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Abstract In this paper, we propose a method to detect
abnormal events using a novel unsupervised kernel learning
algorithm. The key of our method is to learn a suitable feature
space and the associated kernel function of the training sam-
ples. By considering the self-similarity property of training
samples, we assume that the training samples will show the
distinctly clustering property in the obtained feature space.
Non-negative matrix factorization (NMF) is used to learn
the feature space, and the support vector data description
(SVDD) method is adopted to measure the clustering degree
of instances in the feature space. We append the clustering
constraints in the process of learning the feature space and use
the bases produced by NMF as the projection matrix to con-
struct the kernel function in SVDD. In other words, we incor-
porate the minimal enclosing sphere constraints within the
NMF formulation. In the process of feature space learning,
instances in the obtained feature space will be described bet-
ter and better by an hypersphere. Our algorithm converges to
a local optimal solution by applying an alternating optimiza-
tion approach. Experimental results on three public datasets
and the comparison to the state-of-the-art methods show that
our method is effective in detecting and locating unknown
abnormal behaviors.
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1 Introduction

Intelligent visual surveillance has made great progresses
in recent years [14–16]. However, we still need to deal
with more challenges such as emergent behaviors and self-
organizing activities [20] in crowd scene analysis. According
to the definition in Oxford English Dictionary, the abnormal
events can be regarded as irregular or rarely events in con-
trast with normal ones. Data on the normal events in video
are cheap to obtain, while data of anomalies always require
an expensive cost to obtain. Thus, anomaly detection task
can be turned into an one-class learning (outlier detection)
problem [10] that identifies abnormalities (outliers) based on
some normal training samples.

Outlier detection approaches are usually classified into
four categories based on the techniques used, which are:
distribution-based, distance-based, density-based and
deviation-based approaches [29]. There are many represen-
tative outlier detection methods such as resolution based out-
lier factor method [30], influenced outlierness method [31],
and angle-based outlier degree method [32]. However, outlier
detection is still highly challenging mainly due to three rea-
sons: (1) Defining the normal behavior or region [28]; (2) An
existing notion of normal behavior might not be sufficiently
representative in the future; (3) The boundary between nor-
mal and outlying behavior is often fuzzy.

Kernel methods are famous for its learning ability. Nev-
ertheless, a predefined kernel function might not always be
appropriate for a given one-class learning problem. We now
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face the problem of how to find a suitable kernel function and
the associated feature space. To cope with this problem, we
try to learn a kernel matrix (also known as a “Gram matrix”)
to embed the training data into a Hilbert space where we can
easily solve this one-class learning problem.

Non negative matrix factorization (NMF) [1,2] decom-
poses the non-negative data as a product of two non-negative
matrices. The non-negativity constraint leads NMF to a part-
based representation of the object in the sense that it only
allows additive, not subtractive, combination of the orig-
inal data. NMF is widely used in many computer vision
applications such as face recognition [1], clustering [9] and
action recognition [3]. NMF is also used in subspace learn-
ing through producing a projection bases matrix [8,24,27].
However, NMF has its shortcomings [8,22] so it is almost
impossible to get the desired feature space merely by NMF in
one-class learning. To solve this intractable problem, we need
a method to control the process of learning feature space.

Abnormal detection task consists of normal examples and
abnormal examples. Taking a human cognition view, we can
easily represent a normal example by normal ones, but repre-
senting an abnormal example that rarely happens by normal
ones is hard. Therefore, it is reasonable to assume that normal
examples have the self-similarity property, in mathematic
way, it is equivalent to assume that the training instances
will have good clustering property in some feature space.
Thus, we utilize the clustering property to control the direc-
tion of learning feature space. In our proposed method, we
use support vector data description (SVDD) [4] to measure

the degree of instances’ clustering property. SVDD gives a
description of a set of objects by minimizing the chance of
accepting outliers and finding an hypersphere with minimal
radius, and it is an effective method to describe one-class
data as it finds support vectors and allows outliers.

By appending the clustering constraints in the process of
learning feature space, we can get a suitable feature space
mapping and the associated kernel function. Our algorithm
converges to a local optimal solution by applying an alternat-
ing optimization approach. Considering the above factors, a
novel unsupervised framework named Unsupervised Kernel
Learning with Clustering Constraint (CCUKL) is proposed
to solve the unsuspected anomaly detection task in video
surveillance.

