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Abstract Low-resolution face recognition (LR FR) aims to
recognize faces from small size or poor quality images with
varying pose, illumination, expression, etc. It has received
much attention with increasing demands for long distance
surveillance applications, and extensive efforts have been
made on LR FR research in recent years. However, many
issues in LR FR are still unsolved, such as super-resolution
(SR) for face recognition, resolution-robust features, uni-
fied feature spaces, and face detection at a distance, al-
though many methods have been developed for that. This
paper provides a comprehensive survey on these methods
and discusses many related issues. First, it gives an overview
on LR FR, including concept description, system architec-
ture, and method categorization. Second, many representa-
tive methods are broadly reviewed and discussed. They are
classified into two different categories, super-resolution for
LR FR and resolution-robust feature representation for LR
FR. Their strategies and advantages/disadvantages are elab-
orated. Some relevant issues such as databases and evalu-
ations for LR FR are also presented. By generalizing their
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performances and limitations, promising trends and crucial
issues for future research are finally discussed.
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1 Introduction

Face recognition (FR) has been widely studied for decades
due to its great potential applications. Many technologies
focus on dealing with complex conditions such as aging,
occlusion, disguise, and variations in pose, illumination,
and expression [1]. Although the recognition accuracy of
face recognition in controlled environments with coopera-
tive subjects is satisfactory, the performance in real applica-
tions such as surveillance is still an unsolved problem par-
tially due to low-resolution (LR) image quality [2]. With the
growing installation of surveillance cameras in many places,
there are increasing demands for face recognition in surveil-
lance applications from small-scale stand-alone cameras in
banks and supermarkets, to large-scale multiple networked
close-circuit televisions in public streets [3]. In such cases,
subjects are far from cameras, and face regions tend to be
small. This issue is called low-resolution face recognition
(LR FR).

In this paper, LR FR aims to recognize faces from small
size or poor quality images with varying pose, illumination,
expression, etc. Traditional methods [4–9] based on high-
resolution (HR) face images could not perform well when
face images have relatively LR. Compared with other non-
invasive biometric authentication techniques such as gait
recognition at a distance [10], LR FR is a more difficult task
due to the variability of human facial features. The chal-
lenges associated with LR FR can be attributed to the fol-
lowing factors:
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Misalignment Inaccurate alignment will severely affect the
performance of HR as well as LR face recognition sys-
tems [11] and it is difficult to perform automatic align-
ment on LR images.

Noise affection As a generalized issue, LR problem causes
a lot of chain effects for face recognition. The degrada-
tion in resolution together with pose, illumination, and
expression variations adds complexity to the recogni-
tion [12]. In other words, these variations produce much
more noises for LR FR.

Lack of effective features LR leads to the loss of large
amounts of information. Most effective features used
in HR FR such as Gabor [13] and local binary pattern
(LBP) [14] may fail in LR case, especially very LR case,
e.g., 6 × 6. Novel features insensitive to resolution are
essential for LR FR.

Dimensional mismatch Different resolutions between gal-
lery images and probe ones in LR FR systems cause
dimensional mismatch in traditional subspace learning
methods [15].

Due to the challenges and significances for real appli-
cations, LR FR has gradually become an active research
subarea of face recognition in recent years, and about 150
publications have reported its related contributions. Many
promising methods have been proposed, such as multi-
modal tensor super-resolution (M2TSR) [12], simultaneous
super-resolution and recognition (S2R2) [16], discrimina-
tive super-resolution (DSR) [3], RQCr color features for de-
graded images [17], local frequency descriptor (LFD) [18],
coupled locality preserving mappings (CLPMs) [19], multi-
dimensional scaling (MDS) [20], and coupled kernel em-
bedding (CKE) [21]. These representative LR FR methods
are listed in Table 1. Some comparisons between HR FR and
LR FR, including advantages and disadvantages are summa-
rized.

