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Abstract In various applications of computer graphics and
model-based computer vision, a human shape model cannot
only model the kinematic properties of a subject to drive the
mesh into various postures, but it can also be utilized to para-
meterize the shape variations across individuals. It is of great
benefit to improve the diversity of the training databases by
learning the model from multiple databases, once the corre-
spondences among scans of these databases can be achieved.
To accomplish this goal, we proposed a framework to match
the scans from multiple databases, using the assistance of
kinematic properties, to compute the correspondences. The
resulting correspondence is accurate, robust, capable of han-
dling scan incompletion, and is homogeneous across shapes
and postures. In our approach, we start with evaluating how
a correspondence, which is achieved via minimizing the
deformation energy, agrees with the kinematic properties,
and then, we jointly fit the source scans to the target scans
to derive the correspondences between the databases. The
extensive results show that our approach can generate a faith-
ful correspondence even in extreme cases, without carefully
selecting the deformation factors and markers. We also devel-
oped a method, with which a commendable and predictable
result can be synthesized, to control the rendered shape in an
intuitive way.
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1 Introduction

Human shape models are widely utilized in applications of
motion capture [23,26], surface animation [29], shape com-
pletion [3], mesh deformation and synthesis [12,15]. They
not only can model the kinematic properties of a subject
as an articulated skeleton, which can be used to drive the
mesh deforming into various postures, but are also capable
of parameterizing the shape of different individuals. There-
fore, an optimization-based motion capture system, e.g., [26],
can utilize such models to track the motion of any subject
regardless of how the shape changes. To accomplish this goal,
approaches are proposed for learning human shape models
from a series of scans for hundreds of individuals in various
postures, such as EigenSkin [16], Linear Blending Skinning
[12,17], SCAPE [3], and so forth.

In these human body models, the surface variations, which
arise from varying postures and shapes, are learned from the
training database in the form of meshes or point clouds. The
performance of these learned models is thereby highly depen-
dent on the diversity of postures and shapes in the input scans.
Existing databases typically contain tens of scans, such as the
partially opened SCAPE database [3] and the fully opened
MPI database [9]. The opened subset of the SCAPE data-
base provides scans for a single subject in different postures
at a relatively high scan density, while the MPI database con-
tains shapes for approximately 100 individuals at a relatively
low scan resolution. Learning a model from either of these
databases alone cannot achieve an attractive result in terms
of generalizability. Nevertheless, the result can be improved
via learning the model from scans that come from two or
more databases, which is of great benefit in enhancing the
diversity of the training scans.

Merging the databases to learn a human body model is
not accomplished by simply placing all of the scans from
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Fig. 1 We merge multiple databases via establishing correspondences with the assistance of the kinematic consensus to learn the human shape
model, which can be used to generate surfaces across various shapes of humans in arbitrary postures

different databases together because all of the existing
approaches for training human shape models are highly
dependent on the correspondences between any pair of scans
to measure and parameterize how the surface varies with the
changes in postures and shapes. Specifically, the shape vari-
ations are investigated by calculating changes between a ver-
tex/triangle and its corresponding vertex/triangle in scans for
different postures or shapes. The correspondences are used
here to indicate the mapping between the vertex and its coun-
terpart. In the most common case, the correspondences in a
database are usually derived with the assistance of markers,
which are installed uniformly before the subjects are scanned.
For lack of these markers, it imposes a significant difficulty
in establishing the correspondences accurately between data-
bases that are scanned separately compared with databases
that are scanned uniformly; however, in this paper, we will
show that this concern can be relaxed with the help of the
kinematic properties.

On the other hand, the kinematic properties should be
taken into account in achieving the correspondences across
different postures and shapes, to allow the derived body
model to describe the shape variations homogeneously. For
example, to establish correspondences between a source
database A and a target surface b via a correspondence algo-
rithm, which is achieved by minimizing the deforming energy
as [24], the correspondences should be different when diverse
surfaces in A are chosen to be deformed to the target sur-
face b. These differences will obviously affect the learned
human body model; even in this case, the same database A
plus a single surface b are used as input. Moreover, in some
approaches, such as SCAPE, the shape variations are eventu-
ally parameterized via Principal Component Analysis (PCA)

[13]. This heterogeneity, which results from scan-to-scan
deformation without accounting for the kinematic properties,
will greatly enlarge the PCA space to encode the variations
and, thus, will correspondingly increase the parameter search
space in applications of the model, such as the motion cap-
ture that jointly optimizes the shape and motion parameters.
Last but not least, without considering the kinematic prop-
erties, the deforming energy, the deforming factors and the
human-induced markers should be designed carefully. Oth-
erwise, the synthesized shape can become drastic in some
extreme cases.