The rest of the paper is organized as follows. The proposed
method is given in Sect. 2. In Sect. 3, we formulate the pro-
posed CCUKL framework and present the method that solves
the corresponding optimization problem. We present exper-
imental results on several anomaly detection problems using
publicly available datasets in Sect. 4. Finally, we summarize
the approach and present some clues for future research work.

2 Proposed method

As we said before, we utilize the self-similarity property of
training samples to learn a suitable feature space. As seen in
Fig. 1, our main idea is to define an unknown matrix kernel
and then solve it by a matrix learning method under clus-
tering constraint. In the process of learning feature space,

Fig. 1 Unsupervised kernel learning. Normal examples have the self-
similarity property in human cognition, in mathematic way, training
instances will have good clustering property in the obtained feature

space. The clustering degree of instances in the feature space can reflect
the quality of the learned feature space. The center of the hypersphere
converges in the process of kernel matrix learning
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self-similarity property controls the learning direction and
evaluates the quality of the learned space.

Given an input training set X ∈ R
m×n and an embedding

space F , we consider a feature space mapping ϕ : R
m → F ,

where ϕ(x) = GTx, x ∈ R
m, G ∈ R

m×k, G � 0. The
corresponding kernel function can be defined as κ(x, y) =
(ϕ(x), ϕ(y)) = xTGGT y, where κ : R

m × R
m → R. κ is a

positive definite kernel for it satisfies Mercer’s condition [5],
and the symmetric and positive definite matrix GTG is the
kernel matrix which needs to be learned.

We denote the clustering parameter as De, and denote
the self-similarity constraint on instances in feature space
F as CF (G, De, X) ≤ 0. For two given machine learning
method ml1, ml2, we minimize the sum of the cost func-
tion Fml11(G) and the cost function Fml2(De) under the
non-negative constraint for G and the clustering constraint.
Therefore, the Unsupervised Kernel Learning with Cluster-
ing Constraint (CCUKL) is actually an optimization problem
that can be written as:

argmin
G,De

λFml11(G) + Fml2 (De) s.t. CF (G, De, X) ≤ 0, G � 0

(2.1)

Non-negative matrix factorization (NMF) is used as the
method ml1 to produce the bases matrix G as the projec-
tion in mapping ϕ(x). Let X ∈ R

m×n represent a non-
negative matrix having n examples in its columns, NMF
aims to find two non-negative matrices: the bases matrix
G ∈ R

m×k and the coefficients matrix H ∈ R
k×n such

that X ≈ G H . The unknown matrices G and H are esti-
mated by minimizing the reconstruction error ||X − GH||2F
or the Kullback–Leibler divergence D(X |GH) [2]. The bases
matrix G is used as the projection matrix in mapping ϕ(x)

recently [8,24]. At the same time, classical NMF-based algo-
rithms use G† = (GTG)−1GT as the projection matrix.
The above two choices are equally valid [8], and the former
one is easier to work with. Support vector data description
(SVDD) is used as the method ml2 to describe instances’
self-similarity and measure their clustering degree.

We form our optimization problem by incorporating the
minimal enclosing sphere constraints within the NMF for-
mulation. In the process of solving the optimization prob-
lem, the kernel matrix updates iteratively and the obtained
hypersphere of training samples becomes smaller. Every two
instances will have a close distance as small as they can in the
obtained feature space. In respect that the difference between
points and the punishment of NMF factorization error, the
distance between points will not equal zero.

Our proposed algorithm is solved by applying an alternat-
ing optimization approach. For more precise, we solve a con-
vex (quadratic or SVDD-type) sub-problem which contains
only a subset of the unknown parameters meanwhile keeping

the others fixed at each iteration. Finally, the obtained feature
space and the obtained hypersphere can be used for anomaly
detection. The proposed method judges anomaly only by a
judge function in practice, so CCUKL will be effective when
faces mass testing data.