Generally, the straightforward way to solve LR FR prob-
lem is super-resolution (SR), which first reconstructs HR
faces from several LR faces and then performs recognition
with the super-resolved HR images. This kind of methods is
steadily developed within the last decade. Since 2005, many
researchers have studied simultaneous SR and recognition
for including facial features into an SR method as prior in-
formation. In recent years, resolution-robust feature repre-
sentation methods have been gradually considered. How-
ever, all of them are limited to different constraints and
do not completely solve LR FR problem. Future researches
are still necessary for some related problems, such as accu-
rate alignment and unified feature spaces, toward ultimately
reaching the goal of resolution-robust face recognition.

Several survey papers [23–28] and books [29, 30] with
good reviews on general face recognition have been pub-
lished. S.Z. Li et al. [31, 32], and Wheeler et al. [33] defi-
nitely proposed issues, challenges, and prospects of biomet-
ric sensing and recognition at a distance for practical system

deployments. However, none of them made specific reviews
on LR FR. Thus, the contribution of this paper is to make
a comprehensive survey on LR FR with detailed reviews on
the existing methods and provide discussions on some open
issues within this area. As the topic has attracted researchers
since the year 2000, this review generalizes the main contri-
butions during the last decade. No review of this nature can
possibly cite every paper that has been published; therefore,
we include only what we believe to be representative sam-
ples of important works and broad trends from recent years.

The rest of this paper is organized as follows. Section 2
provides a brief overview on LR FR with introductions of
concept description, system architecture, method catego-
rization, etc. In Sects. 3 and 4, a detailed review on LR FR
methods is presented from two aspects: Super-Resolution
for LR FR (Sect. 3) and Resolution-Robust Feature Repre-
sentation for LR FR (Sect. 4). Section 5 describes the per-
formance evaluations on LR FR methods. Section 6 gives a
discussion on existing problems and future trends. Section 7
concludes the review.

2 Overview on LR FR

In this section, an overview on LR FR is given. First, the
concept of LR FR is discussed after introducing two con-
cepts: the best resolution and the minimal resolution. Then
system architecture including the main strategies considered
for LR FR is briefly described. Finally, LR FR methods are
categorized, and some representative works are illustrated.

2.1 Concept descriptions

In an ideal scene, an HR face image with an abundance of
pixels and details is important for recognition. That is to
say, image resolution determines the capacity to discrimi-
nate fine features of image to a great extent. Before inves-
tigating LR FR, two concepts are introduced for describing
the effects of image resolution on face recognition.

The best resolution, on which the optimal performance
can be obtained with the perfect trade-off between recogni-
tion accuracy and performing speed. The problem of finding
“what is the best spatial resolution for face recognition?”
was originally raised by Kurita et al. [34]. They observed
that faces characterized by global features could often be
more easily recognized in lower resolutions. Pyramidal data
structure was used to represent image sets in different reso-
lutions from LR to HR with magnification factors from 1 to
64, with the order of 2, and they found that their classifier
did not perform the best at the highest resolution. This is a
phenomenon worth special attention.

The minimal resolution, also called the threshold reso-
lution, above which the performance remains steady with
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Table 1 Comparison between HR FR and LR FR

HR FR LR FR

Methods PCA [4], LDA [5], ICA [6], LPP [7], NPE [22], EBGM [13],
Bayesian FR [8]

M2TSR [12], S2R2 [16], DSR [3], RQCr [17],
LFD [18], CLPMs [19], MDS [20], CKE [21]

Advantages More information, less noises, higher robustness, more features for
use

Lower storing and computing costs

Disadvantages Higher storing and computing costs Less information, more noises, fewer available methods
and tools

Applications Entrance guard security, entertainment, etc. Long distance surveillance, law enforcement, etc.

the resolution decreasing from the best resolution, but below
which the performance deteriorates rapidly. Wang et al. [35]
demonstrated that face image information could be divided
into discriminative information (the individual information
compared with other faces) and structure information (the
common information of all face images under the same res-
olution). In addition, similar to the structure information, a
new concept called face structural similarity was proposed
in [36]. In fact, all of them are from an interesting phe-
nomenon in the real world. When observing a person mov-
ing toward us, what we see first is a person moving nearer,
then the identity of the person when the distance exceeds a
fixed value. Here, the fixed value is just the minimal reso-
lution for the human visual system. In other words, we first
obtain the structure information, and then the discriminative
information as the resolution exceeds the minimal resolu-
tion.

