
Vis Comput (2015) 31:105–114
DOI 10.1007/s00371-013-0914-1

ORIGINAL ARTICLE

Adaptive cluster rendering via regression analysis

Xiao Dan Liu · Chang Wen Zheng

Published online: 1 January 2014
© Springer-Verlag Berlin Heidelberg 2013

Abstract Monte Carlo ray tracing suffers noise and alias-
ing because of low sampling rate. We show that sparse sam-
ples can be used to generate high quality images based on
feature cluster and regression analysis. Our algorithm has
two main stages: adaptive sampling and polynomial recon-
struction. In sampling stage, rendering space are organized
into clusters based on their features. A feature vector is used
to distinguish the different features, which contains gradi-
ent, variance and position. Clusters are progressively modi-
fied by adaptive sampling. In reconstruction stage, we model
each cluster by smooth polynomial functions using regres-
sion analysis. The final image is synthesized by integrating
these functions. The experiments show that our algorithm
generates higher quality images than the previous methods.

Keywords Cluster sampling · Adaptive rendering ·
Feature vector · Polynomial function

1 Introduction

Photorealistic rendering of the real-world phenomena is
important in Computer Graphics. It is widely used in research
and industry. Monte Carlo ray tracing is a powerful technique
to generate photorealistic images such as global illumination,

X. D. Liu (B)
Integrated Information System Technology Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China
e-mail: lxdfigo@163.com

X. D. Liu
University of Chinese Academy of Sciences, Beijing, China

C. W. Zheng
Integrated Information System Technology Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

motion blur and depth of field. But if we want to render high
quality images, the consumption of ray tracing is expensive.
Otherwise, if the sampling rate is low, there is always noise
and aliasing in the results.

In order to reduce the noise and aliasing, early work
focuses on sampling the local high frequency areas. These
methods adaptively sample the rendering space using local
variance [1]. Opposite to space analysis, Fourier transform
of the spectrum is introduced to filter the samples in fre-
quency domain. These kinds of methods sample and recon-
struct the rendering space using its Fourier spectrum [2].
Because the derivation of general spectrum equation is hard,
these frequency spectrum methods can only handle one- or
two-dimensional space.

Monte Carlo ray tracing images are synthesized by inte-
grating the light field through multidimensional rendering
space including image dimensions, time dimension and lens
dimensions. Most regions of the multidimensional space are
smooth except the discontinuities such as the shadow edge
and object border. One main reason of noise and aliasing
is that the discontinuities always make the signal not band
limited and cannot be entirely sampled. Recent work gen-
erates images by partitioning and reconstruction the render-
ing space. Bala et al. [3] separate the rendering space into
edges and points to generate smooth results. This method
needs special information to identify the edges. Hachisuka
et al. [4] partition the multidimensional space into different
parts and use anisotropic reconstruction to give high qual-
ity results. This method assumes the separated parts as a flat
region, which may cause aliasing.

Motivated by the previous work, we propose a novel algo-
rithm using feature cluster and regression analysis to generate
smooth and high quality photorealistic images. The rendering
space is partitioned into a grid of cells. Each cluster is a set of
cells. A feature vector is introduced to identify the edge and

123

106 X. D. Liu, C. W. Zheng

distinguish different features of the rendering space. It con-
tains gradient, variance and position. During sampling stage,
our algorithm adaptively samples the rendering space and
progressively reassigns cells to clusters using the error esti-
mation and feature vector. After sampling stage, each cluster
has similar features inside. To reconstruct the final image,
feature clusters are modeled by polynomial functions using
regression analysis. The color of each pixel is computed by
integrating these polynomial functions. Our algorithm has
the following contributions:

The feature vector In order to distinguish the different fea-
tures of the rendering space, a feature vector is introduced.
Our feature vector contains affine invariant gradient, local
variance and position. Affine invariant gradient is used to
identify the discontinuity. Local variance is used to estimate
the feature difference. Position is used to combine the cluster.

Feature cluster According to the discontinuous and smooth
regions of the rendering space, our algorithm organizes the
multidimensional rendering space into clusters. The cluster
is a set of cells. The shape of our cluster is formed by the fea-
ture vector. Each cluster has similar features inside. Different
clusters have different features. During the sampling stage,
we progressively reassign the cells into clusters by adaptive
sampling.