In testing phase, a test sample will be attracted by the
hypersphere if it is similar with the training samples. Other-
wise, a testing sample will be mapped into the feature space
in an uncertain way if it is dissimilar with the training sam-
ples. Notice that the hypersphere in the feature space is very
small, so the probability of the abnormal samples falling into
the hypersphere is quite small.

3 Algorithm

3.1 Optimization problem

The proposed method is expatiated in Sect. 2. In this section,
we will present the CCUKL algorithm. In mathematics way,
the optimization problem is:

argmin
G,H,C,R,ξi

λ||X − GH||2F + R2 + 1

υn

n∑

i=1

ξi (3.1)

Subject to

||GTxi − C ||2H ≤ R2 + ξi , H � 0, G � 0,

R ∈ R
+, C ∈ R

k, ξ1, ξ2, . . . , ξn ∈ R
+ (3.2)

At first, we fix some notation, || · ||F denotes the L2 norm
of a vector and the Frobenius norm of a matrix. We use the
notation H � 0 to express that the elements of the matrix H
are non-negative. X ∈ R

m×n denotes training data containing
n columns, X = [x1, . . . , xn], xi ∈ R

m×1, G ∈ R
m×k is the

bases matrix and H ∈ R
k×n is the coefficients matrix. R

is the radius of hypersphere and C is the center point of
hypersphere in the feature space.

The first term of the above optimization problem (λ||X −
GH||2F , λ > 0) is a classical NMF-type reconstruction
error, while sum of the second and the third term (R2 +∑n

i=1 ξi/υn) is a SVDD type cost, the parameter 1/υn con-
trols the trade-off between the radius and the errors [4].
Smaller υ means fewer points will be outliers, a more detailed
analysis shows that υn is in fact a lower bound on the num-
ber of outliers over the training set [13]. Actually, the hyper-
sphere’s center point C can be expressed as a linear combi-
nation C = ∑n

i=1 εi GTxi using represent theorem [5].
Notice that the inequality constraint ||GTxi − C ||2H ≤

R2 + ξi involves slack variables ξ ∈ R
1×n which control the

misclassification errors. To address this optimization prob-
lem, inspired by some literatures [8,9], we solve for subsets
of the unknown parameters G, H, R, C, ξi by keeping the
remaining parameters fixed at each iteration.
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3.2 Update strategy

3.2.1 Update strategy for G

In this section, we solve for G, ξ by keeping H , R and C
fixed, the optimization problem in Eq. 3.1 can be simplified
as:

argmin
G,H,C,R,ξi

||X − GH||2F + 1

λυn

n∑

i=1

ξi (3.3)

Subject to

||GTxi −C ||2H ≤ R2+ξi , G � 0, ξ1, ξ2, . . . , ξn ∈ R
+ (3.4)

Considering constraints in Eq. 3.4 as nonlinear, we solve
this optimization problem by getting its dual problem, it’s
Lagrangian function is shown as follows:

L(G, ξi , αi , βi ) = tr [−2XTG H + HTGTG H ]
+ 1

λυn

n∑

i=1

ξi +
n∑

i=1

αi (xT
i GGTxi

−2xT
i GC + CTC − R2 − ξi )

−
n∑

i=1

βiξi − tr [
TG] (3.5)

where αi , βi ,
i, j > 0 are the Lagrangian multipliers, and

i, j enforces non-negative constraints Gi, j > 0. Setting the
partial derivatives to zero, new constraints are obtained:

0 ≤ αi ≤ 1

λυn
, 1 ≤ i ≤ n (3.6)


 = 2GHHT − 2XHT + 2(omα ◦ X)X TG − 2XαTCT

(3.7)

where om = [1, 1, . . . , 1]T ∈ R
m×1, α = [α1, α2, . . . , αn] ∈

R
1×n , 
 = [
i j ] ∈ R

m×k .
Taking under consideration the KKT conditions [11], we

get:

2(GHHT − XHT + (omα ◦ X)XTG − XαTCT)i, j Gi, j

= 
i, j Gi, j = 0 (3.8)

Equation 3.8 is a fixed point equation that the solution must
satisfy at convergence, then Gi, j can be updated, we can
directly calculate columns of G directly to save computation
time:

G̃ j = G j ◦
√

([X HT] j + [XαTCT] j )

([G H HT] j + [(omα ◦ X)XTG] j )
(3.9)

where G j means j th column of G, ◦ denotes Hadarmard
product(element-wise multiplication).