Investigation of the minimal resolution can be found
in [35, 37–39]. Lemieux et al. [38] studied principal compo-
nent analysis (PCA) system with AR database, and observed
that the minimal resolution of face size is about 21×16 pix-
els. Wang et al. [35] explored PCA and linear discriminant
analysis (LDA) system with AR database, and indicated the
minimal resolution of the face size as 64 × 48 pixels. Boom
et al. [37] investigated PCA and LDA system with FRGC
database, and found the minimal resolution of face size to be
32 × 32 pixels. Fookes et al. [39] examined PCA and elas-
tic bunch graph matching (EBGM) system with XM2VTS
database, and obtained the minimal resolution of face size
of about 42 × 32 pixels. From the above investigations, we
can draw a conclusion that the minimal resolution depends
on different methods and databases.

LR FR we address is automatically recognizing people
by their face images in LR. An LR face image means that
a face size is smaller than 32 × 24 pixels (with an eye-to-
eye distance about 10 pixels), typically taken by surveil-
lance cameras (maximum resolution 320 × 240, QVGA)
without subject’s cooperation and normally contains noises
and motion blurs. In an LR image, exact delineation of fa-
cial features is not so trivial both for humans and machines.
Generally, LR images discussed here roughly fall into three

Fig. 1 Some examples of LR face images

cases [18] as follows. Such examples of LR are demon-
strated in Fig. 1.

(1) Small size, for which the probe images have the in-
sufficient number of pixels. According to the reports
of FRVT2000 [40] on resolution experiment, the met-
ric used to quantify resolution is eye-to-eye distance
in pixels [41]. Nevertheless, the distance is not usu-
ally adopted in most LR FR systems but replaced by
face size. In the conventional methodology, small size is
sufficient for face recognition. However, when the size
of face captured from surveillance camera is smaller
than 32 × 24 pixels, or the size of face down-sampled
from HR static image is smaller than 16 × 16 and even
6 × 6 pixels, most conventional methods will be of no
effect [3, 16, 42].

(2) Poor quality, which is from the fact that probe images
are provided in the resized form with blur (e.g., out of
focus, interlace, and motion blur), variation of illumina-
tion and loss of details. Therefore, the underlying reso-
lutions of the images are comparatively low [43], which
means that even if the size of face is 200 × 200 pix-
els, there is no guarantee that the face is in HR. From
the reports of MBGC2009 [44], the levels of “focus”
and “illumination” are taken as image quality measures.
However, they just consider LR problem from vision
perspective rather than recognition purpose.

(3) Small size & Poor quality, which is from the combina-
tion of them naturally. In addition, Han et al. [45] intro-
duced a new form of LR, called low gray-scale resolu-
tion.
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Fig. 2 The system architecture of LR FR

2.2 System architecture

Similar to conventional HR FR system, LR FR system also
includes three main parts. That is LR face detection or track-
ing, LR feature extraction and LR feature classification, as
illustrated in Fig. 2. In general, the latter two are collectively
referred to as LR FR, which is the focus in this review.

LR face detection/tracking means that pre-processing, de-
tection, tracking and segmentation of the faces are automat-
ically performed on LR images or videos. State-of-the-art
face detection methods such as AdaBoost [46], which are
usually able to detect face images larger than 20 × 20, could
fail in LR case. Therefore, building an efficient and effec-
tive face detection system is necessary for LR FR especially
in surveillance applications. At present, two strategies are
considered for this problem as follows.