Figure 1 illustrates the learned SCAPE model from a
merged database. To this end, we proposed an approach in
this paper to establish correspondences among multiple data-
bases to enrich the diversity of the training datasets. Sec-
tions 3.1 and 3.2 show how the proposed approach incorpo-
rates the kinematic properties as the consensus in the pos-
tures, and a deformation process is performed to determine
the correspondences between scans from different databases.
Our method not only improves the accuracy of the correspon-
dences but also narrows the parameter space that describe the
shape variations. In Sect. 3.3, we demonstrate that incomplete
scans can also be used to learn the model in the proposed
approach; however, in contrast to traditional approaches that
directly use the template model to fill the holes, we complete
the missing parts via the learned experience on the shape
variations. Then, the scans for all of the shapes and postures,
from ballet dancers to sumo wrestlers, are used to learn the
human shape model, which is further parameterized into the
PCA space and translated into a direct way to control the
generated shapes intuitively in Sect. 4, such as height, weight,
arm length, and other measurements.
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2 Related work

To learn a human shape model from multiple databases, we
require the intrinsic correspondence information between the
scans in these databases. The established correspondences
will be used to measure the variation from a certain ver-
tex/triangle to its corresponding part, which will be modeled
and parameterized to generate the body shape deformation
across different humans in different postures. The shape vari-
ations will be estimated per vertex/triangle; thus, we should
obtain dense correspondences rather than compute sparse
correspondences, such as [5].

Computing dense correspondences between two scans by
feature matching and rigid transformation has been widely
studied in [1,8,11] and [21], with an assumption that each
scan can be perfectly aligned with a rigid transformation.
These methods typically solve the correspondence problem
based on verifying the rigid transformations that involve how
the transformation matches the feature points [11] or closest
points [21], and sometimes cooperate with RANdom SAm-
ple Consensus (RANSAC) [7] for noise in the scans. Once
the feature points or closest points are well aligned, the cor-
respondences are constructed by applying the rigid transfor-
mation to the surface and assigning the correspondences of a
vertex to be its closest counterpart. These approaches are not
suitable for establishing the correspondences between two
scans of human bodies, due to their non-rigid, deformed sur-
face, and varying postures. Therefore, the correspondences
between the scans for human bodies usually focus attention
on only the non-rigid registration.

A common approach to model the non-rigid transforma-
tion that arises from human motion is usually to describe the
motion of humans into a highly articulated 3D model. The
parts of the model are tree-like linked, and the transforma-
tion of them is considered to be piecewise rigid [6,20,28].
Although such a simplified model works for scans of some
artifact subjects, it can fail due to independent localized bend-
ing or stretching of the shapes in an elastic manner, especially
at the joints between two rigid components. Moveover, to
learn a human body model, these methods no longer work
because of variations across different humans.

Recent methods [2,18] are proposed to address the elastic
variations in shapes in applications in which the rigid and
piecewise rigid assumption no longer makes sense. Allen
et al. [2] employ an optimization-based approach to drive the
source meshes to the target scan, while minimizing the defor-
mation energy, and to iteratively find the closest counterpart
of each vertex. These deformations can become stuck at a
local minimum, once the pose and shape variation is large.
Huang et al. [10] also optimize the deformation process to
achieve a non-rigid registration and generate the correspon-
dences using a pruning mechanism, which is similar to the
approach proposed in [24]. However, a deformation-based

approach without considering the kinematic properties can
result in high levels of noise, which will in turn affect the
learned model significantly. Zhang et al. [27] present an
automatic feature-based correspondence algorithm to han-
dle the non-rigid shape variations; nevertheless, similar to
the method in [6], the results are not robust for noise and
for incomplete scans of human bodies, and the features can
vary greatly between bodies. Similar to [2], our approach
also utilizes an optimization-based framework to achieve the
correspondences. However, instead of performing pair-wise
deformation, we achieve the correspondences by evaluating
how such correspondences meet all of the pairs of meshes in
the source and target databases.

More sophisticated approaches incorporate the geometry
information and high-level shape semantics into the shape
analysis pipeline, such as part styles [25], shape analogies
[22], and prior knowledge [14], to establish the correspon-
dences. Inspired by these approaches; however, we intro-
duce more meaningful high-level information to compute
the correspondences, which are accurate, robust, capable
of handling scan incompletion, and homogeneous across
shapes and postures. To meet these requirements, the pro-
posed approach in this paper incorporates the kinematic prop-
erties, the consensus in postures, and the deformation energy
to determine the correspondences. Even in some extreme
cases, the derived correspondences are well established in
human model learning. Moreover, it is homogeneous so that
the learned model requires a relatively smaller PCA dimen-
sion to parameterize the shape variations.