Curve reconstruction In order to generate smooth and high
quality images, regression analysis is employed to represent
the feature clusters. The light field in each cluster is modeled
by polynomial functions. The final image is computed by
integrating these polynomial functions.

2 Related work

Most physics-based photorealistic methods integrate the light
field of the scene to generate high quality images. There are
three efficient ways to improve this kind of rendering meth-
ods: adaptive sampling, space partitioning and multidimen-
sional reconstruction.

Adaptive sampling Since aliasing in rendering has been
discussed by Crow [5], many adaptive sampling methods
are given to solve this major problem in Monte Carlo ray
tracing. Local variance is used to adaptively sample the
image space or multidimensional rendering space [6,7].
Lepage [8] gives an adaptive multidimensional integration.
Szécsi et al. [9] introduce an adaptive sampling method for
environment mapping. Because they only focus on local fre-
quency, it is very expensive to generate high quality images.
To adaptively sample the rendering space beyond the image
space, frequency analysis methods are introduced. Wavelet
is employed to capture the variance in non-image dimen-
sions [10]. Fourier transform is used to render high quality

special effects such as motion blur or complex shadows [11].
Most this kind of methods analyze only one or two dimen-
sions, because the derivation of general spectrum equation is
hard.

Space partitioning Detecting the edges of the rendering space
has been researched for a long time. Early researchers focus
on finding the visibility and shadow of the scenes [12]. Some
methods store the discontinuity information of textures to
avoid aliasing [13]. Recently, f-divergence is used in the ren-
dering method to analyze space and judge if more samples
are necessary [14]. Bala et al. [3] propose a method based on
combining edges and points to render high quality images,
which need extra information to identify the edges. Kd-tree
structure is used to divide multidimensional space [4]. The
kd-tree separates the feature into multidimensional nodes and
assumes light field in each node is flat, which may cause
aliasing.

Multidimensional reconstruction Early reconstruction meth-
ods treat the pixel as isotropic area. They use simple fil-
ters to blur the noise and synthesize the images which may
cause terrible aliasing on the edges [15]. In order to avoid
this kind of aliasing, many reconstruction techniques are
proposed. Some methods synthesize high quality image due
to additional sample information such as the geometry and
speed of the objects [16,17]. But the additional information
limits their generality. Some methods analyze multidimen-
sional rendering space to generate high quality images [4],
but most of these methods suffer the curse of dimension-
ality. Li et al. [18] introduce an unbiased estimator SURE
to reduce noise in image space. Durand et al. [11] analyze
the light transport in frequency domain using Fourier trans-
form. According to their research, many anisotropic filters
are given to render effects such as motion blur, depth of field
or soft shadows.

3 Overview

Photorealistic images are synthesized by computing the light
transport equation (LTE) in Monte Carlo ray tracing sys-
tems [19]. In order to render the effects such as motion blur
and depth of field, each pixel is computed by integrating the
radiance through a multidimensional rendering space. In this
article, we separate the rendering space and consider the inte-
gration as the sum of many separated subspaces’ integrations.

P(i, j) =
∑

�k∈Pixel(i, j)

L�k

=
∑

�k∈Pixel(i, j)

∫

�k

l(u1, u2, . . . , un)du1du2 . . . dun

(1)

123

Adaptive cluster rendering via regression analysis 107

Fig. 1 The overview of our algorithm

The multidimensional rendering space is separated and
organized into many clusters. L�k denotes the contribution of
cluster �k . l is the radiance function of the multidimensional
cluster. To reconstruct the pixel value, polynomial function
is used to evaluate the contribution of each cluster based on
regression analysis.

The core idea of our algorithm is to organize the render-
ing space into reasonable parts and model each part by poly-
nomial functions. Our algorithm has two stages: adaptively
sampling based on cell clusters and reconstruction based on
polynomial functions (Fig. 1). In order to separate and orga-
nize the rendering space, the sampling space is partitioned
into a grid of cells. A cell is a cube or hypercube of the sam-
pling space, its size is typically one pixel or quarter of a pixel.
Each cell contains a feature vector. This vector contains the
position of the cell, as well as the gradient and variance of the
radiance in the local neighborhood of the cell. At the begin-
ning of sampling stage, the rendering space is coarsely sam-
pled. We compute the feature vector of each cell based on the
coarse samples. The sampling space is organized into clus-
ters by the feature vector. When a cluster is constructed, we
estimate its error value. During the sampling stage, the clus-
ter having the maximum error value is adaptively sampled.
When a cell receives new samples, we recompute its feature
vector and the cell may be reassigned to another cluster. Our
algorithm repeatedly samples the scene until all the budget
samples are used, typically we use 4–16 samples per pixel.