The first is multicamera active vision systems, which are
used for applications with large coverage areas and high de-
tection efficiency [47–50]. Generally, they include two kinds
of cameras. One is wide field of view (WFOV) cameras cov-
ering a large area to allow the detection and localization of
subjects by a combination of motion detection, background
modeling and skin detection. The other is narrow field of
view (NFOV) cameras actively controlled to capture HR
face images using pan, tilt, and zoom (PTZ) commands.

The second is to improve the existing HR face detec-
tion methods for solving LR problem. For example, Hayashi
et al. [42] proposed the first method to detect very LR
faces. They adopted upper-body images and frequency-band
limitations of features based on AdaBoost-based detector.
The detection rate was improved from 39 % to 73 % on
6 × 6 with MIT+CMU frontal database. Recently, Zheng
et al. [51] developed a modified census transform technique
by using boosting classifiers for detecting LR faces in color
images.

Besides these two strategies, selection of the most suit-
able faces is also used for LR problem.

LR FR initially extracts resolution-robust features, and
performs classification by matching the features to obtain
the identity decision. The steps are similar to HR FR sys-
tem from general framework. However, as opposed to HR
FR, LR FR needs to consider the particular problem of di-
mensional mismatch. In practical face recognition applica-
tions, it is reasonable to assume that all gallery images are
in HR. From classification perspective, LR will obviously

Fig. 3 Three general ways used for LR FR

cause the mismatch problem between gallery/probe pairs, as
illustrated in Fig. 3. To deal with the problem, three general
ways can be considered as follows:

(1) Up-scaling (or interpolation), such as cubic interpola-
tion, is conventionally adopted in most of the subspace-
based face recognition methods. For LR images, it
does not introduce any new information but potentially
brings noises or artifacts. Therefore, the process of up-
scaling can be feasible under high-resolution or middle-
resolution, but may drop in performance confronting
with much lower resolution. Thus, it is generally not a
good way for solving LR problem. For further refined
solution, super-resolution or hallucination [52] can be
employed to estimate HR faces from LR ones. How-
ever, it usually requires a lot of images, which belongs
to the same scene with precise alignment, and it also
needs large computation cost.

(2) Unified feature space, also called inter-resolution (IR)
space [19], is used to project HR gallery images and LR
probe ones into a common space. This idea seems to be
direct and reasonable for solving LR problem. However,
it is difficult to find the optimal inter-resolution space.
And the two bidirectional transformations from both HR
to IR and LR to IR may bring much more noises.

(3) Down-scaling seems to be a feasible solution for the
mismatch problem. Unfortunately, it reduces the amount
of available information, especially the high-frequency
information mainly for recognition. However, down-
scaling on both training/gallery and test/probe may im-
prove the performance under very LR case such as
7 × 6 [3].
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Here, we briefly summarize the three ways.
In the first way, most super-resolution methods are taken

as indirect way. They firstly obtain super-resolved HR im-
ages from LR images and then for recognition.

The second way is to build unified feature space with op-
timal mapping techniques, or resolution-robust feature ex-
traction techniques. They can be taken as direct way that
performs on the original LR images.

Since the third way, i.e., down-scaling techniques are
poor in performance for solving LR problem, and few re-
searches focused on them, which are not our main consider-
ations in this review.

2.3 Categorization and representatives

Based on the above analyses, LR FR methods can generally
be classified into two categories, (1) Indirect method: super-
resolution for LR FR, (2) Direct method: resolution-robust
feature representation for LR FR. Of course, some methods
may overlap category boundaries.

(1) Indirect method: super-resolution (SR) is initially used
to synthesize the higher-resolution images from the LR
ones, and then traditional HR FR methods could be ap-
plied for recognition. The landmark works in this cate-
gory are face hallucination (Baker et al. [52]) and simul-
taneous SR and recognition (S2R2) (Hennings-Yeomans
et al. [16]). Two criteria are considered for SR appli-
cations: visual quality and recognition discriminability.
However, most of these methods [36, 53–55] aimed to
improve face appearance but failed to optimize face im-
ages from recognition perspective. Recently, a few at-
tempts were made to achieve these two criteria under
very LR case [3].