3 Approach

As illustrated in Fig. 2, the purpose of our approach is to learn
a human body model from multiple databases. Two databases
are used in this paper: the SCAPE database [3] and the MPI
database [9]. The SCAPE datasets are partially made avail-
able for research purposes, in which there are 71 scans of
different postures for the same person. Each of the scans con-
tains a set of original scanned meshes with 125K polygons
and a set of hole-filled and simplified meshes with 25K poly-
gons. The correspondences within the database have been
established between each pair of scans using the correlated
correspondence algorithm [4], and the indices of the vertices
in each scan have been aligned in the order of the correspon-
dences accordingly.

Because only a subset of scans in different postures for
the same subject are available in SCAPE, to learn the human
shape model, we merge the SCAPE database and the MPI
database to enrich the diversity of the training datasets of
scans across varying postures and individuals. The MPI data-
base contains a set of relatively low-resolution scans of 111
individuals with 35 postures, and each scan is composed
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Fig. 2 We merge multiple databases, each of which contains tens of
scans across different shapes and postures (left), via establishing the
correspondences with the kinematic consensus to learn a human shape

model, which can be used to generate various shapes of humans in
arbitrary postures (right)

of 6, 449 vertices with 12, 894 polygons each. Similar to
the SCAPE database, the vertices in the MPI database are
also arranged in the order of the correspondences among the
scans.

To learn the human body model from multiple databases,
the correspondences between each pair of scans in differ-
ent databases should be established as the first step. For the
sake of this, we establish the correspondences with kinematic
consensus in Sect. 3.2, which is different from the traditional
correspondence approach. A further discussion of incom-
plete scans will be detailed in Sect. 3.3. To show the dis-
tinction between the correspondences within a database and
the correspondences between databases, we call the former
‘inner-correspondences’ and the latter ‘correspondences’ for
short. The inner-correspondences are assumed to be a part
of the input data, and therefore, we focus on computing the
correspondences between databases. Note that this assump-
tion is not necessary to meet our approach; either our pro-
posed approach or any other correspondence algorithms can
achieve this goal, such as [4].

3.1 Optimization-based correspondences

Optimization-based approaches drive the source meshes to
the target scan, while minimizing the deformation energy,
to establish the correspondences between this pair of scans,

such as the approaches illustrated in [2,18], that iteratively
find the closest counterpart of each vertex, and shape feature-
based approaches [10], which utilize the principal curvatures
and geodesic distance to evaluate the correspondences in each
iteration. Once the pose and shape variation is large between
the source and target, it is easy for these deformations to
become stuck at a local minimum. It is difficult to investi-
gate the correctness of the derived correspondences, due to
the local minimum of optimization. However, we found that
the correctness could be judged among other pairs of scans
in the source and target datasets because the incorrect corre-
spondences usually fail to drive all of the other pairs of scans
to be stuck at a local minimum. Inspired by this observation,
we propose a pipeline to establish more robust correspon-
dences with all of the scans in the source and target. In this
section, we begin with the deformation-based approach, and
an optimization framework to achieve the correspondences
with kinematic consensus will be demonstrated in Sect. 3.2.

Because the datasets that are used for learning the
human body model come from different sources, there is
no uniformly pre-installed marker that is associated with
the scanned data. Furthermore, the datasets are scanned
across different individuals and postures, therefore, a set of
markers, {z1 . . . zL}, are manually introduced into the input
scans respectively. Because of the existence of the inner-
correspondences, each marker can be introduced separately

123



Learning human shape model from multiple databases with correspondence considering kinematic consensus 23

Fig. 3 The markers are introduced into the scans in different postures
(left) and assembled via the method of voting (right)

into and located easily in the scans, where such a marker is
easy to locate. Later, these markers are assembled via the
method of voting to unify their associated vertices, as illus-
trated in Fig. 3.

To establish the correspondences between databases, we
fit the source surface, S, to the target surface, T, in which
S indicates the set of the scans, Ss, s ∈ [1 . . . |S|], of the
source surface. Each of the scans Ss is composed of N ver-
tices, which are denoted as vs

i , i ∈ [1 . . . N ]. To accomplish
the matching between Ss and Tt , we employ an optimiza-
tion framework to derive a set of affine transformations that
minimize the deformation energy:

Es,t = αEDs,t + βESs,t + γ EMs,t (1)

To accomplish a good matching, corresponding meshes in
S and T should be as close as possible. Hence, a distance error,
EDs,t , is defined as the sum of squared distances between
each vertex in Ss and its counterpart in Tt :

EDs,t =
N∑

i=1

||v̂s
i − cs

i ||2 (2)

where v̂s
i is the deformed location for vs

i , which is solved
by minimizing the energy function, to fit the target meshes.
Here, cs

i is the closest vertex in the meshes Tt of the deformed
vertex v̂s

i .
The purpose of the deformation process is to determine the

closest counterpart for each vertex; however, using only the
criterion EMs,t could lead to an under-constrained objective
function and an undesirable match that the vertices in Ss are
mapped to disparate parts of Tt , and vice-versa. To achieve a
smooth matching, a smoothness error, ESs,t , is introduced to
drive the meshes in S to the T smoothly along with the vertex
in their neighborhood. Specifically, we constrain the Lapla-
cian Coordinates [19] of the deformed vertex v̂s

i to remain as
similar as possible to vs

i :