Table 1 The pseudo-code of our algorithm

After adaptive sampling, the rendering space has been
divided into reasonable clusters. Because of the feature vec-
tor, each cluster has similar features, such as the similar mate-
rial part of the object or the depth of field area of the same
object. Smooth polynomial functions are introduced to rep-
resent the sampling space in each cluster. The contribution
l of each cluster is modeled by polynomial functions. The
samples are used to build the polynomial function based on
regression analysis. The final image is generated by comput-
ing the light contribution in each cluster as shown in Eq. 1.
The integrations of the cluster contribution are computed by
the polynomial function. Table 1 shows the pseudocode of
our algorithm.

4 The feature vector

In order to separate the different features from the ren-
dering space, we identify a feature vector. Our algorithm
assumes the rendering space is partitioned into a grid of

123

108 X. D. Liu, C. W. Zheng

small equal cells. For example, if the rendering space is a
two-dimensional image space, the cell is a square and the
size of each cell is proportional to the pixel, like a quarter
of pixel. Each cell stores a feature vector and the samples
distributed in it. The feature vector represents the feature of
the cell and it is used to build the cluster. It contains gradient,
variance and position.

F = {gaff , var, p} (2)

The feature vector F is defined to represent the feature
of different cells in the rendering space. It is constructed by
the image affine invariant gradient gaff , the local variance
var and the cell’s position p. We use affine invariant gradient
to identify the discontinuities, local variance to estimate the
feature error and cell’s position to combine the cluster. These
values can all be computed from sample’s contribution and
position. These three parameters organize the cell reasonably
and give a high quality result.

The key of cluster building is to find the edge of different
features. In order to detect the boundaries of the sampling
space’s features, our algorithm is inspired by the active con-
tour model [20]. We build the initial cluster using the coarse
samples and progressively reassign the cells into reasonable
clusters. We obtain the deformation by computing the fea-
ture vector. To detect edge in an affine invariant form, affine
invariant gradient gaff is introduced. It is useful to detect
edges and corners in an image [21]. It computes the gradient
in two-dimensional space. A gradient detector is performed
to obtain the affine invariant contours. We first introduce the
affine invariant gradient in image space, then we extend it
into multidimensional space. In order to evaluate the gradi-
ent, two basic independent affine invariant descriptors H, J
are calculated.

Hxy = Ixx Iyy − I 2
xy (3)

Jxy = Ixx I 2
y − 2Ix Iy Ixy + Iyy I 2

x (4)

Here, Hxy is an invariant descriptor of the image gradi-
ent which can be computed from light contribution I . Jxy is
another invariant descriptor of the light gradient. They are
used to identify the corners and edges in an affine invari-
ant form. Ixx , Iyy and Ixy are the second-order derivatives
in image space. Ix and Iy are the first-order derivatives. For
example, Ix is the derivative of the light contribution in sam-
pling space with respect to the x-axis. Ixy is the derivative of
the Ix function with respect to the y-axis. The equations of
Ix and Ixy are shown below:

Ix (i, j) = (Ī (i + 1, j) − Ī (i − 1, j))/2 (5)

Ixy(i, j) = (Ix (i, j + 1) − Ix (i, j − 1))/2 (6)

Here, Ī (i, j) denotes the light contribution in the sampling
space. It is the mean sample value of the cell. i, j means the

coordinates of the cell. The other derivatives are computed in
the same way. After computing the invariant descriptors H
and J , the affine invariant gradient in image space is evaluated
as below:

gaff =
√

H2
xy/(J 2

xy + 1) (7)

Here, gaff is the affine invariant gradient value in two-
dimensional image space. It is computed by the two invariant
descriptors. In order to render multidimensional space, we
extend gaff to a multidimensional gradient descriptor. The
two basic affine invariant descriptors H, J are extended to
multidimensional descriptors.

