
DOI 10.1007/s00371-013-0894-1

ORIGINAL ARTICLE

Real-time and robust hand tracking with a single depth camera

Ziyang Ma · Enhua Wu

© Springer-Verlag Berlin Heidelberg 2013

Abstract In this paper, we introduce a novel, real-time and
robust hand tracking system, capable of tracking the articu-
lated hand motion in full degrees of freedom (DOF) using a
single depth camera. Unlike most previous systems, our sys-
tem is able to initialize and recover from tracking loss auto-
matically. This is achieved through an efficient two-stage
k-nearest neighbor database searching method proposed in
the paper. It is effective for searching from a pre-rendered
database of small hand depth images, designed to provide
good initial guesses for model based tracking. We also pro-
pose a robust objective function, and improve the Parti-
cle Swarm Optimization algorithm with a resampling based
strategy in model based tracking. It provides continuous solu-
tions in full DOF hand motion space more efficiently than
previous methods. Our system runs at 40 fps on a GeForce
GTX 580 GPU and experimental results show that the sys-
tem outperforms the state-of-the-art model based hand track-
ing systems in terms of both speed and accuracy. The work
result is of significance to various applications in the field of
human–computer-interaction and virtual reality.

Keywords Hand tracking · Virtual reality ·
Motion capture · User interface · 3D interaction

Z. Ma (B) · E. Wu
State Key Laboratory of Computer Science, Institute of Software,
Chinese Academic of Sciences, Beijing, China
e-mail: maziyang08@gmail.com

Z. Ma
University of Chinese Academy of Sciences, Beijing, China

E. Wu
University of Macau, Macau, China

1 Introduction

The capturing and tracking of 3D human hand pose is a
theoretically interesting problem. Many applications in both
human–computer interaction and virtual reality could be built
up provided this basic problem is solved effectively and effi-
ciently. Although specific hardware such as visual markers
[25] and data gloves [8] have been successfully used, they
are too expensive to setup and the device itself might inhibit
free hand movements.

As an alternative solution, computer vision-based app-
roach is non-intrusive. However, it is very challenging due to
the high dimensionality, fast motion, lack of visible textures
and severe self-occlusions. In spite of these difficulties, a sig-
nificant amount of research has been devoted to the problem
of hand pose recovery using visual input. Erol et al. [9] pro-
vide a thorough review of this literature and divide vision-
based hand tracking approaches into two main categories:
appearance-based and model-based ones.

Appearance-based methods [4,19,21,24], also called dis-
criminative methods, formulate the hand pose estimation
as a supervised classification problem. They learn a map-
ping from the input image space into the discrete hand pose
configuration space. Although the computation is fast, the
discriminative nature makes them only suited for recog-
nizing a small set of known hand poses. Consequently,
they are not suited for estimation of continuous parameters
for a freely moving hand, which is required in interactive
applications.

Model-based methods [12,14–17,20,22], also called gen-
erative methods, on the other hand, search the best parameters
in the hand configuration space such that the generated hand
model matches visual observations. This is achieved by solv-
ing an optimization problem whose objective function is the
discrepancy between observed cues and cues generated from

123

Vis Comput (2014) 30:1133–1144

Published online: 5 December 2013

Z. Ma, E. Wu

Fig. 1 Illustration of our proposed model-based tracking system.
a One frame of the input depth sequence captured by a time-of-flight
(TOF) camera. b The output of our tracking system, which is an articu-

lated 3D hand model with full 26-DOF. c The RGB image corresponding
to a, for better viewing of the input (RGB data is not used in our system).
d The output in b superimposed on c, for better viewing of our result

the model hypothesis. The objective function must be eval-
uated at arbitrary point in the high dimensional parameter
space. Due to the high dimensionality of the solution space
and high nonlinearity of the objective function, to get optimal
solutions, these methods often work on a sequence of input
images, and the solution of current frame is usually used as
the initial guess for the next frame. These methods are com-
putationally more expensive than the appearance-based ones,
and often suffer from the problem of tracking loss [23]. In
spite of the above limitations, they do not require training and
their outputs are continuous hand motion parameters, which
are very useful in HCI and VR applications.

