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Abstract Mean value coordinates provide an efficient
mechanism for the interpolation of scalar functions defined
on orientable domains with a nonconvex boundary. They
present several interesting features, including the simplicity
and speed that yield from their closed-form expression. In
several applications though, it is desirable to enforce addi-
tional constraints involving the partial derivatives of the in-
terpolated function, as done in the case of the Green coordi-
nates approximation scheme (Ben-Chen, Weber, Gotsman,
ACM Trans. Graph.:1–11, 2009) for interactive 3D model
deformation.

In this paper, we introduce the analytic expressions of the
Jacobian and the Hessian of functions interpolated through
mean value coordinates. We provide these expressions both
for the 2D and 3D case. We also provide a thorough anal-
ysis of their degenerate configurations along with accurate
approximations of the partial derivatives in these configura-
tions. Extensive numerical experiments show the accuracy
of our derivation. In particular, we illustrate the improve-
ments of our formulae over a variety of finite differences
schemes in terms of precision and usability. We demonstrate
the utility of this derivation in several applications, includ-
ing cage-based implicit 3D model deformations (i.e., vari-
ational MVC deformations). This technique allows for easy
and interactive model deformations with sparse positional,
rotational, and smoothness constraints. Moreover, the cages
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produced by the algorithm can be directly reused for further
manipulations, which makes our framework directly com-
patible with existing software supporting mean value coor-
dinates based deformations.
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1 Introduction

Boundary value interpolation is a common problem in
computer-aided design, simulation, visualization, computer
graphics, and geometry processing. Given a polygonal do-
main with prescribed scalar values on its boundary vertices,
barycentric coordinate schemes enable to compute a smooth
interpolation of the boundary values at any point of the Eu-
clidean space located in the interior (and possibly the ex-
terior) of the domain. Such interpolations are efficiently
obtained through a linear combination involving a weight
(or coordinate) for each boundary vertex. These weights
can be obtained by solving a system of linear equations
[16] or, more efficiently, through a closed-form expression
[12, 17].

However, in several applications, it may be desirable to
enforce additional constraints on the interpolation, in par-
ticular constraints involving the partial derivatives of the in-
terpolated function. Derivative constraints have been shown
to provide additional flexibility to the interpolation problem
and many optimization tasks can benefit from them. In the
context of approximation schemes based on Green coordi-
nates [20], constraints on the Jacobian and the Hessian have
been used for implicit cage-based deformations [2]. In such

http://dx.doi.org/10.1007/s00371-013-0889-y
mailto:thiery@telecom-paristech.fr


982 J.-M. Thiery et al.

Fig. 1 “Kicking Demon.” Red points indicate positional constraints;
blue points indicate unknown rotational constraints. This pose was ob-
tained by specifying only 14 positional constraints. The derivation of
the Jacobian and Hessian of the MVC coordinates makes it possible

to induce variational MVC deformations (implicit cage deformation
based on sparse user constraints, with rotation and smoothness enforce-
ment)

a setting, given some sparse user constraints, an optimiza-
tion process automatically retrieves an embedding of the
polygonal domain (the cage) such that the transformation
of the interior space is locally close to a rotation.

In order to achieve acceptable precision and time effi-
ciency, such an optimization process requires a closed-form
expression of the Jacobian and the Hessian of the inter-
polated function. While such closed-form expressions are
known for approximation schemes (in particular for Green
coordinates [2, 26]), this is not the case for interpolation
schemes. Moreover, these formulations are specific to the
context of space deformation and it is not clear how to ex-
tend them to arbitrary functions.

In this paper, we bridge this gap by deriving the closed-
form expressions of the Jacobians and the Hessians of func-
tions interpolated with Mean Value Coordinates (MVC)
[12, 17], both for the 2D and 3D case. We also provide a
complete analysis of their degenerate configurations (on the
support of the simplices of the cage [17]) along with ac-
curate approximations of the derivatives for these configura-
tions. We show the accuracy of this derivation with extensive
numerical experiments.

We demonstrate the utility of this derivation for sev-
eral applications, including cage-based implicit 3D model
deformations (i.e., variational MVC deformations). This
technique allows for easy and interactive model deforma-
tions with sparse positional, rotational, and smoothness con-
straints.

The cages produced by our algorithm can be directly
reused for further manipulations, which makes our frame-
work directly compatible with existing software supporting
MVC-based deformations. In addition, we provide as sup-
plemental material a lightweight C++ implementation of our
derivation, enabling its usage in further optimization prob-
lems involving constrained interpolation.

1.1 Related work

Boundary value interpolation through barycentric coordi-
nates has been widely studied in the case of convex domains,
first in 2D [4, 5, 22], and more recently in higher dimensions
[27, 28]. Several techniques have been proposed to extend
these interpolants to nonconvex 2D domains [9–11, 14, 21].
In particular, Floater introduced a coordinate system moti-
vated by the mean value theorem that smoothly interpolates
function values defined on concave 2D polygons [11].

The generalization of these techniques to nonconvex 3D
domains has been motivated mostly by computer graphics
applications, in particular interactive shape deformation. In
this setting, a 3D shape (in the form of a triangle soup,
point cloud, or volumetric mesh) is enclosed by a closed
triangle surface called a cage, from which barycentric co-
ordinates are computed. A deformation of the cage yields
a transformation of its embedding functions fx,fy , and fz.
These functions can be interpolated efficiently and smoothly
in the interior space enclosed by the cage, providing a mean
to interactively deform the interior 3D shape. Mean Value
Coordinates (MVC) have been generalized independently to
nonconvex 3D domains by Floater [12], Ju et al. [17], and
further by Langer et al. [18], with applications to bound-
ary value interpolation, volumetric texturing, shape defor-
mation, and speed-up of deformations based on nonlinear
systems [15]. To overcome artifacts occurring in highly con-
cave portions of the cage, Joshi et al. [16] introduced the
Harmonic Coordinates (HC). However, these coordinates do
not admit a closed form expression and require a numerical
solver for their computation. Lipman et al. [20] introduced
the Green Coordinates (GC), which induce near-conformal
(detail preserving) transformations and which admit a closed
form expression. However, these coordinates define an ap-
proximation scheme, not an interpolation one.
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Among the existing barycentric coordinate systems
which support nonconvex 3D domains and which admit
closed-form expressions (MVC and GC), the expressions
of the Jacobian and the Hessian are only known for the
Green coordinates [2, 26]. In particular, Ben Chen et al.
[2] proposed an implicit cage-based deformation technique
called Variational Harmonic Maps (VHM), where the tar-
get embedding of the cage is automatically optimized from
sparse user-imposed positional constraints with rotational
and smoothness constraints, respectively, involving the Ja-
cobian and the Hessian of the deformation. As the 3D values
attributed to the normals of the cage triangles are decorre-
lated from the 3D values attributed to its vertex positions in
their optimization process, the cage cannot be manipulated
in a post process for further detail editing. In this work, we
introduce these expressions for functions interpolated with
mean value coordinates. We also develop an application to
implicit cage-based transformations similar to VHM [2]. In
contrast to VHM, the solution of the optimization process
does not involve the normals of the cage triangles, hence
the cages generated by this technique cannot be exploited in
a consistent manner for post-processing tasks. On the con-
trary, the cages produced by our algorithm can be directly
reused for further manipulations, which makes our frame-
work directly compatible with existing software supporting
MVC-based deformations.

