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Abstract This work proposes a method of camera self-
calibration having varying intrinsic parameters from a se-
quence of images of an unknown 3D object. The projection
of two points of the 3D scene in the image planes is used
with fundamental matrices to determine the projection ma-
trices. The present approach is based on the formulation of a
nonlinear cost function from the determination of a relation-
ship between two points of the scene and their projections
in the image planes. The resolution of this function enables
us to estimate the intrinsic parameters of different cameras.
The strong point of the present approach is clearly seen in
the minimization of the three constraints of a self-calibration
system (a pair of images, 3D scene, any camera): The use of
a single pair of images provides fewer equations, which min-
imizes the execution time of the program, the use of a 3D
scene reduces the planarity constraints, and the use of any
camera eliminates the constraints of cameras having con-
stant parameters. The experiment results on synthetic and
real data are presented to demonstrate the performance of
the present approach in terms of accuracy, simplicity, stabil-
ity, and convergence.
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1 Introduction

The development of new approaches and technologies in
computer vision, also called artificial vision, can improve or
complement human vision in several areas. Applications of
computer vision are numerous, including recognition, object
localization, 3D reconstruction, mobile robotics, and medi-
cal imaging. The reasons for using computer vision are the
possibilities offered by computer science: speed of process-
ing a large volume of information, reliability, and availabil-
ity. What is of interest to us in this work is the use of com-
puter vision for three-dimensional perception of the envi-
ronment, also called 3D vision. The input data to be treated
are images taken by cameras from different views. A 3D
vision system is designed to extract the information of a
three-dimensional nature; this requires the calibration of the
cameras. The parameters of the cameras can be estimated by
two major methods: calibration and self-calibration. In this
paper, we are interested in the self-calibration methods that
can calibrate the cameras without any prior knowledge about
the scene. The standard process of most of these methods is
to search for equations according to intrinsic parameters and
the invariants in the images, whose aim generally is to solve
a nonlinear equation system. The algorithm used to solve
this system requires two steps, initialization and optimiza-
tion of a cost function. Self-calibration of the cameras is the
main step to obtain three-dimensional coordinates of points
from matches between pairs of images. Several methods of
camera self-calibration with constant intrinsic parameters
[1–8] and those with varying intrinsic parameters [9–20] are
treated in this area.
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Problems in the field of camera self-calibration are usu-
ally related to the constraints of the camera self-calibration
system (the number of images used, the characteristics of
the cameras, and the type of scene). These constraints limit
the majority of the methods described in the literature and
entail many difficulties; for example, self-calibration with
a large number of images provides more equations, and its
resolution becomes more complicated and requires power-
ful algorithms, and, finally, the execution time to optimize
the solution increases. The methods developed by the use
of cameras with constant intrinsic parameters are limited
in cases where cameras having varying intrinsic parameters
are used. Moreover, the planar scenes rarely exist in nature,
which shows the importance of using 3D scenes.

A new approach will be discussed in this paper. It is
an approach of camera self-calibration having the vary-
ing intrinsic parameters by the use of an unknown three-
dimensional scene. After the detection of control points in
the images by the Susan approach [24] and the matching of
these points in each pair of images by the correlation mea-
sure NCC [28], the fundamental matrix can be estimated
from eight matches by the Ransac algorithm [22]. This ma-
trix is used with the projection of two points of the 3D scene
in images taken by different views in order to formulate lin-
ear equations. Solving these equations allows the estimation
of the projection matrices. The determination of a relation-
ship between the two points of the 3D scene and their pro-
jections in the planes of the images i and j and the relation-
ships between the images of the absolute conic allow the
formulation of a nonlinear cost function. The minimization
of this function by the Levenberg–Marquart algorithm [23]
allows the estimation of the intrinsic parameters of the cam-
eras used.

This new approach has several advantages: the use of any
camera (with varying intrinsic parameters), two images only
are sufficient to estimate the cameras’ intrinsic parameters,
and the use of an unknown 3D scene (more common in na-
ture). These advantages allow us, on the one hand, to solve
some problems mentioned in the previous paragraph and re-
lated to the self-calibration system and, on the other hand,
to work freely in the domain of self-calibration with fewer
constraints.

The remainder of this paper is organized as follows. The
second part explains the related work. The third part presents
the camera model. Camera self-calibration is explained in
the fourth part. The experiment results are discussed in the
fifth part, and the conclusions are presented in the sixth part.