In order to support immersive user experience, four
requirements should be met for a useful model-based hand
tracking system:

(1) The tracking should be initialized automatically.
(2) No extra device except a camera is needed.
(3) The full DOF tracking is done in real-time.
(4) It can quickly recover from tracking loss.

State-of-the-art model-based hand tracking systems pro-
posed by Oikonomidis et al. [14–17] meet requirement 2
well, and track full DOF at 15 fps on a GeForce GTX 580

GPU using a depth + RGB camera. However, they had not
considered the tracking loss issue, where abrupt changes in
hand gestures or rapid movements at one frame can cause
severe tracking failure from that frame on. In addition, the
initialization of their system is done through simply asking
user to put his/her hand at specified gesture and position.
Another state-of-the-art hand tracking system [20] uses three
RGB cameras and meets requirement 1 and 4 well, but only
limited to four gestures and 6-DOF, and it requires careful
setup of three cameras, which is inconvenient and expensive.

This paper introduces a model-based hand tracking sys-
tem which satisfies all four requirements simultaneously.
The input is a depth video sequence captured by a time-
of-flight (TOF) camera. Unlike the system proposed by
Oikonomidis et al. [14], our system is robust against var-
ious lighting conditions and skin colors because no RGB
information is required. The output of our system is the
tracked 3D hand model with full 26-DOF for each frame.
See Fig. 1 for an illustration. We propose a fast two-
stage k-nearest neighbor searching method on a pre-rendered
set of small hand depth image database to help auto-
matic initialization and tracking loss recovery. We also
propose a robust objective function, as well as an effec-
tive variation of the Particle Swarm Optimization (PSO)

123

1134

Real-time and robust hand tracking with a single depth camera

algorithm for tracking based on a resampling strategy.
Experimental results show that initialization and tracking
loss are elegantly solved by database search, while the robust
objective function and the improved PSO make the tracking
more efficient than existing methods.

2 Hand model

The model of the 3D articulated hand for our tracking system
is based on the quadric meshes used in [14,17,22]. Although
more complex hand mesh models are available [2,10], for
visual tracking, the simplest quadric ones are more efficient
and flexible approximations without sacrificing precision.
We introduce it briefly in this section for completeness.

The model covers five fingers and a palm, and totally 37
quadratic primitives as shown in Fig. 2b. The palm is mod-
eled using an ellipsoid cylinder with two ellipsoids for its
caps. The fingers are modeled using three cones and four
spheres, except for the thumb which consists of two cones,
three spheres and one ellipsoid. These are generated from two
basic geometric instances: a sphere and a cylinder, through
homogeneous transformations using the following matrix:

⎛
⎜⎜⎝

r · sx 0 0 0
0 sy 0 0
0 0 r · sz 0
0 1 − r 0 r

⎞
⎟⎟⎠ (1)

(a)

(b)

Fig. 2 Quadric mesh-based articulated hand model [14–16]

Here sx , sy and sz are scaling factors along three axes, r
is the ratio of the radius between top and bottom faces of
the cone, it is set to 1 if we just do scaling like transforming
spheres to ellipsoids, and<1 if we are transforming cylinders
to cones.

We use three parameters for the global 3D position of
the hand at a fixed point on the palm, and four parame-
ters for the global 3D orientation represented using quater-
nions. The kinematic configuration of the hand is modeled
using 20 articulation parameters. Each finger has four para-
meters, two of them for the root of the finger, and two for
the remaining joints. One parameter represents the abduc-
tion/adduction angle for the root of each finger, which spreads
fingers apart, while all other three parameters represent the
flexion/extension angles of each joint: totally 27 parameters
to represent the full 26-DOF in hand configuration space, as
illustrated in Fig. 2a.

The problem of model-based hand tracking is to search the
best hand configurations (i.e., parameters) for each frame
of the input image sequence so that the rendered image
using the above 3D hand model best matches the observed
input.

3 Hand tracking system

Figure 3 shows an overview of our hand tracking system. The
input to our system is a depth image sequence acquired using
a TOF camera. Note that unlike [14], we do not rely on the
RGB data; this makes our system robust against various skin
color and lighting conditions and also increases the perfor-
mance via lower memory/IO throughput. The output of our
system is the tracked 26-DOF result for each frame. Our sys-
tem mainly consists of three parts: preprocessing, k-nearest
neighbor database searching and particle swarm-based opti-
mizing.