H̄ =
n∑

i=0, j=0,i �= j

Hi j J̄ =
n∑

i=0, j=0,i �= j

Ji j (8)

They are computed by summing independent two-
dimensional descriptors along every two dimensions. Here,
n is the dimension of the rendering space. H̄ and J̄ give the
basic independent affine invariant descriptors of the multidi-
mensional rendering space. i, j are two different dimensions
of the multidimensional space. Hi j and Ji j are the invariant
descriptors of two-dimensional space. The gaff in Eq. 7 is
computed by replacing Hxy, Jxy by H̄ , J̄ .

This affine invariant gradient value helps to identify the
rapid and flat changing regions in the rendering space and
separates the space into different features. After computing
the edge of different features, we use the following equation
to compute the local variance of a certain cell.

var = 1

N − 1

N∑

i=0

(Ii − Ī)2 (9)

Here, Ii is the contribution of sample i in the cell. Ī is
the mean value of these sample contributions in a cell. N is
the number of samples in a certain cell. In order to assem-
ble the cells in clusters, the feature vector needs the position
information p. The space of the position coordinate is nor-
malized to [0, 1]. The feature vector controls the shape of the
cluster. Affine invariant gradient and the local variance are
computed from the sample contributions, the vector position
is the cell location. Before sampling stage, each cell has an
initial feature vector, typically it is a zero vector.

5 Adaptive Sampling

Our algorithm has two main stages: adaptive sampling and
polynomial reconstruction. In sampling stage, the cells in
rendering space are progressively reassigned into clusters.
These clusters are built by using the feature vector. An error

123

Adaptive cluster rendering via regression analysis 109

(a) (b) (c) (d)

Fig. 2 The process of building the clusters. In order to separate dif-
ferent clusters in the rendering space, our algorithm considers different
characters of the feature. a The rendering space. b The clusters which
organized by only considering the variance values. c The space is sepa-

rated into several small clusters by including the position vector. d The
final result using affine invariant gradient. The gradient is computed
from H and J invariant descriptors

estimation is used to adaptively sample the rendering space.
After sampling stage, each cluster has similar features inside.

At the beginning, the feature vector of each cell is initial-
ized to 0. In order to initially evaluate the rendering space, the
rendering space is coarsely sampled using random strategy.
We compute the feature vectors of the cells which receive new
samples. Then, we build the initial clusters. The entire sam-
pling space is one cluster. The feature vector is used to orga-
nize the cell of the rendering space. gaff indicates the edges
of the features. var implies the variance in sampling space. Its
position term p controls that each cluster is continuous. These
cells are organized into clusters by the following equation:

� = {Ci : ω||Fi − F̄ || ≤ err} (10)

Each cluster � is composed of cells Ci and has a standard
vector F̄ which is the mean feature vector. If the distance
between the feature vector Fi of cell Ci and the standard
vector is less than a threshold, Ci is considered to be in clus-
ter �, otherwise Ci is refused. ω ∈ (0, 1] controls the clus-
ter’s deformation. If ω is larger, the cluster will be smaller.
Otherwise, the cluster will be larger. The cluster cannot over-
lap. The cell will assign to the cluster with the most similar
standard feature vector around it (Fig. 2).

After initializing the clusters, to adaptively sample the
rendering space and progressively reassign the cells, an error
value is estimated from feature vector.

err = 1

N 2

∑

Ci ,C j ∈�

||Fi − F j || (11)

The differences of feature between every two cells are used
to estimate the error value err. err is defined by the mean value

of all the differences. N is the count of cells in cluster �. The
error value is used for adaptive sampling.

After computing the error value of each cluster, the clus-
ter having the maximum error value is randomly distributed
a certain number of samples, typically is 4–16. When a cell
receives new samples, the feature vectors of this sampled cell
and only its neighbors are need to be recomputed. Our algo-
rithm reorganizes these cells by their new feature vectors.
According to Eq. 10, each cell is assigned an error value. If
one cell is refused by one cluster, it is reassigned to another
cluster around it. If it does not belong to any clusters, it builds
a new cluster. After the reorganization, the error value of the
modified clusters is recomputed. Based on the adaptive sam-
pling stage, the cluster is progressively deformed. The sam-
pling stage will not stop until all the budget samples are used.