2 Related work

This section presents a summary of some methods of cam-
eras self-calibration. It starts with methods based on con-
stant intrinsic parameters, and, in the third paragraph of this

section, it moves to methods based on the varying intrinsic
parameters. Several approaches have been discussed in the
literature on constant parameters. A theoretical and practi-
cal method is presented in [1]; it is based on the projec-
tion of two circular points of an unknown planar scene in
different images and the use of homographies between the
images (at least five images) to estimate the unknown in-
trinsic parameters of cameras. The use of the Kruppa equa-
tions in [2] allows the estimation of the cameras’ parameters.
These equations are obtained from information contained in
the images taken by a camera, without any knowledge about
its movement and the structure of the 3D scene used. The
minimization of the nonlinear cost function [3] allows the
estimation of the camera parameters. This function is formu-
lated from a particular movement of the camera, “a transla-
tion and a small rotation,” and the estimation of the homog-
raphy of the plane at infinity. The use of vanishing line is
the main idea discussed in [4]. The solving of three linear
equations formulated from the circles and their respective
center allows determining the vanishing line. The camera’s
intrinsic parameters are estimated from the theory of these
lines and the circular points. A simple method is discussed
in [5]. It is based on the calculation of the fundamental ma-
trix (estimated from the matches between pairs of images)
and the proposal of some constraints (the pixels are square,
and principal point is in the image center) to estimate the fo-
cal length of two cameras. A method in [6] uses an unknown
planar scene and parallelogram for camera self-calibration.
The projection matrices are determined from the projection
of the parallelogram vertices on the three images used. They
are used with the relationship between the images of the ab-
solute conic and the homographies between image pairs to
formulate a nonlinear cost function. The resolution of this
function allows estimating the camera’s intrinsic parame-
ters. In [7], a new method is based on geometric constraints
to estimate the intrinsic and extrinsic parameters of the cam-
era. The use of geometric constraints on the first image pro-
vides the initial solution, and the minimization between the
scene points and their projections in the image planes by ex-
ploiting geometric constraints on the two images allows op-
timizing the initial solution. The main idea presented in [8]
is based on the use of an equilateral triangle. The projection
of the triangle vertices in the planes of the three images al-
lows obtaining the projections matrices. The resolution of a
nonlinear cost function, which is formulated from homogra-
phy matrices, projections, and the relationship between the
images of the absolute conic, allows obtaining the intrinsic
camera parameters.

Each method presented in the previous paragraph is
based on a new idea, which is different from the ideas de-
veloped by other methods, but each method has specific ad-
vantages and disadvantages. For example, one of the disad-
vantages of the method presented in [1, 6], and [8] is the use
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of a planar scene. Moreover, the method [1] requires at least
five images to calibrate the camera used. The weak point of
the method [3] is the use of a simple rotation of the camera
instead of using arbitrary rotations. Among the drawbacks
of the method [5], there is the proposal of some constraints
on the self-calibration system (the pixels are square, and the
principal points are at the center of the images). In addition
to that, all the methods presented in the previous paragraph
are based on the self-calibration of camera with constant pa-
rameters. These methods are limited in cases where cameras
having varying parameters are used.

This section presents some methods of camera self-
calibration with varying intrinsic parameters. A theoretical
and practical method is presented in [9]; it is based on the
recovery of metric reconstruction from a set of images taken
by cameras, and the absence of the skew factor is sufficient
to estimate the intrinsic parameters of different cameras. The
camera’s intrinsic parameters are estimated in [10] by sim-
plifying the Kruppa equations by the singular value decom-
position of the fundamental matrices and uncertainty related
to these matrices. A method of camera self-calibration with
varying and unknown focal length (other parameters are
considered known) is treated in [11]. It is based on the com-
plete derivation of critical motion sequences to estimate the
focal lengths of different cameras. A new method of cam-
era self-calibration with varying focal length is discussed
in [12]. The intrinsic camera parameters and those related
to the observed Euclidean structure are estimated from an
image sequence of an object whose Euclidean structure is
unknown, by solving a nonlinear cost function, but the ini-
tialization step of the focal length leads to some problems.
To solve these problems, a new formulation of the cost func-
tion independently from the focal length is proposed. The
use of a constant movement between images taken from dif-
ferent views of an object rotating around a single axis is the
main idea discussed in [13]. A nonlinear cost function is
defined from the relationship between the projection matri-
ces and fundamental matrices (determined from the matched
points), and its minimization provides the camera parame-
ters. The idea discussed in [14] is based on the transforma-
tion of the image of the absolute dual quadric to get the cam-
era parameters. The solution obtained from the estimation
of elements of the dual absolute quadric is very sensitive to
noise because these elements have a large difference of mag-
nitude. To solve this problem, the authors propose a transfor-
mation to obtain the same magnitude for all these elements,
and they show that the solution becomes more stable by this
transformation. A new self-calibration method based on the
relative distance is presented in [15]. A nonlinear cost func-
tion is defined from invariant relative distance and homogra-
phy matrix (which transforms the projective reconstruction
to the metric reconstruction), whose elements depend on the
intrinsic camera parameters. Its minimization provides the