In the preprocessing stage, hand segmentation is per-
formed on the captured raw depth image to remove unrelated
objects in the scene and results in a binary mask indicating
where the hand is. The distance map of the segmented hand
region is computed based on this mask, and a hand center is
estimated to cut out a square bounding box of depth image
for searching some rough parameter estimations from a pre-
rendered database.

The searching results, together with the tracking result
coming from previous frame are fed as initial guesses into
our tracking system, which is essentially an optimizer based
on our improved version of the Particle Swarm Optimization
(PSO) to find the optimal solution of hand motion parame-
ters for current frame. The optimizer runs in parallel on a
modern GPU and provides instant solution for each frame of
the sequence.

The following sections describe each component in detail.

123

1135

Z. Ma, E. Wu

Fig. 3 Overview of our hand tracking system, green dashed part is on CPU

3.1 Depth image preprocessing

The acquired depth images are in general noisy and contain
other objects. In this step, we first remove the sensor noise
by median filtering; then a simple hand segmentation is used
to isolate the hand region.

Hand segmentation (as shown in the upper left corner of
Fig. 3) relies on the scenario of our system: hand is the nearest
object to the camera, and the camera is facing the hand. This
is reasonable in most interactive applications and has been
implicitly used in most state-of-the-art hand tracking systems
[14–17]. Based on this scenario, our segmentation method
works in two steps: a Z -direction cut, followed by a 3D-cut,
as shown in Fig. 4.

We first identify the nearest non-trivial connected compo-
nent to the camera and denote its nearest point by p. Then
all points farther than a pre-defined threshold β from p are
cut out as non-hand regions. β is set to the diameter of the
hand (15 cm in our implementation). This step works in
Z -direction. It usually cuts out a lot of points correspond-
ing to the body and head regions, but might leave some part
of the arm region.

Fig. 4 Depth image segmentation

All remaining points are grouped in 3D space as a set,
and the principal axis is computed from its largest connected
component� using Principal Component Analysis. The two
extreme points along this axis are chosen from � (the green

123

1136

Real-time and robust hand tracking with a single depth camera

points in Fig. 4), and the one with minimum distance to the
camera is selected and denoted by q, which is, in our scenario,
always located at the boundary of the hand. Finally, all points
farther than β away from q are also cut out. This step works
in 3D space and can effectively cut out the arm which might
be nearly parallel to the camera plane.

We found that this simple method works well in nearly
all cases, and most importantly, unlike other state-of-the-art
works on hand segmentation [3,14–17], our method does
not rely on skin color detection, which needs RGB data and
might be affected by different lighting conditions and skin
color variations.

The L2 distance transformation of the edge map detected
via Sobel detector on the segmented hand mask is then com-
puted for usage in the following steps. The hand center is
estimated using this distance map as the point inside the mask
with maximum distance to boundary, as shown with red cross
in Fig. 3. A squared sub-image centered at this point which
contains the whole hand region is cut out and resized into
a smaller one (40 × 40 is used in our system) for search-
ing rough estimates of hand motion parameters (excluding
the global position) from a pre-rendered hand depth image
database.

3.2 Depth image database and k-NN search

For initialization and robustness against tracking loss, we
propose a two-stage database searching method to quickly
find rough estimates of current hand pose as initial guesses
for optimization. The idea of database searching is inspired
by the color marker-based data-driven hand pose estimation
system proposed by Wang and Popovic [25], and other related
work on neighborhood searching with geometric information
[13]. However, we are different in both design and usage of
the database, and our searching strategy is more suitable for
hand shaped depth image retrieval.

We designed two specialized features for hand-shaped
depth image, and use them to quickly filter out unmatched
items during query processing. The first one locates all bulges
in Z-direction, see Fig. 5a. For each local minimum point (i.e.,
bulge candidate), we extract the connected component with
smoothly varying depth and divide the region between two
concentric circles centered at this point into eight bins, then
count the number of filled bins (80 % filled in our imple-
mentation). The candidate is considered as a bulge only if
the number of filled bins is <2. The diameters of the two
concentric circles are empirically set to one and three times
of the sectional diameter of a finger, respectively.