Denote G̃ = [G̃i j ] and substitute the value of G and 
 in
Eq. 3.7 and simplifying, we get the dual problem:

argmax
α

tr [(X − G̃ H)T(X − G̃ H)]
−2tr [(G̃ H HT − X HT + (omα ◦ X)XTG̃ − XαTCT)TG̃]
+α(XTG̃G̃T X ◦ In)on − 2αXTG̃C + αon(CTC − R2)

(3.10)

Subject to

0 ≤ αi ≤ 1

λυn
, 1 ≤ i ≤ n (3.11)

where In denotes an unit matrix of size n.
The above problem is quadratic in α, thus can be solved

by using conventional quadratic programming tools. The esti-
mated α is then used to update G using Eq. 3.9, notice that
large values of λ (when compared to 1/vn) result in getting
small αi .

3.2.2 Update strategy for R, C

In this section, we proceed in solving for the minimal enclos-
ing sphere that minimizes the radius of the enclosing sphere
by keeping the bases matrix G and weights matrix H fixed,
so the optimization problem in Eq. 3.1 is simplified to a clas-
sical SVDD problem:

argmin
C,R,ξi

R2 + 1

υn

n∑

i=1

ξi (3.12)

Subject to

∣∣∣
∣∣∣GTxi − C

∣∣∣
∣∣∣
2

H ≤ R2 + ξi , C ∈ R
d , ξ1, ξ2, . . . , ξn ∈ R

+

(3.13)

We introduce the Lagrangian function:

L(R, ξi , C, τi , �i , ζ ) = R2 + 1

υn

n∑

i=1

ξi

+
n∑

i=1

τi (−2xT
i GC + CTC − R2 − ξi ) −

n∑

i=1

�iξi

(3.14)

where τi , �i > 0 are the Lagrangian multipliers, τ =
[τ1, τ2, . . . , τn] ∈ R

1×n , setting the partial derivatives to
zero, new constraints are obtained:

0 ≤ τi ≤ 1

υn
,

n∑

i=1

τi = 1, 1 ≤ i ≤ n
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C =
n∑

i=1

τi (GT xi )∑n
i=1 τi

=
n∑

i=1

τi (G
T xi ) (3.15)

Resubstituting gives to maximize with respect to τ :

argmax
τ

τ (XTGGT X ◦ In)on − τ XTGGT XτT (3.16)

Subject to

n∑

i=1

τi = 1, 0 ≤ τi ≤ 1

υn
, 1 ≤ i ≤ n (3.17)

Then, R can be updated as follows:

R2 = xT
k GGTxk − 2τ XTGGTxk + τ XTGGT XτT (3.18)

where GTxk is one of the support vectors on the ball bound-
ary. In this way, the minimal enclosing sphere parameters R
and C are obtained.

3.2.3 Update strategy for H

After above two steps, the next task is to update weights
matrix H for we have already acquired the values for G,R
and C . By keeping all the other variables fixed, the objective
function Eq. 3.1 is simplified as:

argmin
H

||X − GH||2F (3.19)

Subject to

H � 0

The Lagrangian of the above cost function is:

F(H, τ ) = tr [−2XTG H + HTGTG H − ηT H ] (3.20)

where ηi, j > 0 are the Lagrangian multipliers, and ηi, j

enforce non-negative constraints Hi, j > 0. Setting the partial
derivatives to zero, new constraints are obtained:

η = −2GT X + 2GTG H (3.21)

Taking under consideration the KKT conditions [11], we get:

2(−[GT X ] + [GTG H ])i, j Hi, j = ηi, j Hi, j = 0 (3.22)

Equation 3.22 is a fixed point equation that the solution must
satisfy at convergence, then Hi, j can be updated, notice that
h j ( j th column of H) contributes only to the j-th data point
x j , so columns of Hcan be solved independently as follows:

Hj = Hj ◦
√

([GT X ] j )

([GTG H ] j )
(3.23)

Experiments show that this kind of update strategy is better
than optimizing the primary problem which is more time
consuming and less accurate in practice.