6 Curve reconstruction

After adaptive sampling, each cluster should have similar
features inside. It means the light field varies slowly in each
cluster. The light contribution of one cluster can be evaluated
by a smooth multidimensional function. We assume that the
contribution in the cluster changes independently along each
dimension. The multidimensional contribution function can
be evaluated by many smooth polynomial functions for each
rendering space dimension.

l(u1, u2, . . . , un) ≈ 1

n
(f1(u1)+ f2(u2)+· · ·+ fn(un))

(12)

Here, l is the contribution function. The count of render-
ing space dimensions is n. u1, u2, . . . , un are the position
of multidimensional space. f1, f2 . . . fn are the polynomial

123

110 X. D. Liu, C. W. Zheng

(a) (b) (c) (d)

Fig. 3 In order to compute the smooth integration efficiently, differ-
ent polynomial functions are used. a The linear function computed by
the least-square method. b The polynomial function built by the cell
contributions. c The curve surface which is built by polynomial and lin-

ear functions. d Algorithm that computes the pixel value by integrating
the polynomial functions along the cluster, the three figures on the left
are the regression functions in different clusters according to the pixel
position

functions along each dimension. According to these func-
tions, we can compute the cluster’s contribution as below:

L� ≈ 1

n

∫

�

f1(u1)+ f2(u2)+· · ·+ fn(un)du1 . . . dun (13)

Because the polynomial functions f1, f2, . . . , fn are inde-
pendent, the cluster contribution can be combined by inte-
grating each function independently.

P(i, j) ≈ 1

n

n∑

d=1

∑

�sub∈P(i, j)

Fd
sub|

�max
sub,d

�min
sub,d

(14)

Here, F is the integrated function of f in Eq. 13. �sub

is the parts of clusters which only covers the area of pixel
P(i, j). Fd

sub is the integrated function of cluster �sub along
dimension d. �max

sub,d and �min
sub,d are the maximum and min-

imum value in dimension d of cluster �sub. The pixel value
of final image in Eq. 1 can be calculated. In order to gen-
erate the final image, each pixel is computed by summing
all the cluster contribution in its space. And the clusters are
modeled by polynomial functions. The contribution of each
pixel is computed by integrating these polynomial functions
(as shown in Fig. 3).

6.1 Least-squares estimation

The light contribution in the cluster is modeled by many poly-
nomial functions along each dimension. Because clusters are
organized by similar features of the rendering space, the light
contribution of each cluster can be approximated by simple
polynomial functions along each dimension. These functions
are continuous, smooth and integrable. Due to these charac-
teristics, we use regression analysis to estimate the them.
Least-squares estimation is employed in our algorithm. The
function f in Eq. 13 is shown below:

f (x) =
n∑

i=0

ai xi (15)

The polynomial function f (x) has n + 1 elements. ai is
the i th coefficient of the function. xi is the i th element. The
sparse samples in each cluster are used for fitting. To calculate
the coefficient ai , we use the following equation.

m∑

j=0

c(x j) f (x j) =
n∑

i=0

m∑

j=0

ai c(x j)xi
j

m∑

j=0

c(x j) f (x j)x j =
n∑

i=0

m∑

j=0

ai c(x j)xi+1
j (16)

. . .
m∑

j=0

c(x j) f (x j)xn
j =

n∑

i=0

m∑

j=0

ai c(x j)xi+n
j

Here, n indicates the number of elements in f (x). m is
the number of x value used to build the function. c(x) is the
weight of x . According to the least-squares estimation, we
use Eq. 16 to compute coefficient ai in Eq. 16. We use these
n equations to compute ai . Because of the division strategy,

Fig. 4 The sample distributions of chess scene and magic lamp scene
using our algorithm

123

Adaptive cluster rendering via regression analysis 111

the feature in each cluster is smooth and simple. We use lin-
ear function or parabola function to model the cluster. Linear
function has two elements (n = 1), and parabola function
has three elements(n = 2). They can be easily computed
and integrated in constant time. In implementation, the num-
ber m is all the cell position along each dimension. x is the
contribution value of the cell. The weight c(x) is the count
of ray tracing samples in cell x .