The second feature is a binary coding of the shape of the
segmented hand mask. As shown in Fig. 5b, four equally-
spaced concentric circles are found around the center of the
mask. The regions between two concentric circles are divided
into several bins, then a sequence of binary codes indicating

the filling state of each bin are created and concatenated. The
length of the binary codes are 120 bits.

Our database contains a large amount of small pre-
rendered hand depth images generated using the quadric
model described in Sect. 2. Both the number of located
bulges, the binary codes, and all parameters except the global
position are stored along with each sample for retrieving. This
database is used to provide only rough estimations of current
hand configuration to the optimizer. It need not cover too
much hand gestures, but only the most frequently encoun-
tered ones. Hence we select ten gestures from the famous
American Sign Language (ASL) [1] to generate a total of
50,000 depth samples of resolution 40 × 40, with uniformly
sampled hand orientation variations. Those selected samples
from the ASL dataset are shown in Fig. 6.

In the query stage, the truncated SAD distance measure
is usually used to lookup k-nearest neighbors (k-NN). The
distance between the query image dq and database image dD

is defined as

dist(dq, dD) =
∫∫

x

min(|dq(x)− dD(x)|, dmax)dx, (2)

where x ranges over the entire depth image domain, and
dmax is a threshold, setting to 10 mm to make the distance
measure more robust, avoiding noisy pixels dominating the
error metric.

However, a brute-force searching through the whole data-
base using Eq. 2 is computationally very expensive. To speed-
up the process, we propose a two-stage method. We group
all database samples into six sets according to the number
of detected bulges, and only the set with the same number
of bulges as the query image is considered. In the first stage,
all data items in which the binary codes differs significantly
(more than 20 % of the total number of bins) from the query
are quickly eliminated. Those depth images survived are fur-
ther considered in the second stage, where the whole distance
measure to the query is computed using Eq. 2, and the best
k (set to 10 in our implementation) images, as long as their
model parameters are selected as the final searching results.
Although other features, e.g., the Fourier descriptor of hand
shape on circles [24], could also be used for k-NN search,
we found our simple method very fast in the experiment.
We leave more sophisticated approaches, e.g., using decision
forest [7], as a future work.

3.3 Objective function for hand tracking

Since the goal of our hand tracker is to find the best hand
parameters given the input depth frame, an objective func-
tion which measures the discrepancy between the rendered
hand model depth dp using hypothesized parameters p, and
the observed depth image do should be defined. By nature, a

123

1137

Z. Ma, E. Wu

Fig. 5 Features for
pre-selection in database
searching

(a)

(b)

robust objective function often leads to more efficient and
easier optimization. In this section, we propose a robust
objective function for our tracking system.

For clarity’s sake, three mask images indicating three dif-
ferent regions for evaluation are defined as follows:

mskrnc(x) = (1 − δ[dp]) ∧ δ[do]
mskrc(x) = (1 − δ[dp]) ∧ (1 − δ[do]) (3)

mskcnr(x) = (1 − δ[do]) ∧ δ[dp],

where δ is the Kronecker delta function. Intuitively, mskrnc

is one at ‘rendered but not captured’ pixels, mskrc is one at
‘captured and rendered’ pixels, and mskcnr is one at ‘cap-
tured but not rendered’ pixels. See the difference images at
bottom right of Fig. 3 for a simple illustration, where mskrnc

is colored in green, and mskcnr is colored in red.
Given these three mask regions, as long as the distance

map Idist is computed from the preprocessing stage, we define
the measure of discrepancy between dp and do as

123

1138

Real-time and robust hand tracking with a single depth camera

Fig. 6 Selected hand
configurations from the ASL
dataset

D(dp, do) =
∫∫

mskrc(x)=1

min(|dp(x)− do(x)|, dmax)dx

+ λ ·
∫∫

mskrnc(x)=1

Idist(x)dx + ζ ·
∫∫

mskcnr(x)=1

dx

+ η ·
∑

(θ1,θ2)∈Q(p)

− min(θ1 − θ2, 0), (4)

where dmax is the same as the threshold used in database
search.λ is a relative weight for the distance map term. ζ is the
penalty for ‘captured but not rendered’ pixels, which is empir-
ically set to 15 mm. η is another weight which is empirically
set to 10. The first term is a sum of truncated absolute depth
difference in mskrc region. The second term is the weighted
sum of L2 distance to the captured hand region boundary,
which is important for measuring the shape dissimilarity. The
third term is used to penalize the number of ‘captured but not
rendered’ pixels. The last term is used to penalize implausible
hand configurations, where Q(p) denotes the three pairs of
adjacent fingers, and θ1, θ2 denote the abduction–adduction
angles of two pair of fingers in radians.