(2) Direct method: resolution-robust feature representation
is the process of directly extracting the discriminative
information from LR images. The landmark works are
color feature (Choi et al. [17]) and coupled locality
preserving mappings (CLPMs) (Li et al. [19]). These
methods can be separated into two groups further. One
is feature-based method in which the resolution-robust
features, such as texture [18], and subspace [56] infor-
mation, are used to represent faces. However, some fea-
tures used in traditional HR FR methods are sensitive
to resolution. The other is structure-based method, e.g.,
multidimensional scaling (MDS) [20] in which the rela-
tionships between LR and HR are explored in resolution
mismatch problem.

This categorization might provide useful information for
potential readers. However, it is not unique. Alternative cat-
egorizations based on other criteria are also possible, such as
relatively LR case and very LR case, single-modality based
(against LR only) and multimodality based (against LR and

other variations such as pose). Table 2 summarizes represen-
tative works of LR FR within the two categories. In Sects. 3
and 4, the general principle and typical methods of each
category will be discussed. They are followed by a review
of specific methods, including discussions of their pros and
cons and suggestions for future researches.

3 Super-resolution for LR FR

Many researchers want to build face recognition systems
with LR images obtained by web cameras or close-circuit
television. However, the overall performance of LR FR
needs great improvement. Compared with the develop-
ment of resolution-robust face recognition methods, super-
resolution (SR), or hallucination methods have gained much
more attentions, due to many problems that degrade the
quality of face images in LR case. In this section, some typ-
ical SR methods specifically satisfying the requirement for
face recognition will be reviewed. In the last decade, most of
the conventional SR methods called vision-oriented SR were
taken as the indirect way, which is reconstruction followed
by recognition. Recently, some researchers focused on si-
multaneous SR and recognition, and SR mainly for recogni-
tion, called as recognition-oriented SR obtaining promising
results for LR classification.

3.1 Vision-oriented super-resolution for LR FR

The simplest way to increase resolution is direct interpola-
tion of input images with methods such as nearest neigh-
bor, bilinear, and bicubic. However, its performance is usu-
ally poor since no new information is added into the pro-
cess [36]. In contrast to the interpolation, SR increases res-
olutions of images or video frames using the relationships
among several images. Generally, SR can be divided into
two classes [73]: reconstruction-based method (from input
images alone) [74–77], and learning-based method (from
other images) [36, 52–55, 57–59, 73, 78–87].

The reconstruction-based method reconstructs HR im-
ages based on sampling theory by simulating the image for-
mation process. However, the method has some fatal short-
comings. Baker et al. [57] pointed out that the method in-
herits limitations when the magnification factor increases.
Lin et al. [88] proposed the problem “Do fundamental limits
exist for the reconstruction-based SR?”. They further gave
explicit bounds of the magnification factor based on pertur-
bation theory analysis. Recently, Nasrollahi et al. [89] tried
to solve the problem and improve the magnification factor
from about two to almost four by using multilayer percep-
tron.

Most of the reconstruction-based methods are more suit-
able for synthesizing local texture, and they do not incorpo-
rate any specific prior information (e.g., face domain) about
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Table 2 Categorization of LR FR methods

Categorization Representatives

Indirect method: Super-resolution
for LR FR

Vision-oriented SR Face Hallucination [52, 57];

Two-step Statistical Approach [53, 58];

Eigentransformation [36];

Extended Morphable Face Model [59].

Recognition-oriented SR Simultaneous SR and Recognition (S2R2) [16, 60–62];

Multi-Modal Tensor SR (M2TSR) [12];

Discriminative SR (DSR) [3, 63];

Support Vector Data Description (SVDD) [64, 65].