3.3 Judge rule

In this section, we discuss the criterion rule of anomaly alarm-
ing. Given an instance vector x which denotes a patch in a
frame, we map it into the feature space by mapping ϕ(x) and
then determine whether to alarm. The judge functions is:

F (x) = ||GTx − C ||2H − R2 (3.24)

The new patch’s t history normal patches in t frames are
denoted as Xh = [xh1, xh2, . . . , xht]. Given a patch x and its t
history normal patches Xh, we can judge x using permutation
hypothesis testing method [25].

Now, we address the hypothesis testing problem by
denoting H0 : FN = FA, where FN and FA are dis-
tribution functions of F (Xh) and F (x), respectively, i.e.
F (xh1), F (xh2), . . . , F (xht) ∼ FT and F (x) ∼ FA. To
judge whether a patch is normal or not, we compute the
p value which is the minimal significance level to refuse
H0. Algorithm of permutation hypothesis testing method
includes three steps:

1. Tobs = T (F (xh1),F (xh2), . . . ,F (xht),F (x))

= |
∑

i F (xhi)

t − F (x)|.
2. PermutateF (xh1),F(xh2), . . . ,F(xht),F(x) randomly

B times and compute T at the same time, denoted as
T1, T2, . . . , TB .

3.

p ≈ 1

B

B∑

i=1

I (Ti > Tobs). (3.25)

By setting the significance level a, we can judge a patch by
computing the p value, more precisely, alarm when p < a.
During the real-time testing, we judge each patch in each
frame, so we can not only detect anomalies but also locate
them.

3.4 CCUKL analysis

Inspired by EM algorithm and alterative projections, we solve
a set of convex sub-problems each of which is guaranteed to
converge, so Eq. 3.1 which can be regarded as a monotonic
function converges to a local minimum value. We show the
experiment result of the convergence issues in Sect. 4.

The parameter selection is important in our framework.
Tradition NMF method often tries to find a low-dimensional
representation so that the dimension k should be small and
a small k will also reduce the computational complexity, i.e.
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Table 1 A finite grid of parameter values

Parameter Values

υ 2−3, 2−2, 2−1, 20, 21, 22, 23

λ 2−3, 2−2, 2−1, 20, 21, 22, 23

k 1.2−3m, 1.2−2m, 1.2−1m, 1.20m, 1.21m, 1.22m, 1.23m

We find the best performance of our algorithm on this finite grid

k < min(m, n). However, we find that the proposed algo-
rithm converges faster when k gets larger and a large k ensures
the mapped space has a necessary large dimension. There-
fore, k should be a trade-off based on the above two factors.
Large λ and υ will reduce the effect of similarity constraint
and improve the efficiency of getting feature space. Besides,
the parameters υ has similar effects on generalization as in
the original SVDD.

We select combinations of the parameter values on a finite
grid, based on the idea in [33], as seen in Table 1. In this way,
it is sufficient to perform algorithm comparisons.

In practice, one has to try many choices of parameters
during the model selection. We use tenfold cross-validation
method [34] to evaluate the choices of parameters. In our
experiments, λ and υ are set to 1, and k is set to 1.2m. Sig-
nificance level a in Sect. 3.3 is set to 0.05, a small a predicates
a low tolerance to make the second-type error. In this way, we
avoid threshold setting which may be different in different
scenes.

CCUKL framework mainly embraces four part: inputs,
initialization, training and testing, notice that the training part
do not need too many normal samples. Moreover, CCUKL
will not take too much time for training and testing in prac-
tice, actually the most time-consuming part is the computing
of optical flow. Algorithm process of CCUKL is shown as
follows:

Inputs: Several normal frames; Parameter setting of λ, υ.
Initialization: Key parameters in CCUKL–G,H ,R,C.

Training: Solve parameters solved in an iterative manner. Solve
α, G, R, C, H in order and repeat the process until satisfy the terminate
conditions.
Testing: Receive a frame and judge each patch of it using proposed
judge function and permutation hypothesis testing method.