Note that our objective function does not rely on the RGB
input, which is required in state-of-the-art depth-based hand
tracking system [14]. Another important difference from [14]
is that we include a more robust distance transform term to
measure the dissimilarity in shape contour, which has been
successfully used in sketch-based image search system [5].

3.4 Resampling-based PSO optimization

As long as the objective function is defined, we minimize it
in the bounded 27-dimensional parameter space through an
efficient variant of the Particle Swarm Optimization (PSO).
The bounds for hand articulation parameters are determined
according to anatomical studies in [2]. PSO is an evolutionary
algorithm originally proposed by Kennedy et al. [11], and it
has been adopted in hand tracking by recent works [14–16].
However, we found that its efficiency can be improved dras-
tically (i.e., using much fewer particles and generations) with
the help of our efficient resampling-based strategy introduced
in this section.

We briefly describe the original PSO algorithm. The basic
PSO works by having a population (i.e., swarm) of particles

123

1139

Z. Ma, E. Wu

(i.e., candidate solutions), in the parameter space. They are
moved around iteratively (i.e., in generations) to search for
the point with optimal objective function value. Each particle
i has a current position xi

t (i.e., current candidate solution)
and current velocity vi

t in the t-th generation. It also stores
in pi

t the best position achieved for this particle up to t-th
generation. The entire swarm also holds the current global
best position encountered across all particles in gt . In the
t + 1-th generation, each particle updates its velocity and
position according to the following formulae:

vi
t+1 = K (vi

t + c1r1(p
i
t − xi

t)+ c2r2(gt − xi
t)) (5)

xi
t+1 = xi

t + vi
t+1, (6)

where K is a constant constriction factor [6], and c1 and c2 are
called cognitive component and social component, respec-
tively. r1 and r2 are two random numbers sampled uniformly
from [0, 1]. We adopt the parameter settings suggested in [6]
here: c1 = 2.8, c2 = 1.3, K = 2/|2−ψ−√

ψ2 − 4ψ |, with
ψ = c1 + c2.

In [14–16], the particles are initialized as random per-
turbations of the solution from the last frame by explor-
ing temporal continuity, and the solution for the first frame
was simply assumed to be the ‘Number 5’ pose (see Fig. 6)
putting at the center of screen. Although this simple strategy
has been proven to be worked for careful manual initializa-
tion and slow hand motion, it does not consider the tracking
loss issue due to such strong dependency on results of the
last frames. Abrupt changes in hand gestures or rapid move-
ments at one frame can cause severe tracking failure from that
frame on. This problem can be substantially alleviated with
our database searching technique. In addition, as observed in
our experiments, many particles have wrong positions during
evolution; hence a large amount of objective function evalu-
ations are wasted. We next propose a resampling-based strat-
egy for further increasing the efficiency of PSO, as detailed
in Algorithm 1.

The particles are initially generated from two sources: half
of them contain the population generated from perturbations
of result in the previous frame, and the rest of them contain
random particles in the vicinity of database searching results.
The original PSO is invoked at first. After one-third of the
maximum number of generations passed, we observed that
the best particle often correctly estimates the global hand
position and orientation, but the hand articulation parame-
ters are sometimes not so precise, especially when the data-
base searching results do not match the current input image
well. Inspired by this observation, we regenerate one-third
of the swarm using Gaussian perturbations of the global best
particle and the rest ones using global best pose combined
with additional selected gestures from the ASL dataset. Then
after each generation, all particles are sorted according to
the objective function values attained, and the worst half of