ESs,t =
N∑

i=1

||Ti L(v̂s
i ) − L(vs

i )||2 (3)

in which L(·) denotes the Laplacian Coordinates, which can
be derived by

L(v) = v − 1

Deg(v)

∑

u∈Ad j (v)

u (4)

where Adj(v) denotes the set of vertices in the neighborhood
of v, and Deg(v) represents the number of degrees of its
neighborhood. Obviously, the Laplacian Coordinates are not
rotation-invariant, therefore, the they should also change their
orientations if the meshes rotate. Ti is the rotation matrix of
vertex vs

i .
The terms EDs,t and ESs,t drive the meshes in Ss moving

toward the meshes in Tt as long as they are close enough
to each other initially. In most common situations, however,
the meshes in Ss have not been well aligned to the meshes
in Tt , which implies that the optimization will become stuck
at a local minimum. To avoid local minima, we introduce a
maker error EMs,t :

EMs,t =
L∑

i=1

||v̂s
Zs (i)

− ut
Zt (i)

||2 (5)

where the Zs(i) and Zt (i) are vertex indices of marker zi in
S and T, respectively.

As illustrated in Fig. 4, the markers in Ss are transformed
to the locations of their corresponding parts in Tt due to the

Fig. 4 Summary of establishing the correspondences based on the sur-
face deformation. To establish the correspondences, the markers in the
source Ss will be driven toward their counterparts in the target Tt by
the EM energy term, while the other vertices will be carried along by
the markers due to the ES term. As the deformation process iterates, the
ED term in the energy function increasingly becomes dominant. Even-
tually, via minimizing the three energy terms, the source reaches the
target and the correspondences are established after the deformation.
It is also observed that, as a deformation energy-based correspondence
algorithm, the resulting correspondence will minimize the deformation
energy while ignoring the kinematics of human motion. For example,
in this figure, the vertex vs

4 in the rigid bone B reaches its closest coun-
terpart in terms of the minimized energy cost; however, the derived
corresponding vertex belongs to the rigid part A
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Fig. 5 Summary of the process of the deformation. The deformation
process is performed iteratively. As the process is iterating, the source
meshes increasingly deform toward the target

maker error term initially. As the markers are being trans-
formed, the other vertices will be driven to move toward the
meshes in Tt according to the smooth error ESs,t . In the
next phases, the vertices in Ss will be further deformed to
their closest vertex in Tt , as the EDs,t term becomes increas-
ingly dominant. Figure 5 demonstrates an example of such
a deformation process. We iteratively solve the optimiza-
tion problem, and eventually the surfaces are matched and
the correspondence is established. The details of solving the
deformation energy function are given in Sect. 3.2.

3.2 Correspondence with a kinematic consensus

The process of deformation addressed in Sect. 3.1 is to drive
the meshes in Ss to Tt with minimized deformation energy;
however, it was found that the resulting match is heavily
affected by the postures of the source and target scans. Specif-
ically, the lowest deformation energy might not indicate a
very attractive match. For example, in the example demon-
strated in Fig. 4, the vertices vs

4 . . . vs
7 are the components

of the rigid part A, and other vertices are of the rigid part
B. It is easy to verify that the derived match that minimizes
the energy cost is the match that is depicted in Fig. 4, which
means that the vertex vs

4 in the rigid part A near the joints is
driven to a wrong location in part B. This inaccurate defor-
mation will lead to a wrong correspondence that is used by
learning the human body model. A better match is to align
the components of rigid part A in Ss to their corresponding
components of the rigid part A in Tt ; however, this goal can-
not be achieved given such a pair of scans in Fig. 4. This

finding implies that different postures will lead to different
matches, and some postures could be suitable for some rigid
parts of a shape to compute the correspondence, and others
could be good for other parts.

Inspired by this observation, we improve the deforma-
tion process to incorporate a kinematic consensus into the
deformation process across different postures and shapes to
establish a more accurate correspondence as demonstrated
in Fig. 6. Instead of transforming a single source in S to a
single target in T, we utilize the inner correspondence within
S and T respectively, to jointly fit the scans in S to all of the
scans in T to derive the correspondence. To accomplish this
goal, we deform the scans from S to T to minimize the joint
energy function:

E = α
∑

t

EDκ(t),t + β
∑

t

ESκ(t),t + γ
∑

t

EMκ(t),t

s.t.