1.2 Contributions

This paper makes the following contributions:

1. the closed-form expressions of the Jacobian and the Hes-
sian of mean value coordinates, both in 2D and 3D—
these expressions are more accurate than a variety of ex-
perimented finite differences schemes and they are not
prone to numerical instability;

2. a thorough analysis of the degenerate configurations of
these expressions, along with accurate alternate approxi-
mations for these configurations;

3. an implicit cage-based transformation technique using
mean value coordinates, called variational MVC defor-
mation, which interactively optimizes the target cage em-
bedding given sparse user positional constraints, while
respecting smoothness and rotational constraints;

1.3 Overview

We first review mean value coordinates in Sect. 2. The core
contribution of our work, the derivation of the Jacobian and
Hessian, is presented in Sects. 3 through 6. In particular,
Sects. 4 and 5 provide the specific results for the 2D and
3D cases respectively.

As the derivation of the Jacobian and the Hessian is rela-
tively involved, for the reader’s convenience, we highlighted

the final expressions with rectangular boxes , whereas the
final expressions for degenerate cases are highlighted with
a

�

�

�

�

ellipsoidal box . Note that the derivation details are given
in ESM (Electronic Supplementary Material).

Experimental evidence of the accuracy of our derivation
is presented in Sect. 7.

Finally, we present applications demonstrating the utility
of our contributions in Sect. 8.

2 Background

In this section, we review the formulation of mean value co-
ordinates in 2D and 3D [17].

2.1 Mean value coordinates

Similar to [17], we note p[x] a parameterization of a closed
(d−1)-manifold mesh (the cage) M embedded in R

d , where
x is a (d − 1)-dimensional parameter, and nx the unit out-
ward normal at x. Let η be a point in R

d expressed as a
linear combination of the positions pi of the vertices of the
cage M :

η =
∑

i wipi
∑

i wi

=
∑

i

λipi

where λi is the barycentric coordinate of η with respect to
the vertex i.

Let φi[x] be the linear function on M , which maps the
vertex i to 1 and all other vertices to 0.

The definition of the coordinates λi should guarantee lin-
ear precision (i.e., η = ∑

i λipi ).
Similar to [17], we note Bη(M) the projection of the

manifold M onto the unit sphere centered around η, and
dSη(x) the infinitesimal element of surface on this sphere

at the projected point (dSη(x) = (p[x]−η)t ·nx

|p[x]−η|3 dx in 3D).

Since
∫
Bη(M)

p[x]−η
|p[x]−η| dSη(x) = 0 (the integral of the unit

outward normal onto the unit sphere is 0 in any dimension
d ≥ 2), the following equation holds:

η =
∫
Bη(M)

p[x]
|p[x]−η| dSη(x)

∫
Bη(M)

1
|p[x]−η| dSη(x)

By writing p[x] = ∑
i φi[x]pi ∀x, with

∑
i φi[x] = 1,

we have:

η =
∑

i

∫
Bη(M)

φi [x]
|p[x]−η| dSη(x)pi

∫
Bη(M)

1
|p[x]−η| dSη(x)

The coordinates λi are then given by

λi =
∫
Bη(M)

φi [x]
|p[x]−η| dSη(x)

∫
Bη(M)

1
|p[x]−η| dSη(x)
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Fig. 2 Spherical edge Ē (left) and triangle T̄ (right)

and the weights wi such that λi = wi∑
i wi

are given by

wi =
∫

Bη(M)

φi[x]
|p[x] − η| dSη(x) (1)

This definition guarantees linear precision [17]. It also pro-
vides a linear interpolation of the function prescribed at the
vertices of the cage onto its simplices and it smoothly ex-
tends it to the entire space. This construction of mean value
coordinates is valid in any dimension d ≥ 2. In the follow-
ing, we present their computation in 2D and in 3D, as they
were introduced in [17].

2.2 3D Mean value coordinates computation

The support of the function φi[x] is only composed of the
adjacent triangles to the vertex i (noted N1(i)). Equation (1)
can be rewritten as wi = ∑

T ∈N1(i) w
T
i , with

wT
i =

∫

Bη(T )

φi[x]
|p[x] − η| dSη(x) (2)

Given a triangle T with vertices t1, t2, t3, the following equa-
tion holds:

∑

j

wT
tj
(ptj − η) =

∫

Bη(T )

∑
j φtj [x](ptj − η)

|p[x] − η| dSη(x)

=
∫

Bη(T )

p[x] − η

|p[x] − η| dSη(x) � mT (3)

The latter integral is the integral of the unit outward normal
on the spherical triangle T = Bη(T ) (see Fig. 2). By not-

ing the unit normal as nT
i = NT

i

|NT
i | , with NT

i � (pti+1 − η) ∧
(pti+2 − η) (see Fig. 2), mT is given by (since the integral of
the unit normal on a closed surface is always 0):

mT =
∑

i

1

2
θT
i nT

i (4)

As suggested in [17], the weights wT
tj

can be obtained by

noting AT the 3×3 matrix {pt1 −η,pt2 −η,pt3 −η} (where
t denotes the transpose):

{
wT

t1
,wT

t2
,wT

t3

}t = AT −1 · mT

Since NT
i

t · (ptj − η) = 0 ∀i �= j and NT
i

t · (pti − η) =
det(AT ) ∀i, the final expression for the weights is given by:

wT
ti

= NT
i

t · mT

NT
i

t · (pti − η)
= NT

i

t · mT

det(AT )
∀η /∈ Support(T ) (5)

where Support(T ) denotes the support plane of T , i.e.,
Support(T ) = {η ∈R

3|det(AT )(η) = 0}.