Algorithm 1: Resampling-based PSO
Input: Captured and preprocessed depth image: do

k-NN resulting parameters: pD
1 , · · · , pD

k
Tracking result from last frame: pL

Selected ASL gestures: pA
1 , · · · , pA

10
PSO evolution parameters: c1, c2, K
Maximum number of particles: imax
Maximum number of generations: tmax

Output: Tracked parameter for this frame: pO

/*Initialization */
for i = 1 to imax/2 do

Randomly generate xi
0 centered at pL ;

Set vi
0 = 0;

end
for i = imax/2 + 1 to imax do

Randomly generate xi
0 with center randomly chosen from

pD
1 , · · · , pD

k ;
Set vi

0 = 0;
end
Initialize objective function values: f i = +∞;
Set pi

0 = xi
0, and g0 = Ø;

/*Run the original PSO */
for generation t = 1 to tmax/3 do

Evaluate objective functions: f i = D(dxi
t−1
, do);

Update pi
t = best position for each particle i ;

Update gt = best position of the entire swarm;
Evolve one generation according to Eq. 5 and 6;

end
/*Regenerate the whole swarm */
for i = 1 to imax/3 do

Regenerate xi
tmax /3+1 centered at gtmax /3;

Set vi
0 = 0;

end
for i = imax/3 + 1 to imax do

Regenerate xi
tmax /3+1 with position and orientation centered

at gtmax /3, but articulation parameters center randomly chosen
from pA

1 , · · · , pA
10;

end
/*Run PSO with resampling */
for generation tmax/3 + 1 to tmax do

Evaluate objective functions: f i = D(dxi
t−1
, do);

Sort f i ;
Update pi

t = best position for each particle i ;
Update gt = best position of the entire swarm;
/*Resampling */
Regenerate the worst half of particles;
Evolve one generation according to Eq. 5 and 6;

end
Output pO � gtmax

them are resampled again. Experimental results show that
this variation of PSO can quickly eliminate the ‘bad parti-
cles’, and needs less particles and generations to find the
solution.

3.5 GPU accelerated implementation

The computational bottleneck of our pipeline is the ren-
dering of depth images of all particles and the evaluation

123

1140

Real-time and robust hand tracking with a single depth camera

of the pixel-wise objective functions in each generation.
Both functionalities can be inherently parallelized on modern
GPUs.

In our system, we use instanced rendering [18] technique
to simultaneously render multiple hand models for all parti-
cles in one generation. This requires transferring of only two
basic meshes to GPU: a sphere and a cylinder at the begin-
ning. A specialized pixel shader is used to retrieve the depth
map and dispatches all rendered images into a big tile for
evaluation. The tiled depth image is illustrated in the middle
bottom of Fig. 3.

The pixel-wise objective function evaluation using Eq. 4
can be implemented on GPU using the highly efficient
CUDA reduction algorithm. Although mip-map reduction
can also be used and has been adopted in [14–16], we found
the former in general has better performance and easy to
implement.

4 Experimental results and comparisons

In this section we demonstrate the effectiveness of our
improved algorithms both in database search and PSO quan-
titatively and qualitatively. We also show comparisons with
state-of-the-art hand tracking system [14] on real-world
sequences. Our system runs on a computer with a quad-core
Intel Xeon E5440 CPU, 16GBs RAM, and a 1581 G Flops
Nvidia GTX 580 GPU with 1.5 GBs memory; the depth
sequence is captured using a time-of-flight (TOF) camera
with resolution 320 × 200 at 30 fps. We found running our
tracker at half of the resolution (i.e., 160 × 100) does not
induce observable lost of precision, but the average frame
rate can be boosted from 30 to 40 Hz.

4.1 Effectiveness of database search

For evaluating the effectiveness of our database search in
initialization and tracking loss recovery, we captured and
saved three sequences with increasing rapid hand movement.
We ran the tracker both with and without enabling database
search, and counted the number of failed frames where the
total number of mskrnc and mskcnr pixels exceeds the number
of mskrc pixels. Table 1 shows our statistics. As can be seen,
our tracking system is much more robust with the help of
database search. The running time of our two-stage k-nearest
neighbor search is 5 ms on average, about 12 times faster than
a brute-force search.

4.2 Effectiveness of resampling-based PSO

Figure 7 shows the number of particles/generations versus
the average precision of tracking for those three sequences
measured as average absolute difference in the mskrc region.

Table 1 Effectiveness of database search on tracking loss recovery

Sequence
No.