4 Experiment

Training samples X can be quite fiexible, such as image
patches or spatio-temporal subvolumes. Actually, X corre-
spond to the bases selection, such as spatial bases, temporal
bases and spatial-temporal bases [6]. We show our algorithm
process in practice using spatial bases and divide each frame
into several patches.

Optical flow [21] method is used as the feature extraction,
and then we use MHOF [6] method to extract feature of
patches. By encoding each patch as a column of X (X =
[x1, x2, . . . , xn]), the whole feature data X are generated.

4.1 Tests on UMN dataset

The UMN dataset is a publicly available dataset of normal
and abnormal crowd videos from University of Minnesota
[26] which consists of 11 video segments. Each video seg-
ment consists of an initial part of normal behavior and ends
with sequences of the abnormal behavior. There are total
7739 frames with a 320 × 240 resolution. We split each
frame into 4 × 6 local patches with no pixel overlapping and
extract the MHOF from each sub-region.

In Fig. 2, we show the proposed algorithm in a video seg-
ment which contains 625 frames. We use only 10 pairs of
adjacent frames for training and test the whole segment by
computing their judge function values. A new frame will be
decided whether to alarm by considering a certain number of
history normal frames and utilizing the permutation hypoth-
esis testing method.

We use only 10 pairs of adjacent frames in one video
segment for training and then test all 11 video segments, and
the result of our method is shown in Fig. 3. We also display
the ground truth and the result using the sparse reconstruction
cost (SRC) method [6]. The comparison of results shows that
our proposed method performs better.

Table 2 provides the quantitative comparisons to the state-
of-the-art methods. The AUC of our method is 0.98 which
outperforms [19], and the anomalies can be detected earlier
than [7,9].

Figure 4 shows that the factorization error in CCUKL is
declining while searching the feature space. Figure 5 displays
the hypersphere’s center point Cat all iterations. The center
point C of training samples in feature space converges. Fig-
ure 6 shows the change of hypersphere’s radius Rat all itera-
tions. Change of R means that the hypersphere is becoming
smaller and clustering degree is becoming higher. In the end,
a suitable feature space and a stable hypersphere gradually
emerge.

4.2 Tests on recessive walking sequence

We download a sequence about recessive walking [19] and
use it as a type of local abnormal event to evaluate our model’s
performance. There are total 583 frames with a 270 × 480
resolution. Each frame is divided into 4 × 6 local patches with
no pixel overlapping. Then, we extract features from each
patch. Training data consist of 10 pairs of normal frames.
The normal scene can be described as pedestrians walk in
the same direction. Figure 7 shows the experiment’s result
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Unsupervised kernel learning for abnormal events detection 251

Fig. 2 A temporal smooth is applied for we assume that abnormal events cannot occur only in one frame. 10 normal frames are used for training
and the whole video segment is used for testing

Fig. 3 The qualitative results of the abnormal event detection for 11
video segments from UMN dataset. The top row represents the ground
truth bar where green color denotes the normal frames and red corre-

sponds to abnormal frames. The middle row is the result using sparse
reconstruction cost (SRC) method [6]. At the bottom, we show the result
using our proposed method

Table 2 The comparison of the use of the proposed method and the
state-of-the-art methods on the UMN dataset

Method Area under ROC

CCUKL 0. 98

Sparse reconstruction [6] 0.98

Chaotic invariants [7] 0.99

Social force [19] 0.96

Pure optical flow [21] 0.84

and we can see that the detecting time and localization effect
are all that could be desired (Table 3).

4.3 Tests on UCSD Ped1 dataset

The UCSD Ped1 dataset [6,12,21] contains 70 short clips
and each clip has 200 frames, with a 158 × 238 resolution.
The training set contains 34 short clips for learning normal
patterns. The testing set contains 36 short clips for testing and
there is a subset of 10 clips in testing set provided with pixel-
level binary masks, which identify the regions containing

abnormal events. We split each frame into 7 × 7 local patches
with a 22 × 34 resolution, then utilize the judge rule in Sect.
3.3 to determine whether a local patch is normal or not.