camera parameters and the 3D structure of the scene. The
idea discussed in [16] is based on the quasi-affine recon-
struction; the camera intrinsic parameters are estimated after
this reconstruction, which is performed from the homogra-
phy matrix of the plane at infinity, and constraints on the
image of the absolute conic. In [17], a method with a posi-
tive tri-prism is based on circular points. The coordinates of
these points are determined from the properties of the pos-
itive tri-prism, and after determining the coordinates of the
circular points in the images and the vanishing points of the
tri-prism corners, the intrinsic camera parameters can be es-
timated linearly. A new multistage approach of low com-
plexity is presented in [18]. The intrinsic camera parameters
are obtained by deriving an optimization function, which is
expressed according to these parameters, and the refinement
of the estimated parameters is realized by a multistage algo-
rithm. A method based on a circle is presented in [19]. The
camera parameters are estimated from the use of at least four
images. The projection of two points of the planar scene in
different images allows estimating the four projection ma-
trices. To obtain a nonlinear cost function, these matrices
are exploited with the images of the absolute conic and ho-
mographies. The minimization of this function allows the
estimation of the intrinsic parameters of the cameras used.

The advantage of the methods presented in the previ-
ous paragraph is the use of cameras characterized by vary-
ing parameters (the use of any cameras). However, each
method has specific disadvantages. For example, in [9] the
authors propose the absence of skew factor (= 0). The au-
thors of [11] assume that the principal point, the scale factor,
and the skew factor are known. The method of [13] is based
on a constant movement (and not a random one) of cameras
when taking images. Therefore, it is limited in cases of any
movement. The authors of the article [16] use some con-
straints on the image of the absolute conic. The method [18]
requires at least four images to estimate the camera parame-
ters.

A detailed study up to 2003 on methods of camera self-
calibration with constant and varying intrinsic parameters is
presented in [20].

3 Camera model

Figure 1 shows the pinhole model used in this work. This
model projects the scene in the image planes; a 3 × 4 ma-
trix characterizes this model; for the camera i, it is defined
by Mi(Ri ti) with a 3 × 4 matrix (Ri ti) containing extrin-
sic parameters Ri , the rotation matrix, and ti , the translation
vector of camera in space; Mi is a 3 × 3 matrix containing
the intrinsic parameters and is expressed as follows:

Mi =
⎛
⎝

fi si x0i

0 εifi y0i

0 0 1

⎞
⎠ , (1)
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Fig. 1 Pinhole camera model

where fi is the focal length, εi is the scale factor, si is the
skew factor, and (x0i , y0i ) represent the coordinates of the
principal point in the images.

The passage of the scene reference to the camera refer-
ence (Fig. 1) is made by the 3×4 matrix (Ri ti), and the pas-
sage of the camera reference to the image reference (Fig. 1)
is performed by the 3 × 3 matrix Mi . A point k of the image
is the projection of a point K of the 3D scene. This projec-
tion is conducted by the following formula: k ∼ Mi(Ri ti)K ,
where ∼ indicates equality up to multiplication by a nonzero
scale factor. (x y 1)T and (X Y Z 1)T are the homogeneous
coordinates of the points k and K , respectively.

4 Camera self-calibration

4.1 Detection and matching of control points

Control points in the images can be detected by several
methods [24–27]. This article uses the Susan algorithm [24].

The matching of control points is an important step to cal-
ibrate the cameras used. Several studies [28–30] are devel-
oped in this area. This approach uses the mapping by Nor-
malized Cross Correlation NCC [28].