Total
frames

Failed frames with
database search

Failed frames w/o
database search

1 380 11
93

2 333 17 159

3 282 25 239

0

2

4

6

8

10

12

14

16

20 30 40 50 60
E

rr
or

 in
 m

m
Number of generations

20
40
60

20
40
60

Number of
particles

Fig. 7 Effectiveness of resampling-based PSO (solid lines) versus tra-
ditional PSO (dotted lines)

As can be observed, the resampling-based PSO needs only
less than half of the particles and generations to achieve
the same precision as traditional PSO. Another interest-
ing observation from this figure is that the quality of our
resampling-based PSO does not strongly depends on the
number of particles as traditional PSO does, but the number
of generations is more important. This is reasonable because
the resampling strategy makes the usage of particles more
efficient.

The computation time of our improved PSO (40 parti-
cles and 30 generations) is 15 ms on average, which is
more than two times faster than the one without resampling
strategy.

4.3 Visual comparison with state-of-the-art

Figures 8 and 9 show the comparison of our hand tracking
system with state-of-the-art system [14] (we use the SDK
provided by the authors from their web site) on selected
frames from captured sequence 2 and 3 (we show colored
input here for better viewing). All results show that our hand
tracking system substantially outperforms state-of-the-art,
especially on the more challenge sequence 3 where rapid
hand movements significantly challenge the methods without
tracking loss recovery mechanisms. See more video results
in the supplemental material.

123

1141

Z. Ma, E. Wu

Fig. 8 Visual comparison
with state-of-the-art [14] on
sequence 2

5 Conclusions and future work

We have presented a real-time and robust full DOF hand
tracking system using a single depth camera. Our sys-
tem incorporates efficient k-NN database search as long as
resampling-based PSO for effective tracking. We show that

our system outperforms state-of-the-art both quantitatively
and qualitatively.

Since an individual in general has particular size and shape
in his/her hands, model calibration is important for our sys-
tem to produce high-quality tracking results. Currently, in
the calibration stage, we use a fixed shape and simply treat

123

1142

Real-time and robust hand tracking with a single depth camera

Fig. 9 Visual comparison with
state-of-the-art [14] on the more
challenging sequence 3

size ratio as an additional variable in the optimizer to match
the size of each person. We run the optimization to find the
best size ratio for a specified hand pose, but we leave a more
sophisticated approach for hand shape calibration as a future
work.

We believe that our system will benefit a very large amount
of HCI, VR and graphics applications, and we will investigate
some of them in the future.

Acknowledgments The authors would like to thank the anonymous
reviewers for their valuable comments and suggestions. This research
is supported by National 973 Program of Basic Research on Science
and Technology (2009CB320800), NSFC (61272326) and the research
grant of University of Macau.

References

1. http://en.wikipedia.org/wiki/American_Sign_Language

123

1143

http://en.wikipedia.org/wiki/American_Sign_Language

Z. Ma, E. Wu

2. Albrecht, I., Haber, J., Seidel, H.P.: Construction and animation
of anatomically based human hand models. In: Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pp. 98–109. Eurographics Association (2003)

3. Argyros, A.A., Lourakis, M.I.: Real-time tracking of multiple skin-
colored objects with a possibly moving camera. In: European Con-
ference on Computer Vision (ECCV) (2004)

4. Athitsos, V., Sclaroff, S.: Estimating 3D hand pose from a clut-
tered image. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2003)

5. Cao, Y., Wang, C., Zhang, L., Zhang, L.: Edgel index for large-
scale sketch-based image search. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2011)

6. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE Trans.
Evol.Comput. 6(1), 58–73 (2002)

7. Criminisi, A.: Decision forests: a unified framework for classifica-
tion, regression, density estimation, manifold learning and semi-
supervised learning. Found. Trends Comput. Graph. Vis. 7(2—-3),
81–227 (2011)

8. Dipietro, L., Sabatini, A.M., Dario, P.: A survey of glove-based
systems and their applications. IEEE Trans. Syst. Man Cybern.
Part C Appl. Rev. 38(4), 461–482 (2008)

9. Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.:
Vision-based hand pose estimation: a review. Comput. Vis. Image
Underst. 108(1), 52–73 (2007)