2.3 2D Mean value coordinates computation

Let I2 be the 2 × 2 identity matrix and Rπ
2

the rotation ma-
trix

[
0 −1
1 0

]

In 2D, the orientation of an edge E = e0e1 of a closed poly-
gon is defined by the normal nE :

nE = Rπ
2
(pe1 − pe0)

|pe1 − pe0 |
It defines consistently the interior and the exterior of the
closed polygon. Then, similarly to the 3D case,

∑

j

wE
ej

· (pej
− η) = mE =

∑

j

nE
j (6)

with

nE
j = NE

j

|NE
j | , NE

0 = Rπ
2
(η − pe0),

NE
1 = −Rπ

2
(η − pe1)

Therefore,

mE = Rπ
2

(
η − pe0

|η − pe0 |
− η − pe1

|η − pe1 |
)

(7)

Since (pej
− η)t · NE

j = 0 (Fig. 2), we obtain wE
i with

wE
ei

= mEt · NE
i+1

(pei
− η)t · NE

i+1

(8)
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3 Derivation overview

In the following, we present the main contribution of the
paper: the derivation of the Jacobians and the Hessians of
mean value coordinates. In this section, we briefly give an
overview of the derivation.

Let f : M → R
d be a piecewise linear field defined on

M (in 2D, M is a closed polygon, in 3D, M is a closed
triangular mesh). As reviewed in the previous section, f can
be smoothly interpolated with mean value coordinates for
any point η of the Euclidean space:

f (η) =
∑

i

λi · f (pi)

Then the Jacobian and the Hessian of f , respectively,
noted Jf and Hf , are expressed as the linear tensor product
of the values f (pi) with the gradient �∇λi and the Hessian
Hλi of the coordinates, respectively:
{

Jf = ∑
i f (pi) · �∇λi

t

Hf = ∑
i f (pi) · Hλi

Since λi = wi∑
j wj

,

�∇λi = �∇wi
∑

j wj

− wi · ∑j
�∇wj

(
∑

j wj )2
(9)

Then the Hessian can be obtained with the following equa-
tions:

Hλi = Hwi
∑

j wj

− wi

∑
j Hwj

(
∑

j wj )2

−
�∇wi · ∑j

�∇(wj )
t + ∑

j
�∇(wj ) · �∇wi

t

(
∑

j wj )2

+ 2wi(
∑

j
�∇wj) · (∑j

�∇wj)
t

(
∑

j wj )3
(10)

The above expressions are general and valid for the 2D and
3D cases. Thus, in order to derive a closed-form expres-
sion of the gradient and the Hessian of the mean value co-
ordinates λi , one needs to derive the expressions of �∇wi

(Eq. (9)) and Hwi (Eq. (10)). The expressions of these terms
are derived in Sect. 4.1 and Sect. 4.2, respectively, for the 2D
case and in Sect. 5.1 and Sect. 5.2 for the 3D case.

3.1 Properties

Functions interpolated by means of mean value coordinates
as previously described have the following properties:

1. they are interpolant on M
2. they are defined everywhere in R

d

3. they are C∞ everywhere not on M
4. they are C0 on the edges (resp. vertices) of M in 3D (resp.

in 2D).

Since these are interpolant of piecewise linear functions
defined on a piecewise linear domain, they cannot be differ-
entiable on the edges of the triangles (resp. the vertices of
the edges) of the cage in 3D (resp. in 2D). Although, as they
are continuous everywhere, they may admit in these cases
directional derivatives like almost all continuous functions
do. Recall that the directional derivative of the function f in
the direction u is the value ∂fu(η) = limε→0+ f (η+ε·u)−f (η)

ε
,

with u ∈ R
3,‖u‖ = 1, ε ∈R, which strongly depends on the

orientation of the vector u where the limit is considered.
These derivatives cannot be used to evaluate nor constrain
the function around the point in general with a single gradi-
ent (or Jacobian if the function is multi-dimensional).

In this paper, we provide formulae for the first- and
second-order derivatives of the mean value coordinates ev-
erywhere in space but on the cage.

4 MV-gradients and Hessians in 2D

For conciseness, the details of this derivation are given in
the ESM (additional material) and only the final expressions
are given here.

In the following, we note (pq) the line going through the
points p and q , and [pq] the line segment between them.

4.1 Expression of the MV-gradients

Given an edge E = e0e1, in the general case where
(pei

− η)t · NE
i+1 �= 0(η /∈ (pe0pe1)), the gradient of the

weights is given by the following expression:

�∇wE
ei

= JmEt · NE
i+1

(pei
− η)t · NE

i+1

+
∑

j wE
ej

NE
i+1

(pei
− η)t · NE

i+1

∀η /∈ (pe0pe1) (11)

with

JmE = Rπ
2

(
I2

|η − pe0 |
− I2

|η − pe1 |
− (η − pe0) · (η − pe0)

t

|η − pe0 |3

+ (η − pe1) · (η − pe1)
t

|η − pe1 |3
)

(12)

Special case: η ∈ (pe0pe1), /∈ [pe0pe1]
�

�

�

	

�∇wE
ei

=
(

∑

j

NE
j

t · NE
i+1

2|E||NE
j |3 + (−1)i+j

|E||NE
j |

)

nE

∀η ∈ (pe0pe1), /∈ [pe0pe1] (13)
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4.2 Expression of the MV-Hessians

We define δx = ( 1
0

)
and δy = ( 0

1

)
.

HwE
ei

=
(

∂x( �∇wE
ei
)t

∂y( �∇wE
ei
)t

)

∀η /∈ (pe0pe1) (14)

with
⎧
⎪⎪⎨

⎪⎪⎩

∂x( �∇wE
ei
) = CE

x
t ·NE

i+1

(pei
−η)t ·NE

i+1

∂y( �∇wE
ei
) = CE

y
t ·NE

i+1

(pei
−η)t ·NE

i+1

⎫
⎪⎪⎬

⎪⎪⎭

∀η /∈ (e0e1)

and
{

CE
x = ∑

i δx · �∇wE
ei

t + ∂x(JmE) + ∑
i ∂x(w

E
ei

) · I2

CE
y = ∑

i δy · �∇wE
ei

t + ∂y(JmE) + ∑
i ∂y(w

E
ei

) · I2

and

∂c

(
JmE

) =Rπ
2

·
(

(η − pe1)(c)I2

|η − pe1 |3
− (η − pe0)(c)I2

|η − pe0 |3

− δc · (η − pe0)
t + (η − pe0) · δc

t

|η − pe0 |3

+ 3(η − pe0)(c)(η − pe0) · (η − pe0)
t

|η − pe0 |5

+ δc · (η − pe1)
t + (η − pe1) · δc

t

|η − pe1 |3

− 3(η − pe1)(c)(η − pe1) · (η − pe1)
t

|η − pe1 |5
)

Special case: η ∈ (pe0pe1), /∈ [pe0pe1]



�

�




HwE
ei

= �∇(
dwE

ei

) · nt
E + nE · �∇(

dwE
ei

)t

∀η ∈ (pe0pe1), /∈ [pe0pe1] (15)

with

�∇(
dwE

ei

) = Rπ
2

·
∑

j

3(−1)i+1NE
j + (−1)jNE

i+1

2|E||NE
j |3

+ Rπ
2

·
∑

j

3(−1)j+1(NE
j

t · NE
i+1)N

E
j

2|E||NE
j |5

5 MV-gradients and Hessians in 3D

For conciseness, the details of this derivation are given in
the ESM (additional material) and only the final expressions
are given here.

