-out procedure for each
user gesture, thus using nine of the ten recorded sequences
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Table 3 Confusion matrix for the ASL letter classification task using a Random Forest Classifier on the dataset [28] with 24 letters and five subjects

a b c d e f g h i k l m n o p q r s t u v w x y

a 0.81 0.04 0.02 0.03

b 0.89 0.02 0.02

c 0.83 0.03 0.04

d 0.83 0.02 0.02 0.03

e 0.03 0.02 0.77 0.05 0.02 0.02

f 0.03 0.02 0.87 0.02

g 0.87 0.06

h 0.02 0.92

i 0.91

k 0.73 0.04 0.03 0.07 0.02

l 0.93

m 0.06 0.68 0.08 0.03 0.02 0.04

n 0.04 0.14 0.65 0.02 0.04

o 0.04 0.02 0.76 0.02 0.03

p 0.021 0.02 0.03 0.76 0.05 0.02 0.02

q 0.02 0.04 0.08 0.74

r 0.05 0.04 0.04 0.73 0.05 0.02

s 0.05 0.02 0.02 0.04 0.03 0.73 0.04

t 0.07 0.07 0.14 0.03 0.05 0.57

u 0.03 0.10 0.74 0.08

v 0.03 0.02 0.02 0.06 0.76 0.02

w 0.05 0.07 0.79

x 0.03 0.02 0.79

y 0.02 0.88

as training sequences, and the remaining one as test set, and
repeating the procedure for all sequences.

Inspecting Table 5, we can observe that the confusion on
the least recognized gestures in Table 4 is mitigated in case
of the single-user scenario, i.e. when users operate a person-
alized training on each gesture. In fact, out of the three ges-
tures below the level of 50 % of recognition rates, (‘check’,
‘[’ and ‘{’) only ‘{’ is still below 50 %, while the other two
have considerably increased their recognition rates: ‘check’
from 33 to 58 % (+25 %) , and ‘[’ from 33 to 54 % (+21 %).
Other considerable improvements (>10 %) are reported for
gestures ‘x’ (+15 %), ‘arrow’ (+30 %). Conversely, gesture
‘}’ which in Table 4 scored 67 % has now fallen under 50 %
(46 %), which we admit is still far from being acceptable
even for a prototype gesture classifier. One possible reason
has to be found in the dimensions of the training set which, in
case of personalized learning, are considerably smaller with
respect to the training samples in the multi-user scenario (i.e.
9 samples only, instead of 80 in the half versus half configu-
ration).

Finally, we compared our HMM-based gesture classifier
with a geometric template matcher named $1 [40], which is a
popular uni-stroke recognizer previously used in HCI, which
is supposed to outperform other gesture classifiers (such as

DTW [8,18], and the Rubine classifier [33]). In particular,
we integrated the code of $1 classifier (available here [34])
in our framework, thus replacing our hand-gesture classifier.
As training set, $1 needs only one template for each of the 16
uni-stroke gestures. Using the same test set as in our multi-
user scenario, we obtained with $1 classifier the confusion
matrix reported in Table 6.

Inspecting Table 6, it is possible to observe that among the
16 gestures there are only 3 classes which are above 90 % of
recognition rates (i.e. ‘rectangle’, ‘circle’, ‘star’), while 11
gestures are far from being acceptable, since being below the
level of 50 % of recognition rates. By comparing our HMM-
based method (in Table 4) and the $1 classifier (in Table 6)
on the same multi-user scenario, our proposed hand-gesture
classifier outperforms $1 matcher on 14 of the 16 uni-stroke
gestures. Although $1 is a popular and fast system, the last
test shows that this approach has some important limitations.
Beside the inherent weakness of using a single template, $1
works on the “raw” sequence of points, without representing
it in a feature space. Thus the similarity measure is pretty
simple, since it depends only on the geometrical similarity
between the sequence and the template. Second, the non-
uniform scaling of gesture to a squared area can strongly
alter the gesture appearance.
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Table 4 Confusion matrix for the gesture classification task using angular features and HMM on the dataset with 16 uni-stroke gestures as in [40]
in the multi-user scenario (one training set for all users)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1.0

2 0.83 0.17

3 1.0

4 0.27 0.57 0.17

5 0.33 0.30 0.07 0.30

6 0.07 0.90 0.03

7 0.07 0.60 0.10 0.23

8 0.03 0.53 0.30 0.13

9 0.10 0.13 0.33 0.43

10 0.93 0.07

11 0.03 0.17 0.80

12 0.20 0.73 0.07

13 0.17 0.17 0.30 0.37

14 0.27 0.03 0.03 0.67

15 1.0

16 0.10 0.17 0.03 0.70

Table 5 Confusion matrix for the gesture classification task using angular features and HMM on the dataset with 16 uni-stroke gestures as in [40]
in the single-user scenario (personalized training set defined by each users)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.97 0.03

2 0.98 0.01 0.02

3 0.98 0.01 0.01

4 0.22 0.66 0.09 0.03

5 0.02 0.58 0.14 0.01 0.05 0.15 0.02 0.03

6 .06 0.66 0.20 0.08

7 0.52 .02 0.02 0.02 0.05 0.38

8 0.09 0.02 0.83 0.05 0.02

9 0.02 0.19 0.54 0.25

10 0.98 0.02

11 0.10 0.01 0.01 0.78 0.10

12 0.07 0.02 0.40 0.50 0.02

13 0.24 0.01 0.22 0.17 0.36

14 0.06 0.46 0.01 0.02 0.46

15 0.03 0.15 0.79 0.02

16 0.10 0.02 0.21 0.05 0.03 0.02 0.01 0.56

7.2.1 Limitations

Like all classifiers, our proposed gesture recognizer has
inherent limitations. First the candidate gestures are com-
pared to previously stored models, and the result produced is
the one that maximizes the likelihood score. Therefore, if the
user performs an unknown gesture, the system will anyway
return the most likely one. Second, because of the resampling

procedure, gestures cannot be differentiated on the basis of
the hand speed while gesturing.