10. Huang, H., Zhao, L., Yin, K., Qi, Y., Yu, Y., Tong, X.: Controllable
hand deformation from sparse examples with rich details. In: Pro-
ceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pp. 73–82. ACM (2011)

11. Kennedy, J.F., Kennedy, J., Eberhart, R.C.: Swarm intelligence.
Morgan Kaufmann Publisher, San Francisco (2001)

12. de La Gorce, M., Paragios, N., Fleet, D.J.: Model-based hand track-
ing with texture, shading and self-occlusions. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2008)

13. Liu, Y.J., Zheng, Y.F., Lv, L., Xuan, Y.M., Fu, X.L.: 3D model
retrieval based on color + geometry signatures. Vis. Comput. 28(1),
75–86 (2012)

14. Oikonomidis, I., Kyriazis, N., Argyros, A.: Efficient model-based
3D tracking of hand articulations using kinect. In: British Machine
Vision Conference (BMVC) (2011)

15. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Markerless and effi-
cient 26-DOF hand pose recovery. In: Asian Conference on Com-
puter Vision (ACCV) (2010)

16. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Full dof tracking of a
hand interacting with an object by modeling occlusions and phys-
ical constraints. In: IEEE International Conference on Computer
Vision (ICCV) (2011)

17. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articu-
lated motion of two strongly interacting hands. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2012)

18. Pharr, M., Fernando, R.: GPU gems 2: programming techniques
for high-performance graphics and general-purpose computation.
Addison-Wesley Professional, Boston (2005)

19. Rosales, R., Athitsos, V., Sigal, L., Sclaroff, S.: 3D hand pose recon-
struction using specialized mappings. In: IEEE International Con-
ference on Computer Vision (ICCV) (2001)

20. Schlattmann, M., Kahlesz, F., Sarlette, R., Klein, R.: Markerless 4
gestures 6 DOF real-time visual tracking of the human hand with
automatic initialization. In: Computer Graphics Forum, vol. 26,
pp. 467–476. Wiley Online, Library (2007).

21. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M.,
Moore, R., Kipman, A., Blake, A.: Real-time human pose recogni-
tion in parts from single depth images. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), In (2011)

22. Stenger, B., Mendonça, P.R., Cipolla, R.: Model-based 3D tracking
of an articulated hand. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2001)

23. Stenger, B.D.R.: Model-based hand tracking using a hierarchical
bayesian filter. Ph.D. thesis (2004)

24. Tomasi, C., Petrov, S., Sastry, A.: 3D tracking= classification+
interpolation. In: IEEE International Conference on Computer
Vision (ICCV) (2003)

25. Wang, R.Y., Popović, J.: Real-time hand-tracking with a color
glove. In: ACM SIGGRAPH, vol. 28 (2009)

Ziyang Ma received his B.Sc.
degree in pure and applied math-
ematics from Nankai Univer-
sity, Tianjin, China, in 2008.
He is currently a Ph.D. candi-
date at the State Laboratory of
Computer Science, Institute of
Software, Chinese Academy of
Sciences. His research interests
include computer graphics, com-
puter vision, machine learning,
numerical computation and opti-
mization.

Enhua Wu received his B.Sc.
degree in 1970 from Tsinghua
University, Beijing, and his
Ph.D. degree in 1984 from Uni-
versity of Manchester, UK. Since
1985, he has been working at
the Institute of Software, Chinese
Academy of Sciences, and from
1997 he has been also teaching
in University of Macau. He is a
member of IEEE & ACM. His
research interests include realis-
tic image synthesis, virtual real-
ity, physically based modeling,
and scientific visualization.

123

1144

	Real-time and robust hand tracking with a single depth camera
	Abstract
	1 Introduction
	2 Hand model
	3 Hand tracking system
	3.1 Depth image preprocessing
	3.2 Depth image database and k-NN search
	3.3 Objective function for hand tracking
	3.4 Resampling-based PSO optimization
	3.5 GPU accelerated implementation

	4 Experimental results and comparisons
	4.1 Effectiveness of database search
	4.2 Effectiveness of resampling-based PSO
	4.3 Visual comparison with state-of-the-art

	5 Conclusions and future work
	Acknowledgments
	References