In the following, we note ei(x) a set of functions that are
well-defined functions on ]0,π[ and admit well-controlled
Taylor expansions around 0. These Taylor expansions are
given in the ESM (additional material). Note that the func-
tions ei(x) are not defined in 0 and that we make use of the
Taylor expansions to estimate their values near 0 as well as
in 0. The reason these terms appear in the final expressions
is that we organized the terms in order to provide formulae
whose evaluation converges everywhere, avoiding the typ-
ical 0/0 and +∞ + −∞ cases, for example. To simplify
the expressions,

we translate all 3D quantities to the origin (i.e., p̂ := p −η).
We also note uij = −→

ei
t · −→ej the dot product between edges

i and j , mi = (pti+2 + pti+1)/2 the midpoint of the edge i

of the triangle, and Jij = JNT
i · NT

j the vectorial product
between edge i of the triangle and the normal of the triangle
supported by the edge j (see inset). From the expression of
NT

j , we obtain that its Jacobian equals

JNT
j = −→

ej [∧] (16)

where k[∧] is the skew 3×3 matrix (i.e., k[∧]t = −k[∧]) such
that k[∧] · u = k ∧ u ∀k,u ∈R

3.

5.1 Expression of the MV-gradients

�∇wT
ti

= JmT t · NT
i

det(AT )
+

∑
j wT

tj
NT

i

det(AT )

∀η /∈ Support(T ) (17)

with

JmT = −
∑

j

e1(θ
T
j )NT

j · Jjj
t

2(| ˆptj+2 || ˆptj+1 |)3

+
∑

j

NT
j · m̂j

t

(| ˆptj+2 || ˆptj+1 |)2
+

∑

j

e2(θ
T
j )JNT

j

2| ˆptj+2 || ˆptj+1 |
(18)

where e1(x) = cos(x) sin(x)−x

sin(x)3 and e2(x) = x
sin(x)

.
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Special case: η ∈ Support(T ), /∈ T

�

�

�

�

�∇wT
ti

= −
∑

j

e2(θ
T
j )uij

4|T || ˆptj+2 || ˆptj+1 |
nT

−
∑

j

e1(θ
T
j )ujjN

T
i

t · NT
j

8|T |(| ˆptj+2 || ˆptj+1 |)3
nT

+
∑

j

NT
i

t · NT
j

4|T |(| ˆptj+2 || ˆptj+1 |)2
nT

∀η ∈ Support(T ), /∈ T

where (noting c := cos(x) and s := sin(x)) e3(x) =
(3c(cx − s) + cs3)/s5, e4(x) = (3(cx − s) + s3)/s3,
e5(x) = (s − xc)c/s3, and e6(x) = (s − xc)/s.

5.2 Expression of the MV-Hessians

We define

δx =
⎛

⎝
1
0
0

⎞

⎠ , δy =
⎛

⎝
0
1
0

⎞

⎠ ,

and

δz =
⎛

⎝
0
0
1

⎞

⎠ .

HwT
ti

= 1
det(AT )

⎛

⎜
⎝

NT
i

t · ∂x(JmT )

NT
i

t · ∂y(JmT )

NT
i

t · ∂z(JmT )

⎞

⎟
⎠

+ 1
det(AT )

(

NT
i ·

(
∑

j

�∇wT
tj

)t

+ ∑

j

�∇wT
tj

· NT
i

t
)

(19)

with

∂c

(
JmT

)

=
∑

j

e3(θ
T
j )(Jjj )(c)N

T
j · Jjj

t

2(| ˆptj+2 || ˆptj+1 |)5

−
∑

j

e4(θ
T
j )(m̂j )(c)N

T
j · Jjj

t

(| ˆptj+2 || ˆptj+1 |)4

−
∑

j

e1(θ
T
j )(∂c(N

T
j ) · NT

j

t + NT
j · ∂c(N

T
j )

t
) · JNT

j

2(| ˆptj+2 || ˆptj+1 |)3

+
∑

j

∂c(N
T
j ) · (m̂j )

t

(| ˆptj+2 || ˆptj+1 |)2
−

∑

j

e5(θ
T
j )(Jjj )(c)JNT

j

2(| ˆptj+2 || ˆptj+1 |)3

+
∑

j

e6(θ
T
j )(m̂j )(c)JNT

j

(| ˆptj+2 || ˆptj+1 |)2
−

∑

j

NT
j · δct

(| ˆptj+2 || ˆptj+1 |)2

−
∑

j

3e1(θ
T
j )NT

j · Jjj
t

2(| ˆptj+2 || ˆptj+1 |)3

(
( ˆptj+1)(c)

| ˆptj+1 |2
+ ( ˆptj+2)(c)

| ˆptj+2 |2
)

+
∑

j

2NT
j · m̂j

t

(| ˆptj+2 || ˆptj+1 |)2

(
( ˆptj+1)(c)

| ˆptj+1 |2
+ ( ˆptj+2)(c)

| ˆptj+2 |2
)

+
∑

j

e2(θ
T
j )JNT

j

2| ˆptj+2 || ˆptj+1 |
(

( ˆptj+1)(c)

| ˆptj+1 |2
+ ( ˆptj+2)(c)

| ˆptj+2 |2
)

∀c ∈ {x, y, z}

where (noting c := cos(x) and s := sin(x))
e3(x) = (3c(cx−s)+cs3)/s5, e4(x) = (3(cx − s) + s3)/s3,
e5(x) = (s − xc)c/s3, and e6(x) = (s − xc)/s.

Special case: η ∈ Support(T ), /∈ T
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∀η ∈ Support(T ), /∈ T (20)

with

− 2|T | �∇dwT
i

= −
∑

j

e1(θ
T
j )uij Jjj

2(| ˆptj+2 || ˆptj+1 |)3

+
∑

j

uij m̂j

(| ˆptj+2 || ˆptj+1 |)2
+

∑

j

e7(θ
T
j )ujj (N

T
i

t · NT
j )Jjj

4(| ˆptj+2 || ˆptj+1 |)5

−
∑

j

ujj (N
T
i

t · NT
j )m̂j

(| ˆptj+2 || ˆptj+1 |)4
−

∑

j

e1(θ
T
j )ujj (Jji + Jij )

4(| ˆptj+2 || ˆptj+1 |)3

−
∑

j

(NT
i

t · NT
j )Jjj

(| ˆptj+2 || ˆptj+1 |)4
−

∑

j

2 cos(θT
j )(NT

i

t · NT
j )m̂j

(| ˆptj+2 || ˆptj+1 |)3

+
∑

j

(Jji + Jij )

2(| ˆptj+2 || ˆptj+1 |)2

where e7(x) = 2 cos(x) sin(x)3+3(sin(x) cos(x)−x)

sin(x)5 .
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6 Continuity between the general case and the special
case

We obtained the formulae for the gradient and the Hessian
of wT

i (η) in the general case, when the point of interest η

does not lie on the triangle T , and in the special case when
η lies on it.