4.2 Estimation of the projection matrices

Let K1 and K2 denote the two points on the 3D scene. Con-
sidering a plane π that contains these two points, let us de-
note the Euclidean reference by R(O X Y Z) such that
the center O of the reference coincides with the midpoint

of segment [K1K2] and Z⊥π . The homogeneous coordi-
nates of the two points K1 and K2 (Fig. 2) in the reference
R(O X Y) are given as follows:

K1 = (r cos∅, r sin∅,1)T and

K2 = (−r cos∅,−r sin∅,1)T

where r = K1K2/2, and ∅ is the angle between the line
(K1K2) and the x-axis (X).

Considering two homographies Hi and Hj that can
project the plane π in images i and j , therefore, the pro-
jection of the two points K1 and K2 can be given by the
following expressions:

kim ∼ HiKm, (2)

kjm ∼ HjKm, (3)

where m = 1,2 and kim, kjm, respectively, represent the
points in the images i and j that are the projections of the
two vertices K1 and K2 of the 3D scene, and Hn (n = i, j )
represent the homography matrices that are expressed as fol-
lows:

Hn ∼ MnRn

⎛
⎝

1 0
0 1 RT

n tn
0 0

⎞
⎠ , n = i, j. (4)

Expressions (2) and (3) can be written as follows:

kim ∼ HiEK ′
m, (5)

kjm ∼ HjEK ′
m, (6)

where E =
⎛
⎝

r cos∅ 0 0
0 r sin∅ 0
0 0 1

⎞
⎠ and

K ′
m =

⎛
⎝

q

q

1

⎞
⎠

{
m = 1 ⇔ q = 1
m = 2 ⇔ q = −1

}
.

Let us represent the projection matrices by

Pn ∼ HnE, n = i, j, (7)

where Pi and Pj represent the projection matrices of the two
points K ′

1 and K ′
2 in images i and j (Fig. 2).

Formula (7) gives:

Pj ∼ HijPi, (8)

where

Hij ∼ HjH
−1
i ; (9)

Hij is the homography between the images i and j .
Expressions (5), (6), and (7) give:

kim ∼ PiK
′
m, (10)

kjm ∼ PjK
′
m. (11)
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Fig. 2 The projection of the two points K1 and K2 in the planes of
images i and j

In addition, expressions (8) and (11) yield the following for-
mula:

kjm ∼ HijPiK
′
m, (12)

and expression (12) leads to

e′
j kjm ∼ e′

jHijPiK
′
m. (13)

Knowing that Fij ∼ e′
jHij , where Fij is the fundamental

matrix between the images i and j , it is estimated from
eight matches between these images by the Ransac algo-
rithm [22],

e′
j =

⎛
⎝

0 −ej3 ej2

ej3 0 −ej1

−ej2 ej1 0

⎞
⎠ and

ej = (ej1 ej2 ej3)
T is the epipole of the image j , which

is estimated from the fundamental matrix by the formula
FT

ij ej = 0.
Therefore,

e′
j kjm ∼ FijPiK

′
m. (14)

Expression (10) gives

ki1 ∼ PiK
′
1 (15)

and

ki2 ∼ PiK
′
2. (16)

Therefore, the latter two relations give four equations with
eight unknowns, which are the Pi elements.

Expression (14) gives:

e′
j kj1 ∼ FijPiK

′
1 (17)

and

e′
j kj2 ∼ FijPiK

′
2. (18)

Therefore, each of expressions (17) and (18) gives two equa-
tions with eight unknowns that are the Pi elements.

Expressions (15), (16), (17), and (18) give eight equa-
tions with eight unknowns that are the Pi elements (each of
these expressions gives two equations with eight unknowns
that are the Pi elements).

So, the Pi parameters can be estimated from these eight
equations with eight unknowns.

Expression (8) gives

e′
jPj ∼ e′

jHijPi . (19)

Therefore,

e′
jPj ∼ FijPi. (20)

The above expression gives eight equations with eight un-
knowns which are the Pj elements. Therefore, the Pj pa-
rameters can be estimated from these eight equations with
eight unknowns.