7 Results and discussion

Our algorithm and previous methods are implemented in
LuxRender 1.0 [22]. All results are rendered on a Intel Core
i7 CPU at 2.8 GHz with 2 GB RAM. First, we analyze the
sample distribution in our algorithm. Second, we compare
the convergence rate using different parameters and ana-
lyze the polynomial function. Third, our algorithm is com-
pared with the previous methods such as adaptive wavelet

Fig. 5 The analysis of parameter ω in our algorithm. a The time and mean square error using different parameter values. b The mean square error
using different values of ω with different samples per pixel

Fig. 6 The images rendered by our algorithm using different polynomial functions

123

112 X. D. Liu, C. W. Zheng

Fig. 7 a A 3D scene with motion blur effect. b A 5D scene with depth of field and motion blur effects. Our algorithm generates better images than
the previous image space adaptive rendering methods

rendering (AWR) [10], greedy error minimization method
(GEM) [23] and the multidimensional adaptive rendering
method (MDAS) [4].

7.1 Sampling distribution

Figure 4 shows the sample distribution of chess scene and
magic lamp scene rendered by our algorithm. Both images
use eight samples per pixel. Our algorithm adaptively sam-
ples the cluster of the rendering space whose error value is
higher. The sample distribution of chess scene shows that
our algorithm can focus on the edge of the object and the
depth of field regions. The sample distribution of the magic
lamp scene shows that in global illumination scene, the sam-
ples are smooth because they are receiving indirect illu-
mination. The sample distribution also indicates the clus-
ter in the rendering space. Low sample density means low

density clusters. High sample density means high density
clusters.

7.2 Convergence analysis

We analyze the convergence rate of our algorithm by render-
ing the same scene with different ω parameter in Eq. 10. We
render the magic lamp scene in 512 × 512 resolutions (with
8 samples per pixel in Fig. 5a). According to the threshold
in Eq. 10, different values of ω give different clusters dur-
ing the sampling stage. ω should be equal or greater than
1. Figure 5a shows that when ω is high, the mean square
error value is high and the time consumption is low. This
experiment shows that when ω is 0.7, the algorithm gives a
high quality result and the time consumption is acceptable.
Figure 5b shows the convergence rate of our algorithm using
different ω. The mean square error shows that when ω is
small, the convergence rate is fast.

123

Adaptive cluster rendering via regression analysis 113

7.3 Comparing curve functions

Our reconstruction strategy is analyzed by rendering the mag-
ical lamp scene and the dragon scene using different poly-
nomial functions. All images are rendered with four samples
per pixel at resolution 512 × 512. Both scenes are recon-
structed using linear functions or parabolic functions. The
magical lamp scene is rendered only in image space. Com-
pared with the reference image, the reconstruction method
using parabolic function gives a higher quality result. The
dragon scene is rendered in four-dimensional space includ-
ing image and lens dimensions. The results show that the
image using parabolic function is as similar to the reference
images as the one using linear function, but the parabolic
function takes much more time. If we adaptively render the
image space, the features in sampling space are complex.
The parabolic function gives better results. If we adaptively
render the multidimensional space, the features along each
dimension is simple. The results using these two kinds of
functions are similar (Fig. 6).

7.4 Results

Our algorithm can be used in both image space ren-
dering and multidimensional space rendering. When the
number of dimensions increases, the computing time and
memory consumptions of the feature vector and polyno-
mial functions also increase. Therefore, we use differ-
ent strategies in different dimensional rendering spaces. In
image space rendering, we use parabola in reconstruction.
In multidimensional rendering, we use linear function in
reconstruction.