As MVC are C∞ everywhere not on M, these formulae
are guaranteed to converge, since in particular, the gradi-
ent and the Hessian are continuous functions everywhere not
on M.

The same holds in 2D where the distinction is made for
the computation of wE

i (η) whether η lies on the line sup-
ported by the edge E or not.

7 Experimental analysis

In this section, we present experimental evidence of the nu-
merical accuracy of our derivation and provide computation
timings.

7.1 Complexity

For each point η, computing the MVC, the MVC gradients
and the MVC Hessians are linear in the number of vertices
and edges (faces in 3D) of the cage.

7.2 C++ implementation

We implemented the computation of the mean value coor-
dinates derivatives in C++, following the layout described
in Sects. 4 and 5. This C++ implementation is provided as
additional material [25]. As it only requires simple matrix-
vector products, no third-party library is needed. To imple-
ment the applications discussed later in the paper, matrix
singular value decomposition needs to be performed, for in-
stance, to project Jacobian matrices onto the space of 2D/3D
rotations. We used the GNU Scientific Library for that pur-
pose.

7.3 Global validation with a manufactured solution

We first inspect the numerical accuracy of our derivation us-
ing the Method of Manufactured Solution (MMS), a pop-
ular technique in code verification [1, 6, 7]. Such a veri-
fication approach consists in designing an input configura-
tion such that the resulting solution is known a priori. Then
the actual verification procedure aims at assessing that the
solution provided by the program conforms to the manu-
factured solution. In other words, MMS verification con-
sists in designing exact ground-truths for accuracy measure-
ment. However, note that this verification is not general, as
it only assesses correctness for the set of manufactured so-
lutions.

Manufactured solution As mean value coordinates pro-
vide smooth interpolations, a global rigid transformation
of the cage pi = T + R · pi should infer a global rigid
transformation of the entire Euclidean space. In particular,
the Jacobians of the embedding function f of the trans-
formed cage (f : R3 → R

3, f (pi) = pi ) should be equal
to R everywhere, and its Hessian should be exactly 0. Then
our manufactured configuration is the space of global rigid
transformations and our manufactured solution is defined by
Jf = R and Hf = 0.

Given this manufactured solution, we can derive correct-
ness conditions for the Jacobian evaluation from the follow-
ing expression:

Jf =
∑

i

f (pi) · �∇λi
t = R ·

∑

i

pi · �∇λi
t + T ·

∑

i

�∇λi
t

Thus, to conform to the manufactured solution Jf = R, the
following equations should be satisfied:

{∑
i
�∇λi

t = (0,0,0)
∑

i pi · �∇λi
t = I3

(21)

As for the Hessian evaluation, we can derive similar correct-
ness conditions:

Hfc =
∑

i

fc(pi)Hλi

=
∑

∀d∈{x,y,z}
Rcd

∑

i

pi (d)Hλi

+ Tc

∑

i

Hλi ∀c = {x, y, z}

where Tx,Ty , and Tz are the first, second, and third coordi-
nate of the vector T , respectively (similarly for Rcd ).

Thus, to conform to the manufactured solution Hf = 0,
the following equations should be satisfied:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
i Hλi = 03

∑
i pi (x)Hλi = 03

∑
i pi (y)Hλi = 03

∑
i pi (z)Hλi = 03

(22)

Note that both the Jacobian and Hessian correctness condi-
tions (Eqs. (21) and (22)) are not functions of the rigid trans-
formation parameters; they also correspond to the constant
and linear precision properties of the MVC. These proper-
ties remain valid for arbitrary translations and rotations, and
thus cover the entire group of rigid transformations.

Figure 3 shows numerical evaluations of these correct-
ness conditions for different cages, at random points (in
grey) of a 2D domain. In particular, the histograms plot the
entries of the left-hand term (a vector or a matrix) of each of
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Fig. 3 Validation based on a manufactured solution (group of rigid
transformations) for the 2D case. The histograms show the violation
of the correctness conditions associated with the manufactured solu-
tion (95 % most relevant samples). Top: simple floating point precision
(output precision: 10−5). Bottom row: double precision (output preci-
sion: 10−14). Size of the diagonal of the domain: ∼1000

Fig. 4 Validation based on a manufactured solution (group of rigid
transformations) for the 3D case. The violation of the correctness con-
ditions (from transparent blue, low values, to opaque red, high value)
is measured on each vertex of a 1003 voxel grid. The full value range
(FR) is given below each image while only the 99 % most significant
samples are displayed (DI). Size of the diagonal of the domain: ∼600

these equations, which should all be zero (for the second Ja-
cobian condition, the entries of the matrix

∑
i pi · �∇λi

t − I2

are shown). As shown in this experiment, the error induced
by the violation of the correctness conditions is close to the
actual precision of the data structure employed for real num-
bers (float or double). Also, the error slightly increases when
the cage is denser. Indeed, with dense cages, it is more likely

that the randomly selected samples lie in the vicinity of the
support of the cage edges. These configurations correspond
to the special cases discussed earlier and for which Taylor
expansions are employed.

Figure 4 shows a similar experiment in 3D, with a coarse
cage (black lines). Similarly, most of the errors are located
on the tangent planes of the triangles (special cases). Note
that an important part of the error yields from the samples
which are located in the vicinity of the cage triangle, a con-
figuration for which we do not provide a closed-form ex-
pression, as discussed in Sect. 3. Interestingly, the errors on
the correctness conditions for the Jacobian and the Hessian
are comparable to the errors induced by the actual computa-
tion of the mean value coordinates λi . In the example shown
in Fig. 4, the error range of the positional reconstruction on
the grid (i.e., the violation of the linear precision property of
the MVC) is [0,1.08 × 10−5], which is larger than the er-
ror ranges observed in two of the six correctness condition
evaluations of the derivatives.

7.4 Taylor approximations behavior

Validation based on manufactured solutions enables assess-
ing the accuracy of a numerical computation on a subset of
predefined configurations. However, in our setting, design-
ing manufactured solutions corresponding to other configu-
rations than rigid transformations is highly involved.