4.3 Self-calibration equations

A nonlinear cost function will be defined in the main part
of this work from the determination of the relationships be-
tween the images of the absolute conic (ωi and ωj ) and
from the relationships between two points (K1,K2) of the
3D scene and their projections (ki1, ki2) and (kj1, kj2) in
the planes of the images i and j , respectively. The different
relationships are based on some techniques of projective ge-
ometry. The defined cost function will be minimized by the
Levenberg-Marquart algorithm [23] to estimate the ωi and
ωj elements and, finally, by the intrinsic parameters of the
cameras used.

Expression (10) gives

λimkim = PiK
′
m, (21)

where

Pi =
⎛
⎝

Pi11 Pi12 Pi13

Pi21 Pi22 Pi23

Pi31 Pi32 Pi33

⎞
⎠ , kim =

⎛
⎝

xim

yim

1

⎞
⎠ ,

and

λim = qPi31 + qPi32 + Pi33.

λim is a nonzero scale factor that is used to switch from
expression (10) to expression (21) (the transition between
equality with a scale factor ∼ to precise equality =). The
value of λim is determined from expression (21).

Therefore, formula (21) leads to

λimk′
im = PiK

′′
m, (22)

where

k′
im =

⎛
⎜⎜⎝

xim
Pi12
λim

Pi13
λim

yim
Pi22
λim

Pi23
λim

1 Pi32
λim

Pi33
λim

⎞
⎟⎟⎠ , K

′′
m =

⎛
⎝

q 0 0
q 1 0
1 0 1

⎞
⎠ .
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Expression (22) gives

Pi ∼ k′
imK

′′−1
m (23)

and the same for Pj :

Pj ∼ k′
jmK

′′−1
m . (24)

Expressions (4) and (7) give

Pn ∼ MnRn

⎛
⎝

1 0
0 1 RT

n tn
0 0

⎞
⎠E, n = i, j. (25)

The previous formula leads to

M−1
n Pn ∼ Rn

⎛
⎝

1 0
0 1 RT

n tn
0 0

⎞
⎠E, n = i, j. (26)

Formula (26) gives

P T
i ωiPi ∼

(
E

′T E′ E
′T RT

i ti
tTi RiE

′ tTi ti

)
, (27)

where ωi = (MiM
T
i )−1 is the image of the absolute conic,

and

E′ =
⎛
⎝

r cos∅ 0
0 r sin∅
0 0

⎞
⎠ , (28)

and the same for Pj :

P T
j ωjPj ∼

(
E

′T E′ E
′T RT

j tj

tTj RjE
′ tTj tj

)
. (29)

Expressions (23) and (27) give
(
k′
imK

′′−1
m

)T
ωi

(
k′
imK

′′−1
m

)

∼
(

E
′T E′ E

′T RT
i ti

tTi RiE
′ tTi ti

)
. (30)

The previous expression gives
(
k′
i1K

′′−1
1

)T
ωi

(
k′
i1K

′′−1
1

)

∼
(

E
′T E′ E

′T RT
i ti

tTi RiE
′ tTi ti

)
, (31)

And:
(
k′
i2K

′′−1
2

)T
ωi

(
k′
i2K

′′−1
2

)

∼
(

E
′T E′ E

′T RT
i ti

tTi RiE
′ tTi ti

)
(32)

The expressions (31) and (32) give:
(
k′
i1K

′′−1
1

)T
ωi

(
k′
i1K

′′−1
1

)

∼ (
k′
i2K

′′−1
2

)T
ωi

(
k′
i2K

′′−1
2

)
(33)

Let

C =
⎛
⎝

c11i c12i c13i

c12i c22i c23i

c13i c23i c33i

⎞
⎠

denotes the matrix corresponding to (k′
i1K

′′−1
1 )T ωi ×

(k′
i1K

′′−1
1 ) and

D =
⎛
⎝

d11i d12i d13i

d12i d22i d23i

d13i d23i d33i

⎞
⎠

denotes the matrix corresponding to (k′
i2K

′′−1
2 )T ωi ×

(k′
i2K

′′−1
2 ).