In image space rendering, we compare our algorithm with
previous methods such as AWR and GEM. Figure 7a shows
a billiard scene with motion blur effect. This scene con-
tains different color balls. Two of them are moving and one
ball is rotating. The resolution of these rendered images is
1,024 × 1,024. Each image uses eight samples per pixel.
GEM method uses multiscale filters to smooth the image,
it filters a better result than AWR on the region of motion
blur. AWR method uses local frequency information to sam-
ple and remove the noise, it reconstructs smooth edges in
which GEM has aliasing. Compared with these two meth-
ods, our method achieves near reference quality image. Fig-
ure 7b shows an outside car scene with depth of field and
motion blur effect. There is a moving car in the front and the
camera is moving with the car. The focus is on center of the
car. The resolution of the rendered images is 1,024 × 1,024.
Each method uses 16 samples per pixel. GEM method fil-
ters the blur based on minimizing the local numerical error
in square regions, it has a better result of blur regions than
AWR method. AWR reconstruct higher quality edges than
GEM. Our algorithm reconstructs image by clusters due to

Fig. 8 We compare our algorithm with the MDAS in a 4D scene with
depth of field effect

the features. It renders a better result than these previous
methods in both the motion blur and depth of field blur
regions. The images and MSE values of the two scenes show
that our algorithm gives high quality images in image space
rendering.

In multidimensional space rendering, we compare our
algorithm with MDAS method. Figure 8 is a chess scene
with depth of field effect. This scene is combined with white
and black chessmen. The focus of the camera is on the black
bishop in the center. The resolution of the rendered images
is 1,024 × 1,024. Each image uses 16 samples per pixel.
Because of the polynomial reconstruction, our algorithm
gives a smoother result in depth of field area than MDAS.
The visual images and MSE show that our algorithm renders
a high quality result in multidimensional rendering.

7.5 Limitations

Our algorithm has some limitations. First, we tile the ren-
dering space to cells. It limits the precision of the rendering.
Second, similar to most multidimensional methods, our algo-
rithm suffers the curse of dimensionality. The integrands of
the polynomial functions should be simple when the number
of dimensions increases. In implementation, we only con-
sider the time and lens dimensions. Third, we only use a few

123

114 X. D. Liu, C. W. Zheng

easy integrated functions to model the cluster. There are still
some special features that are hard to be represented by these
functions.

8 Conclusions

In this article, we propose a novel adaptive rendering method.
A feature vector which contains affine invariant gradient,
variance and position is introduced to organize the render-
ing space into clusters. These clusters are used to adaptively
sample the scene. After sampling, each cluster has similar
features inside. In order to reconstruct the rendering space,
each cluster is modeled by smooth polynomial functions.
We integrate these functions to generate the final image. Our
algorithm gives higher quality images in both visual quality
and numerical error than previous methods.

References

1. Mitchell, D.P.: Generating antialiased images at low sampling den-
sities. Computer Graphics Proceedings. Annual Conference Series,
ACM SIGGRAPH, vol. 21, pp. 65–72. ACM, Anaheim (1987)

2. Clarberg, P., Jarosz, W., Akenine-Möller, T., Jensen, H.W.: Wavelet
importance sampling: efficiently evaluating products of complex
functions. In: Proceedings of ACM SIGGRAPH 2005. ACM Press,
Los Angeles (2005). http://graphics.ucsd.edu/papers/wis/

3. Bala, K., Walter, B., Greenberg, D.P.: Combining edges and points
for interactive high-quality rendering. ACM Trans. Graph. 22(3),
631–640 (2003). http://doi.acm.org/10.1145/882262.882318

4. Hachisuka, T., Jarosz, W., Weistroffer, R.P., Dale, K.: Multidimen-
sional adaptive sampling and reconstruction for ray tracing. ACM
Trans Graph (Proceedings of the SIGGRAPH Conference) 27(3),
33:1–33:10 (2008)

5. Crow, F.: The aliasing problem in computer-generated shaded
images. Commun. ACM 11, 799–805 (1977)

6. Mitchell, D.P.: Spectrally optimal sampling for distribution ray
tracing. In: Computer Graphics Proceedings. Annual Conference
Series, ACM SIGGRAPH, vol. 25, pp. 157–164. ACM, Las Vegas
(1991)

7. Liu, X.D., Wu, J.Z., Zheng, C.W.: Kd-tree based parallel adaptive
rendering. Vis. Comput. 28(6–8), 613–623 (2012)

8. Lepage, G.P.: An Adaptive Multidimensional Integration Program.
Cornell University, NY, CLNS-80/447 (1980)

9. Szécsi, L., Szirmay-Kalos, L., Kurt, M., Csébfalvi, B.: Adaptive
sampling for environment mapping. In: Proceedings of the 26th
Spring Conference on Computer Graphics, pp. 69–76. ACM, New
York (2010). http://doi.acm.org/10.1145/1925059.1925073