Thus, to extend our analysis to arbitrary configurations,
we present in this paragraph an analysis of the Taylor ap-
proximations of MVC-functions based on our derivation.

In contrast to manufactured solutions, this analysis is not
meant to validate our results, but simply analyze how func-
tions expressed by MVC behave in the local neighborhood
of a point.

For regular functions, function values in the neighbor-
hood of a point can be approximated up to several orders
of precision, using Taylor approximations:

f (η + dη) = f (η) + �∇f t
η · dη + o

(‖dη‖)

f (η + dη) = f (η) + �∇f t
η · dη + 1

2
dηt · Hfη · dη

+ o
(‖dη‖2)

In the following, we use these approximations to analyze
the behavior of our derivation for arbitrary configurations.
In particular, we evaluate the following errors:

E1 = ∥
∥f (η + dη) − f (η) − �∇f t

η · dη
∥
∥

E2 = ∥
∥f (η + dη) − f (η) − �∇f t

η · dη − 1

2
dηt · Hfη · dη

∥
∥

As the evaluation neighborhood shrinks to a point, these er-
rors should tend to zero, with a horizontal tangent. Figure 5
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Fig. 5 Red curve: Linear approximation. Blue curve: Quadratic ap-
proximation. Plots show on a logarithmic scale the radial function de-
fined as the average of the absolute error on the sphere of radius r

(r ∈ [0,1]). The evaluation points η were taken on the skeleton shown
in the original cage (here are displayed the evaluations for the points
#0,#1,#2,#3,#4,#5, but these are representative of the curves we have
for all locations). For each plot, the spheres on the top show the linear
approximation error from two points of view (red box), the others show
the quadratic approximation error from the same two points of view
(blue box). From the tangent, we can assess the quadratic convergence
of the linear approximation scheme and the cubic convergence of the
quadratic approximation scheme

shows plots of these errors (logarithmic scale) on an arbi-
trary deformation function defined by user interactions:

– On regular functions, the derivatives of the MVC charac-
terize the interpolated function correctly: the maximum
error is 7 × 10−3 (for a bounding diagonal of 316). Note
that the radius r ∈ [0,1] of the evaluation neighborhood
where they can be used to approximate the function is not
too small. Therefore, our derivative formulation provides
enough accuracy to enforce sparse derivative constraints
on local neighborhoods such as those expressed in the ap-
plications described in Sect. 8.

– The linear approximation can sometimes produce more
accurate approximations in average than the quadratic ap-
proximation on a large neighborhood, while the quadratic
approximation provides results, which are less direction-
dependant.

– The induced errors indeed tend to zero when the neigh-
borhood shrinks to a point and the tangent of the curves
in logarithmic scale illustrates that the error conforms to
the expected form (O(‖dη‖2) for the linear approxima-
tion, O(‖dη‖3) for the quadratic approximation). Indeed,
remember that if y = λ · xn, then log(y) = log(λ) + n ·
log(x).

Fig. 6 Comparison with finite differences: the domain are the same as
described previously in Fig. 5, and the evaluations are performed on
point 0. x axis: size of the stencil for finite differences. y axis: differ-
ence between finite differences approximations of the derivatives and
our formulae. Axes of the plots are in logarithmic scale. The func-

tions that are plotted are �∇λerr(r) =
√∑

i ‖ �∇λi − �∇λi
FD(r)‖2 and

Hλerr(r) =
√∑

i ‖Hλi − Hλi
FD(r)‖2

7.5 Comparison with finite differences schemes

In this section, we use finite differences schemes to derive
the gradient and the Hessian of the MVC, to compare with
the expressions we obtained.

A conventional scheme for approximations of first and
second order derivatives at point (x, y, z) is the following:

fx 
 f (x + h,y, z) − f (x − h,y, z)

2h

fxx 
 f (x + h,y, z) − 2f (x, y, z) + f (x − h,y, z)

h2

fxy


 f (x + h,y + h, z) −f (x + h,y −h, z) −f (x − h,y + h, z) + f (x −h,y −h, z)

4h2

. . .

This scheme requires 19 evaluations of the function in to-
tal. Results of convergence of finite differences (FD) of
the mean value coordinates derivatives using this scheme
are presented on an example in Fig. 6, using double pre-
cision and 256 bits precision (using mpfrc++, which is a
c++ wrapper of the GNU multiple precision floating point
library (mpfr)). The domain is the same as described previ-
ously in Fig. 5, and the plots correspond here to the evalu-
ation made in point 0. The error functions that are plotted

are �∇λerr(r) =
√∑

i ‖ �∇λi − �∇λi
FD(r)‖2 and Hλerr(r) =

√∑
i ‖Hλi − Hλi

FD(r)‖2. Note that these plots are repre-
sentative of all the experiments we made (i.e., with other
cages, at other locations, etc.).

These results validate empirically our formulae, as the
finite differences scheme converges to our formulae when
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Fig. 7 Comparison with Automatic Differentiation tools. (a) His-
togram of errors (x axis is logarithmic) of the computation of the gradi-
ents of the weights by ADOL-C (on 1000 points randomly distributed
in the model’s bounding box). (b) Histogram of errors (x axis is loga-

rithmic) of the computation of the Hessians of the weights by ADOL-
C on the same set. (c) Error of the computation of the derivatives by
ADOL-C on the special case of the points lying on the support of the
cage’s triangles (x axis represents the distance to the support plane)

the size of the stencil tends to 0 (Fig. 6, using 256 bits pre-
cision). It also indicates that finite differences schemes are
not suited to evaluate MVC derivatives in real life applica-
tions (see Fig. 11 for example), as these schemes diverge
near 0 when using double precision only (Fig. 6 blue and red
curves). Note that this behavior is not typical of mean value
coordinates, but rather of finite differences schemes. The
choice of the size of the stencil is a typical difficulty in finite
differences schemes. Choosing a size which is too small may
introduce large rounding errors [8, 24]. Finding the small-
est size which minimizes rounding error is both machine
dependent and application dependent (in our case 
 0.01
on the example of Fig. 6). Moreover, its has been shown
that all finite differences formulae are ill-conditioned [13]
and suffer from this drawback. We used different schemes
to approximate the derivatives using finite differences meth-
ods (9 points evaluation + linear system inversion, 19 points
evaluation on a 3 × 3 × 3-stencil, tricubic interpolation on a
4 × 4 × 4-stencil), and they all diverge in the same manner
when using double precision.

The error curves are also similar when looking at the de-
viation of the gradients and Hessians of the function itself
that is interpolated (e.g., the deformation function in Fig. 5),
instead of the gradients and Hessians of the weights them-
selves.