7.3 Test III: Whole ASL alphabet

As a novel contribution, exploiting our unified framework for
hand-pose and gesture classification, we extend the recog-
nition capabilities to the whole ASL finger-spelling alpha-
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Table 6 Confusion matrix for the gesture classification task using $1 system classifier [40]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.86 0.02 0.10 0.02

2 0.34 0.06 0.08 0.02 0.02 0.14 0.02 0.32

3 0.98 0.02

4 1.0

5 0.10 0.02 0.68 0.02 0.02 0.04 0.06 0.06

6 0.22 0.78

7 0.02 0.86 0.12

8 0.06 0.20 0.74

9 0.02 0.90 0.06 0.02

10 0.02 0.90 0.08

11 0.86 0.04 0.10

12 0.02 0.54 0.44

13 0.16 0.04 0.26 0.06 0.32 0.04 0.12

14 0.02 0.02 0.04 0.22 0.04 0.02 0.54 0.06 0.04

15 0.02 0.98

16 0.02 0.02 0.78 0.18

Table 7 Average recognition rates (ARR) for motion-involving ASL
letters ‘j’ and ‘z’

ASL ARR

j 0.87

z 1.0

bet, thus proposing specific classifiers for letters ‘j’ and ‘z’,
which involve motion and that were not challenged by previ-
ous work. This extension is possible by running simultane-
ously both hand-pose and gesture recognition modules, and
by switching from pose to gesture recognition by means of
a simple motion activated mechanism which uses two cut-
off thresholds in a twin-comparison fashion [41]. Doing so,
ASL letter ‘j’ is recognizable by the initial presence of a ‘j’
hand-pose (which is the same as for letter ‘i’) followed by a
‘j’-letter related trajectory. Similarly, ASL letter ‘z’ is recog-
nized as a combination of an initial ‘z’ hand-pose (which is
the same as for letter ‘d’) and the following ‘z’ related tra-
jectory. To test the ‘j’ and ‘z’ classifiers, the same ten users
of the previous test (non-native to ASL) are asked to perform
the 2 letters ‘j’ and ‘z’, ten times each. Having ten users per-
forming 20 letters each, this results in a total amount of 200
letters available for classification. Table 7 illustrates the aver-
age recognition accuracy for ASL ‘j’ and ‘z’ by using a half
versus half database configuration in a multi-user scenario.

7.3.1 Limitations

With respect to the previous experiment, lower performance
in recognition of letter ‘j’ are probably due to inter-user dif-
ferences in performing the sign, especially because the initial

pose rapidly changes during the trajectory evolution with a
hand rotation movement.

Full ASL alphabet recognition (including ‘j’ and ‘z’) is
further complicated in real-time usage by a severe synchro-
nization issue, due to the fact that both hand-pose and gesture
classifier are concurrently running. As an effect, ambiguities
might arise for example in the interpretation of a punctuating
pause (i.e. a ‘still’ posture) which can be both classified with
the associated hand-pose, or exploited by the gesture classi-
fier to spot a temporal endpoint of a gesture. This synchro-
nization problem is partially mitigated by the use of a twin-
comparison method [41], which employs a double thresh-
old mechanism (i.e. two distinct thresholds to be satisfied at
the same time: one on frame difference and another on the
accumulated frame difference) in order to activate the ges-
ture recognition module. Another limitation due to synchro-
nization is the need to delay the classification output until
motion triggers (or inhibits) the gesture classifier for solv-
ing the ambiguities between letter couples “i, j”, and “z, d”
(which both share the same pose, and are only distinguished
by the following motion trajectory).

8 Conclusions

We have here developed the first open source package for
Kinect sensor device which targets both hand-pose and ges-
ture recognition. By relying only on depth information, we
have created an accurate, real-time, and adaptable solution
for empowering natural interaction with computer devices,
which enables recognition on full ASL finger-spelling alpha-
bet and a rich set of 16 uni-stroke gestures. Beyond these two
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sets of recognizable hand movements, the developed frame-
work also allows the user to define and train the system with
his/her own set of hand poses and gestures. This solution
respects the come-as-you-are paradigm of interaction, not
requiring the user to wear markers, gloves, or long sleeves.
The accuracy and robustness of recognition have been tested
across many users and compared with other state-of-the-
art solutions using publicly available datasets. The overall
high performance and robustness of hand-pose recognition
(average recognition rates above 90 % on 24 poses), and
hand-gesture classification (average recognition rates above
70 % on 16 gestures) allow to open up to promising capabil-
ities in the design of innovative natural interaction applica-
tions. Moreover, the provided libraries represent a complete
novelty in the open source community since similar appli-
cations do not exist so far even under the form of propri-
etary software solutions. By making available the developed
API under FreeBSD License, we encourage contributions
from other researchers and developers in building an open
and effective system for empowering natural modalities of
human–machine interaction. Further research attempts will
be devoted to extend the current approach to accurate full-
body gesture, to learn and recognize human activity and face
challenging data such as those in CHALEARN set [9].
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