Therefore, the formula (33) gives:⎧⎪⎪⎨
⎪⎪⎩

c12i = 0, d12i = 0,
d11i

d13i

= c11i

c13i

d13i

d22i

= c13i

c22i

,
d22i

d23i

= c22i

c23i

,
d23i

d33i

= c23i

c33i

(34)

The previous expression gives:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c12i = 0

d12i = 0

d11ic13i − c11id13i = 0

d13ic22i − c13id22i = 0

d22ic23i − c22id23i = 0

d23ic33i − c23id33i = 0

(35)

The expressions (24) and (29) give:
(
k′
jmK

′′−1
m

)T
ωj

(
k′
jmK

′′−1
m

)

∼
(

E
′T E′ E

′T RT
j tj

tTj RjE
′ tTj tj

)
(36)

The previous expression gives:
(
k′
j1K

′′−1
1

)T
ωj

(
k′
j1K

′′−1
1

)

∼
(

E
′T E′ E

′T RT
j tj

tTj RjE
′ tTj tj

)
, (37)

and
(
k′
j2K

′′−1
2

)T
ωj

(
k′
j2K

′′−1
2

)

∼
(

E
′T E′ E

′T RT
j tj

tTj RjE
′ tTj tj

)
. (38)

Expression (28) gives

E
′T E′ =

(
r2 cos2 ∅ 0

0 r2 sin2 ∅
)

. (39)

Let

A =
⎛
⎝

a11j a12j a13j

a12j a22j a23j

a13j a23j a33j

⎞
⎠

denote the matrix corresponding to (k′
j1K

′′−1
1 )T ωj ×

(k′
j1K

′′−1
1 ).

Therefore, from formulas (37) and (39) we have

a12j = 0. (40)
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Let

B =
⎛
⎝

b11j b12j b13j

b12j b22j b23j

b13j b23j b33j

⎞
⎠

denote the matrix corresponding to (k′
j2K

′′−1
2 )T ωj (k

′
j2K

′′−1
2 ).

Then, from the expressions (38) and (39) we get

b12j = 0. (41)

Equations (37) and (38) give

(
k′
j1K

′′−1
1

)T
ωj

(
k′
j1K

′′−1
1

)

∼ (
k′
j2K

′′−1
2

)T
ωj

(
k′
j2K

′′−1
2

)
. (42)

The previous expression gives
⎧⎪⎪⎨
⎪⎪⎩

b11j

b13j

= a11j

a13j

,
b13j

b22j

= a13j

a22j

,

b22j

b23j

= a22j

a23j

,
b23j

b33j

= a23j

a33j

.

(43)

Therefore, formulas (40), (41), and (43) give
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a12j = 0,

b12j = 0,

b11j a13j − a11j b13j = 0,

b13j a22j − a13j b22j = 0,

b22j a23j − a22j b23j = 0,

b23j a33j − a23j b33j = 0.

(44)

Expressions (31) and (37) show that the first line and
columns of the matrices (k′

i1K
′′−1
1 )T ωi(k

′
i1K

′′−1
1 ) and

(k′
j1K

′′−1
1 )T ωj (k

′
j1K

′′−1
1 ) are identical, which gives

c11i

c22i

= a11j

a22j

. (45)

Therefore,

c11ia22j − a11j c22i = 0. (46)

Expressions (32) and (38) show that the first line and
columns of the matrices (k′

i2K
′′−1
2 )T ωi(k

′
i2K

′′−1
2 ) and

(k′
j2K

′′−1
2 )T ωj (k

′
j2K

′′−1
2 ) are identical, which gives

d11i

d22i

= b11j

b22j

. (47)

Therefore,

d11ib22j − b11j d22i = 0. (48)

Expressions (35), (44), (46), and (48) give a system of four-
teen equations with ten unknowns that are expressed as fol-
lows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c12i = 0,

d12i = 0,

d11ic13i − c11id13i = 0,

d13ic22i − c13id22i = 0,

d22ic23i − c22id23i = 0,

d23ic33i − c23id33i = 0,

a12j = 0,

b12j = 0,

b11j a13j − a11j b13j = 0,

b13j a22j − a13j b22j = 0,

b22j a23j − a22j b23j = 0,

b23j a33j − a23j b33j = 0,

c11ia22j − a11j c22i = 0,

d11ib22j − b11j d22i = 0.