EDs,t =
N∑

i=1

ωt
i ||v̂s

i − cs
i ||2

ESs,t =
N∑

i=1

ωt
i ||L(v̂s

i ) − L(vs
i )||2

EMs,t =
L∑

i=1

ωt
i ||v̂s

Zs (i)
− ut

Zt (i)
||2

(6)

in which the κ(·) denotes the mapping from a scan in T to its
best matched scan in S. Thus, we compute the coordinates
in the PCA space for any scan in T or S. For each scan, the
coordinates for those markers are filtered out and stacked
into a vector according to their kinematic properties, such
as the chain order in the skeleton, to describe the features
of such a scan. The best matched scan for each of surfaces
in T is then computed by searching the closest scan in S

in terms of the distance between the feature vectors. The
energy function in (6) then jointly considers the sum of the
deformation energy to each scan Tt from its most similar
scan Sκ(t). The resulting correspondences can be referred to
as a weighted mean value that minimizes the deformation
energy between all of the pairs of scans. That arrangement
means that the derived correspondences will naturally follow

Fig. 6 The pipelines of computing correspondences with the kinematic
consensus. a We extract and align the feature vectors for each scan in
both the source and target databases via the PCA algorithm, and b the
best matching scan for each target is determined for the next phase.

c The correspondences without considering the kinematic properties is
established for the matched scans to d prepare the impact factors ωt

i .
e Eventually, we jointly fit the source scans to the target scans to derive
the correspondences between the two databases

123



Learning human shape model from multiple databases with correspondence considering kinematic consensus 25

the transitivity. For example, the correspondences between
Si and Tp and the correspondences between S j and Tq are
derived via the proposed method, in which Si and S j are
from the same database, as well as Tp and Tq . One can also
establish the same correspondences between Si and Tp via
Si ⇔ S j ⇔ Tq ⇔ Tp.

A factor ωt
i is introduced to weight how the deformation

from Ss to Ts impacts the vertex vs
i . To derive these factors,

we initially solve the optimization problem in (1) to match
each pair of scans Sκ(t) and Tt to obtain a rough correspon-
dence Cκ(t),t between them, ∀t . With each Cκ(t),t , we follow
the SCAPE model to learn the shape deformation model with
the scan for the new shape. The learned SCAPE model is then
used to generate an instance shape in each posture that is the
same as Tu,∀u, and the error is derived between the gener-
ated instance and Tu at vertex i , denoted as et,u

i . The weight
factor ωt

i is obtained and latter normalized by

ωt
i = φ

(∑|T|
u=1 et,u

i

|T|

)
(7)

where φ(ε) = exp(−ε2

2σ 2 ) and we adopt σ as the scan res-
olution of the database used in the experiments. The final
correspondence is then achieved by applying κ(·) and ωt

i to
the energy function in (6).

We solve both the energy functions in (1) and (6) in an
iterative way. In the first iteration, we ignore the distance
error term using the weights α = 0, β = 1, γ = 10; thus,
the marker error term is the dominant constraint to drive the
meshes in this phase. As the markers deform, other meshes
will be carried along by the smoothness error term, and a set
of valid closest points of each vertex can be found in the sub-
sequent iteration. Then, in the second phase, the optimization
problem is solved by increasing α from 0.5 to 100 in four
steps and preserving β = 1, γ = 1. As α increases, the
meshes in the source approximate the meshes in the target
more and more closely after each iteration. In each iteration,
we update the closest points for each vertex in S from the
compatible vertices, whose normal vectors are no more than
90◦ apart from the normal of such a vertex in S. It is notice-
able that, in the process of deformation with a kinematic con-
sensus, the closest vertex is computed among a set of super
vertices. A super vertex here, more specifically, is generated
by stacking all of the vertices v̂

κ(t)
i ,∀t into a column vector,

whose dimension is 3 × |T|, as well as the vertices ut
i and

cκ(t)
i , ∀t .

The resulting correspondences in deformation-based
methods can suffer from large shape and posture variations
between the source and target scans. In our framework, how-
ever, we jointly compute the correspondences between all
of the source and target scans; therefore, the algorithm can
perform well as long as the distances are not too long. If this
occurs, then the correspondences also can be derived among

Fig. 7 The influence of using various portions of pairs to compute
the correspondences. We examined the performance via two different
strategies. One strategy is to choose the best portion (top), and the
other strategy is to choose the worst portion. The first column is the
target meshes. The results are derived by selecting various portions to
determine the optimization in [1 1

2
1
3

1
4 ] (from left to right). The resulting

correspondence appears to be acceptable even if only one-third of the
best pairs are enrolled. In contrast, the performance degenerates quickly
while choosing the worst matching pairs

the other scans that can meet their close enough matching
counterpart. Because the algorithm performs well when we
consider all of the scans in the MPI and SCAPE databases,
to investigate this situation, we artificially regard some scans
as the scans who are too far away from their matching scans.
To achieve this goal, we sort the pair-wise matching. Instead
of using all of these pairs to establish the correspondences,
we employ parts of them to solve the optimization problem
in (6). Figure 7 illustrates the influence of using various por-
tions of sorted pairs on the final matching results. Once the
best parts of these pairs are chosen, the resulting correspon-
dence appears to be acceptable even if only one-third of the
pairs are enrolled because the derived correspondences can
be achieved indirectly the hint of the chosen sorted match-
ing. This result implies that in case some scans cannot match
a close enough target scan, their correspondences can also
be established from all of the other scans, while the process
simply prevents them from participating in the optimization
of the deformation energy. Those scans can be filtered out
with a threshold when ωt

i is computed in cases where the
correspondences for some of the scans are not acceptable.