10. Overbeck, R.S., Donner, C., Ramamoorthi, R.: Adaptive wavelet
rendering. ACM Trans. Graph. (Proceedings of the ACM SIG-
GRAPH Asia Conference) 28(5), 1–12 (2009)

11. Durand, F., Holzschuch, N., Soler, C., Chan, E., Sillion, F.X.: A
frequency analysis of light transport. ACM Trans. Graph. 24(3),
1115–1126 (2005). http://doi.acm.org/10.1145/1073204.1073320

12. Durand, F.: 3D Visibility: analytical study and applications. PhD
thesis, Grenoble University (1999). http://www-imagis.imag.fr

13. Sen, P.: Silhouette Maps for Improved Texture Magnification. In:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Confer-
ence on Graphics Hardware, pp. 65–73. ACM, New York (2004).
http://doi.acm.org/10.1145/1058129.1058139

14. Rigau, J., Feixas, M., Sbert, M.: Refinement criteria based on F-
divergences. In: Proceedings of the 14th Eurographics Workshop
on Rendering, pp. 260–269. Eurographics Association, Switzer-
land (2003). http://dl.acm.org/citation.cfm?id=882404.882442

15. Gamito, M.N., Maddock, S.C.: Accurate multidimensional
Poisson-disk sampling. ACM Trans. Graph. 29(1) (2009)

16. Sen, P., Darabi, S.: On filtering the noise from the random para-
meters in Monte Carlo rendering. ACM Trans. Graph. 31(3), 1–15
(2012). http://doi.acm.org/10.1145/2167076.2167083

17. Lehtinen, J., Aila, T., Chen, J., Laine, S., Durand, F.: Temporal light
field reconstruction for rendering distribution effects. ACM Trans.
Graph. 30(4) (2011)

18. Li, T.M., Wu, Y.T., Chuang, Y.Y.: Sure-based optimization for
adaptive sampling and reconstruction. ACM Trans. Graph. (Pro-
ceedings of ACM SIGGRAPH, Asia 2012) 31(6), 186:1–186:9
(2012)

19. Kajiya, J.T.: The rendering equation. Comput. Graph. (Proceedings
of ACM SIGGRAPH 86) 143–150 (1986)

20. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour mod-
els. Int. J. Comput. Vis. 1, 321–331 (1988)

21. Sapiro, G.: Geometric Partial Differential Equations and Image
Analysis. Cambridge University Press, New York (2006)

22. http://www.luxrender.net/ (2008)
23. Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and

reconstruction using greedy error minimization. ACM Trans.
Graph. (Proceedings of the SIGGRAPH Asia Conference) 5(3),
1–10 (2011)

Xiao Dan Liu is a Ph.D. candi-
date in the National Key Labo-
ratory of Integrated Information
System Technology, Institute of
Software, Chinese Academy of
Sciences. He received his B.Sc.
degree from Xiamen University
in 2009. His research interests
include computer graphics, real-
istic rendering, game developing
and computer simulation.

Chang Wen Zheng is a Profes-
sor in the National Key Labo-
ratory of Integrated Information
System Technology, Institute of
Software, Chinese Academy of
Sciences. He received his Ph.D.
degree from Huazhong Univer-
sity of Science and Technology.
His research interests include
computer graphics, virtual real-
ity, computer simulation and arti-
ficial intelligence.

123

http://graphics.ucsd.edu/papers/wis/
http://doi.acm.org/10.1145/882262.882318
http://doi.acm.org/10.1145/1925059.1925073
http://doi.acm.org/10.1145/1073204.1073320
http://www-imagis.imag.fr
http://doi.acm.org/10.1145/1058129.1058139
http://dl.acm.org/citation.cfm?id=882404.882442
http://doi.acm.org/10.1145/2167076.2167083
http://www.luxrender.net/

	Adaptive cluster rendering via regression analysis
	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 The feature vector
	5 Adaptive Sampling
	6 Curve reconstruction
	6.1 Least-squares estimation

	7 Results and discussion
	7.1 Sampling distribution
	7.2 Convergence analysis
	7.3 Comparing curve functions
	7.4 Results
	7.5 Limitations

	8 Conclusions
	References