(49)

The following nonlinear cost function will be minimized to
solve the previous nonlinear equations:

min
ωi,j

n−1∑
i=1

n∑
j=i+1

(
�2

i + Γ 2
i + α2

i + β2
i + γ 2

i + θ2
i + ϑ2

j

+ ζ 2
j + η2

j + ϕ2
j + ρ2

j + ψ2
j + χ2

ij + δ2
ij

)
, (50)

where �i = c12i , Γi = d12i , αi = d11ic13i − c11id13i ,

βi = d13ic22i − c13id22i ,

γi = d22ic23i − c22id23i ,

θi = d23ic33i − c23id33i , ϑj = a12j ,

ζj = b12j , ηj = b11j a13j − a11j b13j ,

ϕj = b13j a22j − a13j b22j ,

ρj = b22j a23j − a22j b23j ,

ψj = b23j a33j − a23j b33j ,

χij = c11ia22j − a11j c22i ,

δij = d11ib22j − b11j d22i ,

and n is the number of images.
The cost function (50) is minimized by using the al-

gorithm in [23]. This algorithm requires an initialization
step; therefore, the camera parameters are initialized as fol-
lows. Pixels are square; thus, εi = εj = 1, si = sj = 0,
the principal point is in the image center; therefore, x0i =
y0i = x0j = y0j = 256 (because the images used are of size
512 × 512), and focal lengths fi and fj are obtained by
solving the system of equations (49) after the replacement
of the parameters x0i , y0i , εi,, si , x0j , y0j , εj , sj in this sys-
tem.
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5 Experiment results

5.1 Simulations

In this section, a sequence of twelve 512 × 512 images of
a checkerboard pattern is simulated to test the performance
and robustness of the present approach. After the detection
of control points by the Susan algorithm [24], the matches
between each pair of images are determined by the corre-
lation function NCC [28]. The pattern is projected in im-
ages taken from different views with Gaussian noise of stan-
dard deviation σ , which is added to all image pixels. The
projection of the pattern points in the image planes allows
formulating the linear equations, and the solution of these
equations gives the projection matrices. The determination
of a relationship between the two points of the pattern and
their projections in the images i and j and the relationships
between images of the absolute conic can define a nonlin-
ear cost function. The minimization of this function by the
Levenberg–Marquart algorithm [23] allows estimating the
intrinsic parameters of the cameras used.

Figure 3, given below, shows the relative errors on x0 ac-
cording to the number of images by the present method,
the methods of Zhang [21], Wang [31], Jiang [16], and
Triggs [1].

Figure 4, presented below, shows the relative errors on y0

according to the number of images by the five methods.
Figure 5, presented below, shows the relative errors on f

according to the number of images by the five methods.
Figure 6, presented below, shows the relative errors of ε

according to the number of images by the five methods.
Figure 7, presented below, shows, in the present method,

the relative errors on the coordinates of the principal point,
focal length, scale factor, and skew factor, according to the
Gaussian noises\sigma (standard deviation).

Fig. 3 The relative errors of x0 according to the number of images

Fig. 4 The relative errors of y0 according to the number of images

Fig. 5 The relative errors of f according to the number of images

Fig. 6 The relative errors of ε according to the number of images
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Figure 8, presented below, shows the execution time ac-
cording to the number of images by the five methods.

A simple reading of Figs. 3, 4, 5, and 6 shows that the
relative errors of the coordinates of the principal point, fo-
cal length, and scale factor calculated by the present method
decrease almost linearly if the number of images is between
two and six; they decrease slowly if the number of images
is between six and eight; and they become almost stable if
the number of images exceeds eight. Therefore, if the num-
ber of images increases, the relative errors decrease, which
means that this method gives higher precision. But the math-
ematical calculations become somewhat complex, and, in
practice, the execution time of the program becomes high
because the increase in image number implies the increase
of parameter number to be estimated, which implies the in-
crease of the equation number, and which finally shows the
increase of execution time. It is clearly seen in Fig. 8 because
this figure shows that when the number of images increases,

Fig. 7 The relative errors of x0, y0, f, ε, and s according to Gaussian
noises\sigma (standard deviation)

Fig. 8 The execution time according to the number of images

Fig. 9 Two images of an unknown 3D scene

the execution time of the different methods increases, and
finally it shows the effect of the use of a large image num-
ber.

A Gaussian noise with a standard deviation of 1 pixel
(so that σ ≤ 5 pixels) is added to all image pixels to show
the performance and robustness of the present method. After
calculating errors of the coordinates of the principal point,
focal length, scale factor, skew factor, and their presenta-
tions (Fig. 7) according to noise, it may be concluded that
the errors increase slowly if 0 < σ ≤ 3 pixels, but these er-
rors increase quickly if σ exceeds three pixels. This shows
that noise has little effect on this method if σ ≤ 3 pix-
els; on the other hand, it has more influence if σ > 3 pix-
els.