3.3 Incomplete surface

The proposed approach, demonstrated in Sect. 3.2, can be
utilized to merge multiple databases to learn the human body
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Fig. 8 Using the learned model to synthesize the missing parts. a The
single input scan is not scanned well, and none of the missing parts can
be extracted from other scans. Therefore, b one could fill the hole by
deforming one of the scans in our database to fit the input surface by
solving the deformation energy by ignoring the distance errors of the

vertices near the holes. The deformation process not only achieves the
correspondences but also fills the holes roughly with a slightly unattrac-
tive detail. c Once the correspondence is established, we use the learned
model to synthesize polished and more attractive patches with derived
approximate shape parameters for the input scan

model. However, some scans could be incomplete due to
occlusions. In the most common cases, the scans are taken
in different postures and, therefore, the missing part in some
scans can be filled by making use of the part that exists in
other scans via algorithms, such as the correlated correspon-
dence algorithm [4]. In this case, the hole can be filled by the
assumption that the missing part can be extracted from at least
one of the scans in different postures. Once this assumption
cannot be met, a hole-filling process is initiated. Instead of
patching up the hole with the surface of the transformed tem-
plate directly, we use the learned SCAPE model to generate
the patches for the holes based on the partial information of
the input scan. Figure 8 demonstrates the resulting meshes.

Recall that the SCAPE model parameterizes the variations
in the body shapes, varying across different individuals and
assuming that the body-shape variation is independent of the
pose variation. The model introduces a linear transformation
matrix Si

k for each triangle k in instance i and learns the
matrix by solving a least squares problem:

argmin
Si

∑

k

∑

j=2,3

‖Ri
k Si

k Qi
k v̂k, j − vi

k, j‖2

+ws

∑

k1,k2 adj

‖Si
k1

− Si
k2

‖2. (8)

The details can be found in [23], and the derived Si is
assumed to be generated from a simple linear subspace,
which is estimated using PCA:

Si = SU,μ(β i ) = Uβ i + μ (9)

which indicates that each shape of an individual is coded into
a column vector β i .

Inspired by the SCAPE model, to patch up the missing
part, we solve the deformation energy in (1) to establish the
correspondence between our model surface and the input
incomplete scan in addition to ignoring the distance error
of the vertices near the holes. After the correspondences are
established, we derive the transformation matrices Si by solv-
ing the optimization in (8), although we only can obtain the
transformation matrices Ŝi for the triangles, which can be
found in the input scan, due to the absent vertices of the miss-
ing part. An approximate PCA vector β̂ i is then obtained by
solving:

argmin
β̂i

||U β̂ i + μ − Ŝi ||2F (10)

where U and μ are the learned parameters in the SCAPE
model. Having β̂ i , the hole-filled shape model can be gener-

ated via the SCAPE model with Si = U β̂ i + μ.

4 Results and discussion

With the derived correspondences, the shape variations can
be learned into a human body model, which is utilized to
realize the human shape animation across various postures
and shapes. In the remainder of this section, we show the
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correctness and efficiency of the proposed method in learning
the shape model, synthesizing existent or nonexistent shapes
into various poses and parameterizing shape variations. We
also investigate how the advantages of learning model form
a merged database and compare the proposed method with
existing non-rigid registration methods.

4.1 Shape synthesis

To animate the human model, we embed an articulated skele-
ton into the model. This kinematic skeleton is composed of
16 rigid parts, and each part is associated with a subset of
meshes in the model. The posture of the skeleton is synthe-
sized via 51 parameters, which denote the global location,

the global orientation and the rotation angles at each joint.
Once we hope to drive the model to render a figure in a certain
posture, we control the skeleton of the model by calculating
the rigid transformation of each rigid part via updating the
skeleton parameters. Sequentially, the associated meshes of
each rigid part are transformed to form the surface into the
desired shapes and postures. Figure 9 illustrates the rendered
shapes of 4 individuals, which were learned from the merged
database, into a posture that was given arbitrarily.