7.6 Comparison with Automatic Differentiation

Along with finite differences, Automatic Differentiation
(AD) is also a popular class of techniques for the numer-
ical evaluation of derivatives of functions expressed by a
computer program. In this subsection, we compare for the
3D case our formulae to an evaluation provided by an AD
software, the C++ library ADOL-C. As expected, in prac-
tice, the computation of the Jacobian and Hessian with AD
is slower than the evaluation with our formulae (20 times
slower in average). A more problematic drawback of AD
is its numerical stability, especially in regions nearby the

support of the cage triangles, where the MVC are forced
to zero (they are only defined by continuity and Eq. (5) is
not defined in these positions). To the best of our knowl-
edge, this subtlety cannot be captured efficiently by AD
tools. Figures 7(a, b) show histograms of errors (i.e., ab-
solute difference between our formulae and the AD eval-
uation, | �∇λi(η) − �∇ADλi(η)| and |Hλi(η) − HADλi(η)|),
obtained on a set of 1000 points randomly distributed in the
bounding box of the cage model (the cage is the Armadillo
cage of Fig. 5). Figure 7(c) shows the convergence of the
values computed by ADOL-C in the vicinity of the support
of the cage triangles (i.e., | �∇wT

ti
(η) − �∇ADwT

ti
(η + εnT )|

and |HwT
ti
(η) − HADwT

ti
(η + εnT )|). This plot shows that,

as the evaluation point gets closer to the support plane; the
AD evaluation diverges. Moreover, in practice, when it lies
exactly on the support plane, the value returned by ADOL-C
is undefined (NaN, Not a Number).

7.7 Timings

Table 1 shows average computation times of the evaluation
of the mean value coordinates and their derivatives for sev-
eral input cages. As the cost of the evaluation depends on
the occurrence of the special cases (point lying on the sup-
port plane of the triangles of the cage), we performed the
computation on a set of 1000 points that were randomly dis-
tributed inside the bounding box of the model, and the av-
erage time is presented. As shown in this table, these com-
putations take only a few milliseconds, which allows their
usage in interactive contexts. Also, note that in the applica-
tions discussed in the following section, the derivatives are
only evaluated on a very small set of points for constraint
enforcement.

8 Applications

In this section, we review the applications presented in the
original paper [17], and illustrate the utility of our contribu-
tion for all of them.
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Table 1 Performance of the computation of the 3D mean value coor-
dinates and their gradients and Hessians at a single point. Tests were
performed on 1000 points and average timings are presented. For the

sake of completeness, we present timings of classical Finite Differ-
ences (FD) methods that require 19 evaluations in total, and tricubic
approximations (TriC) that require 65 evaluations in total

INPUT CAGE MODEL

(#V / #T)
COORD. ONLY

(MS)
COORD. + DERIV.
[ANALYTIC] (MS)

COORD. + DERIV.
[FD] (MS)

COORD. + DERIV.
[TRIC] (MS)

Beetle (32/60) 0.060 0.781 1.157 4.196

Beetle (130/256) 0.256 3.261 4.881 17.625

Beetle (514/1024) 1.027 13.171 19.620 70.768

Armadillo (164/324) 0.324 4.130 6.174 22.428

Monster (128/252) 0.252 3.212 4.809 17.503

Monster (506/1008) 1.013 12.860 19.389 69.900

Fig. 8 Visualization of rotations on the shape skeleton

8.1 MVC derivatives visualization

In the context of function design/editing/visualization, the
derivatives of the function can be of use to the user, as they
have very often an intuitive meaning.

For example, in the context of 2D or 3D deformation, the
Jacobian of the transformation J (η) can be put in the form
J (η) = R(η) · B(η) · Σ(η) · B(η)t using singular value de-
composition. These different matrices represent the scales
of the transformation (Σ ) in the basis given by B , and the
rotation that is applied afterward (R)—which can be repre-
sented easily as a vector and an angle (see Fig. 8). In the
context of color interpolation, the gradients of the different
channels can be displayed. In general, the norm of the Hes-
sian provides the information of how locally rigid the func-
tion is around the point of interest. Using our formulation,
one can obtain this information at any scale with the same
precision, to the contrary of what finite differences schemes
would provide.

8.2 Flexible volumetric scalar field design

As shown in [17], mean value coordinates can be used to
solve the boundary value interpolation problem for the def-
inition of volumetric scalar fields, given an input field pre-
scribed on a closed surface. Our derivation of the MVC gra-
dients and Hessians enables to extend this application to
more flexible volumetric scalar field designs, in particular

by enforcing the gradient of the interpolated function. Such
flexible scalar fields contribute to volumetric texturing [17]
and meshing [23]. Figure 9 illustrates this application where
the user sketched gradient constraints inside the volume. To
compute a function, which satisfies these constraints, a lin-
ear system is solved, where the unknowns are the scalar field
values on the cage. In particular, the following energy is
minimized:

E =
∑

vi∈V

wP
i

∥
∥
∥
∥

∑

j

λj (vi)fj − fi

∥
∥
∥
∥

2

+
∑

vi∈M

‖�fi‖2 +
∑

vi∈G

wG
i

∥
∥
∥
∥

∑

j

�∇λj (vi) · fj − gi

∥
∥
∥
∥

2

where V is a set of points where hard constraints are applied
on function values, �fi denotes the cotangent Laplacian of
the function at the vertex ci of the cage, and G is the set of
points where the gradient constraints are specified. Such an
optimization procedure generates a smooth function on the
cage (by minimizing its Laplacian) as well as in the interior
volume (thanks to the MVC) with enforced gradient con-
straints. As shown in Fig. 9, the gradient constraints enable
interacting with the shape and the velocity of the level sets
of the designed function.

8.3 Implicit cage manipulation with variational MVC

As shown in [2], intuitive, low distortion, volumetric defor-
mations can be obtained through a variational framework.
In this context, the space of allowed transformations is ex-
plicitly described and the cage deformation is automatically
optimized to satisfy positional constraints, while respecting
the allowed transformations.

Since our derivation enables to express the Jacobian and
Hessian of the transformation at any point in space as a lin-
ear combination of the cage vertices, the user can specify
rigidity constraints (by minimizing the norm of the Hessian)
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Fig. 9 Flexible volumetric scalar field design with MVC gradient con-
straints. Left: Scalar constraints (spheres in the cage). Right: Gradient
constraints (arrows in the cage). Blue and red colors respectively cor-

respond to low and high value/gradient. In contrast to simple scalar
constraints (left), gradient constraints (right) enable to intuitively in-
teract with the shape and the velocity of the level lines

Fig. 10 Implicit cage manipulation with variational MVC. Red points
indicate positional constraints; blue points indicate unknown rotational
constraints. The quality of the produced cages allows the user to edit

small details manually by switching from an implicit manipulation to
an explicit manipulation. The same cannot be done with a Green coor-
dinates solver

or rotational constraints (by setting the Jacobian to the cor-
responding value).