In order to show the performance and robustness of the
algorithms presented in this paper, the simulation results
are compared to those obtained by several efficient methods
of Zhang [21], Wang [31], Jiang [16], and Triggs [1]. Af-
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Fig. 10 The control points are shown in red in the two images

ter reading the results obtained by these different methods
(Figs. 3, 4, 5, and 6), it appears that the relative errors corre-
sponding to the intrinsic parameters estimated by the present
method are lower than those obtained by Triggs and Jiang,
and they are closer to those calculated by Zhang and Wang.
This shows that the present approach gives satisfactory re-
sults compared to the method presented by Triggs and Jiang,
and it gives similar results to those obtained by the methods
of Zhang and Wang. Furthermore, the method of Wang re-
quires at least six images, and the method of Triggs requires
at least five images to calibrate the camera. However, two

Fig. 11 The matches are shown and numbered in red in the two images

images are sufficient to calibrate the cameras used by the
present method.

5.2 Real data

This section deals with the experiment results of the differ-
ent algorithms (Susan, NCC, Ransac, Levenberg–Marquardt,
etc.) implemented by the Java object-oriented program-
ming language. These experiments were conducted on eight
512 × 512 images of an unknown three-dimensional scene,
taken by a CCD camera having varying intrinsic parameters.
Two images (among eight) are shown in Fig. 9. The control
points and the matches (obtained by the Ransac algorithm)
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Table 1 The results of the intrinsic camera parameters estimated by
the three methods

f ε s x0 y0

The present
method

Image 1 1170 0.93 0.03 257 261

Image 2 1167 0.95 0.02 262 258

Image 3 1176 0.94 0,01 260 263

Image 4 1174 0.91 0.02 259 260

Wang Image 1 1172 0.91 0.04 259 262

Image 2 1165 0.94 0.03 263 260

Image 3 1174 0.95 0.02 262 264

Image 4 1175 0.92 0.03 260 261

Jiang Image 1 1152 1 0 250 259

Image 2 1144 0.78 0.16 245 247

Image 3 1145 0.75 0.19 240 247

Image 4 1151 0.72 0.18 248 249

between these two images are shown respectively in Figs. 10
and 11, and the intrinsic parameters estimated by three meth-
ods (the present method, Wang’s [31], and Jiang’s [16]) are
shown in Table 1 below.

Figure 10 bellow shows the control points obtained by
the Susan algorithm in the two images. 691 control points
were detected in the first image, and 694 control points were
detected in the second image.

The control points detected by de Susan algorithm are
matched between two images by the correlation function
NCC. The result obtained contains false matches. To elim-
inate them, the authors of this paper regularized all the
matches by the Ransac algorithm. Figure 11 bellow shows
the 132 matches obtained by this algorithm.

After comparing the results on the synthetic data, the
results of the present approach on real data (the two im-
ages shown in Fig. 8 and the six other images) are com-
pared to those obtained by Wang [31] and Jiang [16] on the
same data. The reading and the analysis of the intrinsic cam-
era parameters presented in Table 1 and those estimated in
the four other images show that the results of the present
approach are similar to those obtained by Wang, and they
are a little different from those obtained by Jiang. Further-
more, the present approach is also compared with two other
methods of Zhang [21] and Triggs [1]. The results of the
present approach are almost identical to those obtained by
Zhang, and they are a little different from those obtained
by Triggs. Therefore, this approach provides a robust per-
formance, and it is very close to the other well-established
methods. In addition, this method has several advantages:
the use of any camera, two images are sufficient to estimate
the intrinsic camera parameters, and the use of an unknown
3D scene.

6 Conclusions

In this paper, a robust method of camera self-calibration by
an unknown three-dimensional scene is presented. This new
method is based on the determination of a relationship be-
tween two points in the 3D scene and their projections in the
planes of the images i and j and between the relationships
between the images of the absolute conic. These relation-
ships give a nonlinear cost function, and the minimization
of this function provides the intrinsic parameters of the cam-
eras used. The positive points that characterize this approach
are diverse. Among these, there are the use of any camera
(with varying intrinsic parameters), a 3D scene, and suffi-
ciency of two points of the scene and two images to achieve
the camera’s self-calibration procedure. The robustness of
this method in terms of simplicity, accuracy, stability, and
convergence is shown by the results of the experiments and
the simulations conducted.
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