The learned model can also be used to synthesize a
nonexistent shape from two or more subjects in the training
datasets. Figure 10 demonstrates this application. To accom-
plish this goal, we generate the shapes with shape parame-
ters of different individuals and linearly combine those shape

Fig. 9 Rendering a shape of
arbitrary shape and posture.
To render a shape for a certain
individual in an arbitrary
posture, we control the
kinematic parameters of the
skeleton to drive the template
into the desired posture
(colored). We integrate the
rendered posture and the shape
variations, which is learned
from 4 individuals in this figure,
to synthesize the final surface
(grey) for those 4 individuals in
the given posture

Fig. 10 Synthesizing shapes from existing scans. To demonstrate this
application, we generate shapes (colored) of individuals in the train-
ing database. With these shapes, a series of synthetical shapes (grey)

are rendered via linearly combining those shapes. Between each pair
of colored shapes in the figure, the weight factor, used in the linear
combination, increasingly varies from 0.75 to 0.25 (from left to right)
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vertices. These results also imply that the correspondence is
established correctly; thus, it can be used to align the scans
from multiple databases, even for the meshes of the bottoms
of the breasts and the waistline; otherwise, features will cross-
fade instead of moving.

4.2 Comparison with the model learned from a single
database

To show the advantages of learning a human shape model
from a merged database, we also learned a model from a sin-
gle database for comparison. Because the SCAPE datasets
open only the scans across different postures, they cannot be
applied to learn a complete SCAPE model. Nevertheless, we
utilized the MPI database to train a human model. Figure 11
illustrates the resulting comparison. One of the drawbacks

Fig. 11 Comparing the learned model using merged datasets (right)
with the MPI database (left). The results show that the model using
merged datasets provides rendered shapes with higher quality, and
moreover, the variation due to pose changes can be modeled more accu-
rately because it is of great benefit to improve the diversity of training
databases via learning the model from multiple databases

of the MPI database is its low scan quality. Thus, there is
some loss of detail in the rendered shapes that were learned
from MPI database. Because the number of samples used to
train the model is a slightly small in the MPI database, the
derived shapes could be drastic for some postures. In con-
trast, we merged the SCAPE and MPI databases via building
the correspondences between these two datasets. Each scan
in the merged database is composed of 12, 500 vertices and
25, 000 faces, which is the same as the scans in the SCAPE
database. Therefore, we can model the pose and shape vari-
ations without loss of detail. Moreover, the pose variations
can be modeled more accurately because it is of great benefit
to improve the diversity of the training databases via learning
the model from multiple databases.

4.3 Comparison with existing methods

Figure 12 demonstrates the performance comparison of
our method and two non-rigid pair-wise shape matching
approaches [10,18]. For each approach, we examine five test
cases to demonstrate how effectively the approach can be per-
formed on scans of different pose and shape variations. The
Isometric Deformation approach [10] utilizes the principal
curvatures to match the source and target vertices, which will
be further pruned and propagated according to their pair-wise
geodesic distances. This approach works well once the source
mesh is very similar to the target mesh. In the most common
cases, however, the source and target from different datasets
are usually scanned from distinct individuals, which leads
to unmatched principal curvatures and pair-wise geodesic
distances between the source and target. These unmatched
metrics drive the resulting meshes to form incorrect corre-
spondences. Instead of using those shape-related descriptors
such as the principal curvatures used in [10], Li’s approach
[18] utilizes the confidence weights to measure the reliability
of each correspondence and identifies non-overlapping and
overlapping areas. It performs robust even when there is a
large difference between the source and target scans. How-
ever, it fail to establish the correspondences for those pairs
of scans that have large pose variations. The optimization-
based frameworks usually become stuck at a local minimum
while the pose of the source scan is far away from the target
scan because of closest points that are used in each iteration.
In some extreme cases as illustrated in Fig. 13, such as when
the deformation factors and markers are selected carelessly,
these approaches could lead to drastic variation.

Our approach achieves similar results with the Isometric
Deformation and Li’s approach, when the source and tar-
get meshes are much similar in their postures. For those
scans that have large pose and shape variations, moreover,
our approach will consider the consensus among all of the
scans in the datasets to achieve the correspondences, which
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Fig. 12 We compare the performance of our method with two non-
rigid methods. For each algorithm, we examine five test cases. Columns
a and b demonstrate the source scans and target scans, respectively.
Columns c and d show the resulting meshes and the difference between

the resulting and target meshes, using Isometric Deformation [10].
Columns e and f are results from Li’s approach [18], while columns
g and h are given by our approach
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Fig. 13 In some extreme cases, such as when the deformation factors
and markers are selected carelessly, the deformation-based correspon-
dence algorithm could lead to drastic variation; however, our approach
performs well in the same configuration

can fit the source scans to the target scans, while minimizing
the energy of deformation with the kinematic consensus.