The solution to this optimization problem is a 3D field f :
R

3 → R
3, defined everywhere in space using MVC, which

interpolates the transformation of the cage vertices.
Let P be the set of positional constraints of the trans-

formation (∀vi ∈ P ,f (vi) = vi ), J the set of Jacobian con-
straints (∀vi ∈ J ,Jf (vi) = Ji ), and H the set of Hessian
constraints (∀vi ∈ H,Hfx(vi) = Hfy(vi) = Hfz(vi) = 03).
The solution is given by minimizing the following energy:

E =
∑

vi∈P

(

wP
i

∥
∥
∥
∥

∑

j

λj (vi)cj − vi

∥
∥
∥
∥

2)

+
∑

vi∈J

(

wJ
i

∥
∥
∥
∥

∑

j

cj · �∇λj
t (vi) − Ji

∥
∥
∥
∥

2)

+
∑

vi∈H

(

wH
i

∥
∥
∥
∥

∑

j

Hλj (vi) · cj (x)

∥
∥
∥
∥

2)

+
∑

vi∈H

(

wH
i

∥
∥
∥
∥

∑

j

Hλj (vi) · cj (y)

∥
∥
∥
∥

2)

+
∑

vi∈H

(

wH
i

∥
∥
∥
∥

∑

j

Hλj (vi) · cj (z)

∥
∥
∥
∥

2)

where wP ,wJ , and wH are weights for the positional, Jaco-
bian, and Hessian constraints, respectively. Similarly to [2],
the transformation can be constrained locally to be a pure ro-
tation. Then, in prescribed locations, the following property
should hold:

Jf (vi)
t · Jf (vi) = I3 ∀vi ∈ J

Note that the actual values of these Jacobian constraints are
now unknowns, which can be obtained through an iterative
optimization, as described in [2]. Due to the nonlocal nature
of mean value coordinates (in comparison to Green coor-
dinates), we constrain pure rotations to a subset of the en-
closed surface vertices (blue spheres in Figs. 1 and 10) in-
stead of constraining them to the medial axis.

Figures 1 and 10 illustrate the algorithm, where the in-
put surface is shown on the left in its enclosing cage. In
these examples, rotational constraints have been distributed
evenly on the surface (blue points) and only 14 positional
constraints have been specified and edited by the user. As
showcased in the accompanying video, the interactions re-
quired by our system are limited and intuitive and our reso-
lution of this optimization process is fast enough to provide
interactive feedback despite a CPU-only implementation.

Figure 11 shows a comparison with the results one can
obtain using a finite differences scheme in the context of
shape deformation. Using finite differences requires to tune
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Fig. 11 Comparison with finite
differences schemes (step:
10−3) in the context of
variational MVC deformations.
The parameters for the linear
system are strictly the same

the size of the stencil used for computation of the MVC
derivatives case by case, and it can be difficult to set it up
correctly, resulting in poor reconstructions.

9 Discussion

Other techniques have been proposed in the past for as-rigid-
as-possible (ARAP) cage-driven shape deformations. For in-
stance, Borosán et al. [3] presented a technique which solves
for ARAP transformations on the cage, while interpolating
the results in the interior with MVC. However, as discussed
earlier, MVC coordinates exhibit a very global behavior.
Thus, ARAP transformations on the cage do not necessarily
imply ARAP transformations in the interior. Reciprocally,
it is often necessary to generate non-ARAP transformations
of the cage in order to yield ARAP transformations in the
interior. Instead, our technique enforces ARAP constraints
directly on the enclosed shape.

Variational Harmonic Maps (VHM) [2] use Green coor-
dinates as the underlying machinery for deforming shapes in
an implicit fashion. Note, however, that the triangle normals
are unknowns of the system in VHM; they can therefore take
values arbitrarily far from the actual normals dictated by the
normalization of the Euclidean cross product of face edges.
Hence, the cages generated by this technique cannot be ex-
ploited in a consistent manner for post-processing tasks. For
instance, loading these cages in a modeling software sup-
porting Green coordinates would fail to correctly reconstruct
the enclosed shape if the traditional Euclidean normals were
used. Even if the normal solutions provided by the VHM
system were used for this initial reconstruction, it would be
not clear how to update them consistently given some ex-
plicit user deformation of the cage. The same remark goes
for other post-processing tasks, such as cage-driven shape
interpolation, for animation generation based on key-frames
provided by implicit cage manipulation.

On the contrary, our technique (variational MVC) does
not suffer from this drawback as only cage vertex positions
are unknowns. Thus, the cages produced by our algorithm
can be manipulated and reused directly and consistently
with existing software supporting MVC based deformations
in various post-processing tasks. Also, as demonstrated in
the accompanying video, our technique allows the user to

switch at any time from implicit to explicit cage manipu-
lation for small detail tuning, which cannot be done with
a solver based on Green coordinates. Note, however, that
it is not clear how to go from an explicit manipulation to
an implicit manipulation, as the constraints enforced by our
system are not respected when moving each cage’s vertex
independently from the others. Thus, implicit manipulation
of the cage using our system can only be done before an ex-
plicit manipulation, or this editing phase will be discarded
by the system.

10 Conclusion and future work

In this paper, we have presented the closed form expres-
sions of the derivatives of mean value coordinates for piece-
wise linear cages, both in 2D and 3D. To our knowledge,
this is the first work that provides derivatives of interpolant
barycentric coordinates, which can be used for interpolation
of arbitrary functions prescribed on cage vertices. Similar
formulae have been proposed for Green coordinates already,
but they are limited to the context of shape deformation, and
they are not an interpolant. A full numerical analysis of the
derivation has been carried out and both its accuracy and
reliability has been demonstrated experimentally. Further-
more, applications involving optimization problems bene-
fiting from MVC derivative constraint enforcement have
been presented and the utility of our contribution has been
demonstrated.

In future work, we would like to investigate the possibil-
ity of expressing derivatives for Positive Mean Value Coor-
dinates (PMVC) [19]. The possible negativity of MVC co-
ordinates has often been discussed as a drawback in certain
contexts. Note however, that this particular property makes
them the only barycentric coordinates, which allow the def-
inition of coordinates outside of the cage in a straightfor-
ward manner. Nevertheless, PMVC can overcome this pos-
sible drawback, by only taking into consideration the cage
vertices, which are visible from the point under evaluation,
which can be done very efficiently on the GPU, using the
rasterization hardware machinery. However, these coordi-
nates are not smooth since the visibility function is not
smooth either. It would be interesting to study in practice
how reliable the MVC derivatives can be when restricted to
visibility dependant sub-cages, in order to mimic the behav-
ior observed with PMVC.
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