In testing phase, patches are mapped into the feature space.
Normal ones will be attracted by the hypersphere and abnor-
mal ones will fall into the feature space in an unpredictable
way. For the hypersphere is a very small region compared
to the feature space, the probability that the abnormal sam-
ple falling into the hypersphere is quite small. Some image
results are shown in Fig. 8. The proposed method can detect
and locate abnormal events which are different from training
samples such as biker, skater and vehicle.

As defined in [21], a frame is considered as a detection if
it contains at least one abnormal pixel when utilizing frame-
level measurement and a frame is considered detected cor-
rectly if at least 40 % of the truly anomalous pixels are
detected when utilizing pixel-level measurement. We com-
pare the proposed method with sparse reconstruction cost
model (denoted SRC) [6], MDT [21], original SVDD with
RBF kernel [4], social force model (denoted SF) [21] and
SF-MPPCA [21]. In Fig. 9, performance of the approaches
tested for the anomaly detection task and performance of
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Fig. 4 Factorization error
||X − GH||2F decreases with
iteration and we magnify
factorization error’s value with
iterations change from 50 to 100
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Fig. 5 Hypersphere’s center
point C converges with iteration,
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Fig. 6 Hypersphere’s radius R
decreases with iteration and we
magnify R’s value with
iterations change from 50 to 100
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the approaches tested on the anomaly localization with pixel
level groundtruth on the UCSD Ped1 dataset are displayed.
It is clear that the proposed method outperforms the state-of-
the-art methods.

In Table 4, some evaluation results [6,21] are presented:
the Equal Error Rate (EER) is the percentage of misclassified
frames when the false positive rate is equal to the miss rate
(ours 19 % < 25 % [21]), Rate of detection (RD) in anomaly
localization experiment (ours 51 % > 46 % [6]) and area
under curve (AUC) (ours 50.3 % > 46.1 % [6]), the results

show that the CCUKL anomaly detection outperforms the
state-of-the-art methods.

5 Conclusions and discussion

The proposed method provides a novel unsupervised kernel
learning method to solve the one-class learning problem by
utilizing the “self-similarity” property of training samples.
In human cognition, the self-similarity property means that
similar samples will show a clearly clustering property in a
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Fig. 7 Examples in recessive
walking sequence. Pedestrian
who walks in an opposite
direction is abnormal and the
anomaly is detected fast and
localized well

Table 3 The comparison of the
use of the proposed method and
the state-of-the-art methods on
the recessive walking dataset

Method Area under ROC

CCUKL 0. 98

Sparse reconstruction cost [6] 0.98

Chaotic invariants [7] 0.99

Social force [19] 0.96

Pure optical Flow [21] 0.84

Fig. 8 Examples of abnormal event detections and localizations for UCSD Ped1 datasets. The abnormal events such as biker, skater and vehicle
are all well detected and located

Fig. 9 The detection and localization results of UCSD Ped1 dataset. a Frame-level ROC curve for Ped1 dataset. b Pixel-level ROC curve for Ped1
dataset

certain feature space in mathematic way. We apply CCUKL
to accomplish the anomaly detection and localization task
without abnormal samples.

CCUKL judges anomalies just by a judge function so it
will be effective when facing mass testing data. The proba-
bility of anomalies falling into the hypersphere is quite small
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Table 4 Quantitative comparison of the proposed method with the
state-of-art methods on the UCSD Ped1 dataset

Method Equal
error rate
(%)

Rate of
detection
(%)

Area
under
pixel-level
ROC (%)

MDT [21] 25 45 44.1

SF [21] 31 21 17.9

SF-MPPCA [21] 32 28 21.3

SRC [6] 19 46 46.1

CCUKL 19 51 50.3

SVDD (RBF kernel) [4] 30 25 19.6

since the hypersphere is just a very small region in the feature
space. For instance, les0.01 in experimental 4.2.

In future work, the proposed algorithm can be extended
to its semi-supervised manner by considering both nor-
mal and abnormal samples. Anomalies have different types
and differ from each other, so we can apply the CCUKL
algorithm to learn any anomaly’s feature space if we
are interested. Since anomaly clustering is an interesting
task, we can do a matching job to recognize one spe-
cial anomaly if we have an anomaly database. Last but
not the least, expanding CCUKL online learning algorithm
by updating parameters incrementally is also a meaningful
task.
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