Another advantage of the proposed method is to achieve a
set of homogeneous correspondences. For example, to para-
meterize the shape variations, SCAPE model utilizes PCA
to extract the shape parameters from those shape variation
matrices S. As an approximation of the shape variations, a
higher PCA dimension leads to a much better approximation
of the shape variations. Ideally, the transformation matrix
should be affected only by the shape variations of each indi-
vidual. However, because the matrices are derived by evaluat-
ing the triangle transformation based on the correspondences,
the matrices are also affected by the established correspon-
dences. To model two scans of different postures for a certain
individual, for instance, the transformation matrices of such
scans are denoted as S1 and S2 respectively. Ideally, S1 should
be equal to S2, because the scans are from the same person.
However, because of the pose variation, the correspondences
between the SCAPE template and those scans could be dif-
ferent and the derived S1 and S2 are, thereby, not equal. Thus,
to model the shape variation, a larger length is required for
the PCA parameters to approach the shape variation. With
the kinematic consensus, our approach can achieve a homo-
geneous correspondence for learning human model. As in
the example shown in Figs. 14 and 15, our approach with the
kinematic consensus can yield a much better resulting shape
than the approach without the kinematic consensus, when the
dimension of the PCA space is increasingly decreased. This
finding implies that our approach is more suitable for model-
based motion capture systems, which usually must optimize
the motion and shape parameters jointly. Because this opti-
mization is time-consuming, in these applications, a smaller
shape parameters space can lead to a faster implementation
in the phase for shape estimation. The results in Fig. 14 show

Fig. 14 The rendered shapes with different PCA dimensions. As the
dimension increases, the model renders a shape that is more similar to
the original one. With the kinematic consensus, a homogeneous corre-
spondence is accomplished, and the PCA space can be narrowed sub-
stantially. The learned human model yields a much better resulting shape
than that yielded by the approach without the kinematic consensus
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Fig. 15 The error between the rendered and ground-truth shapes. It is
shown that our approach provides more faithful details and less error
than the approach without considering the kinematic consensus

that our approach provides more faithful details, and less
error than the approach without considering the kinematic
consensus.

The physical meaning of those parameters in the PCA
space is indistinct to understand. For example, it is difficult
to configure one or more PCA parameters to control the intu-
itive properties of a shape, such as height, weight, leg length,
etc. To achieve this goal, we developed a method to model
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Fig. 16 Resulting shapes from configuring the shape parameters in an
intuitive way. We changed the length of the thigh to synthesize two
shapes. a Without limiting the impact of the shape parameters on the
rigid parts of the human bodies, the changes in the thigh length could
vary the meshes of the chest due to overfitting, and c with the intuitive

parameters, an undesirable result could be yielded. However, in our
method, b the overfitting can be avoided, and d the shape changes as
the configurations of those intuitive parameters vary, which leads to a
predictable result

the shape parameters in an intuitive way. Traditional meth-
ods to learn the shape parameters are to optimize the cost
function:


 = argmin



∑

i

||β i − 
θ i ||2 (11)

in which θ i denotes the shape parameters for an individ-
ual i , and 
 is the linear transformation matrix between the
shape parameters and the PCA parameters. In our implemen-
tation, instead of learning the relationship between the intu-
itive parameters and the PCA parameters, we directly learn
how those intuitive parameters impact on the elements of the
transformation matrices Si

k for shape variations in a linear
manner. Moreover, to avoid the overfitting of the mapping,
we constrain that a rigid body part is affected by a subset of
those intuitive parameters:


k = argmin

k

∑

i

||Si
k − 
k�k(θ i )||2 (12)

where �k(·) is a mapping that indicates which shape para-
meters will affect the triangle k. For example, the leg length
should not have an influence on the shape variation of the
arm, and the waist width should not affect how to render

the meshes for the head. 
k is a matrix that shows how
the mapped shape parameters form the shape transforma-
tion matrix Si

k , which is learned for all of the triangles from
the whole datasets. Figure 16 shows that, without the con-
straint being introduced, a small change in the length of the
thigh can result in varying most parts of the body shapes.
As illustrated in Fig. 16, given the intuitive parameters, an
undesirable result could be yielded; while in our method, the
shapes change according to how we configure those parame-
ters and lead to a commendable and predictable result.

5 Conclusions

This paper presents a framework for learning a human body
model from multiple databases. We proposed an approach to
establish the correspondences while considering a kinematic
consensus to learn the shape variations across individuals and
postures. Our proposed approach incorporates the kinematic
properties into the deformation process to compute the corre-
spondence; therefore, the established correspondence is not
only accurate, robust, and capable of handling scan incomple-
tion but also homogeneous across shapes and postures. Those
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properties make it possible to generate a faithful correspon-
dence even in extreme cases, such as when the deformation
factors and markers are selected carelessly. We also develop
a method for controlling the rendered shapes in an intuitive
way, with which a commendable and predictable result can
be synthesized.
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