Direct method: Resolution-robust
feature representation for LR FR

Feature-based method Color-based Feature [17, 66–68];

Texture-based Feature: Local Frequency Descriptor (LFD) [18, 69];

Kernel Class-dependence Feature Analysis (KCFA) [56].

Structure-based method Eigenspace Estimation (EE) [15];

Coupled Locality Preserving Mappings (CLPMs) [19, 70];

Multi-Dimensional Scaling (MDS) [20, 71, 72];

Coupled Kernel Embedding (CKE) [21].

the super-resolved images. Therefore, they are usually ap-
plicable to generic object or scenes rather than face images.
Few researchers focused on enhancing face images, though
Yu et al. [74] proposed a new method for enhancing LR face
videos. Moreover, the performance of the reconstruction-
based methods is severely influenced by the following fac-
tors [88]: the level of noise existing in the LR images, the
accuracy of point spread function (PSF) estimation and the
accuracy of alignment. In other words, higher level of noise
or poorer PSF estimation and alignment will result in less
improvement in resolution.

The learning-based method, also known as face hallu-
cination [52], which is the focus in this review, is always
used to enhance resolutions of face images compared with
the reconstruction-based method. In essence, the learning-
based SR is used to learn the relationships between LR and
HR corresponding to different face images in a training set,
and then use these learnt relationships to predict fine details
for LR probe images (stored by image pixels, image patches,
or coefficients of alternative representations). Establishing
a good learning model to obtain the prior knowledge is the
key to the learning-based method. At present, the commonly
used learning models include the PCA model [36], image
pyramid model [57], Markov model [82], etc.

How can we evaluate the quality of hallucinated HR im-
ages for face recognition? Three goals should be reached
step by step. The first goal is to obtain HR images from vi-
sual perspective only. This is also the basic target for SR.
Then the HR images are expected to be more like face im-
ages. Finally, we hope the HR face images are more like
someone’s face from recognition perspective.

For realizing the three goals, Liu et al. [58] introduced
two different data constraints: soft constraint and hard con-
straint. The former was to beautify faces and make the re-
sults more like the mean face, corresponding to the first two
goals. And the latter was to faithfully reproduce facial de-
tails to be exactly the same as the input face, similar to
the third goal. Enlightened by Liu’s work, Zou et al. [3]
designed two new constraints. They included a data con-
straint and a discriminative constraint. The data constraint
was ‖IH − RIL‖2, to estimate the reconstruction error in
the HR image space to make use of the information from
HR training images. It was opposed to ‖DIH − IL‖2 used in
the LR image space in the conventional methods. The dis-
criminative constraint was to use class label information to
boost recognition performance. For the detailed discussions
about the two constraints, please refer to Sect. 3.2.2.

Zou et al. [3] further categorized learning-based SR
methods into two classes, namely maximum a posteri-
ori (MAP)-based method [52–54, 57, 58, 73, 79–84] and
example-based method [36, 55, 59, 78, 85–87]. It is notice-
able that some methods overlap category boundaries. Other
categories can also be discussed, such as single-frame-based
and multiframe-based, intensity-based and frequency-based,
global-based and local-based as well as global&local. In this
paper, MAP-based and example-based are taken as the main
categorization and other categories as a supplement.

3.1.1 MAP-based method

In this method, the goal is to find an optimal solution max-
imizing the posterior probability p(IH |IL) to obtain super-
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resolved HR images, i.e.,

IH = arg max
IH

p(IH |IL)

= arg max
IH

p(IL|IH )p(IH )

p(IL)
. (1)

In this formula, since p(IL) is a constant for LR image IL is
known already, the model can be simplified as follows:

IH = arg max
IH

p(IL|IH )p(IH ). (2)

p(IL|IH ) is the probability of obtaining IL when HR image
IH is given, and depends on the distribution of the noise
deriving from the process of down-sampling. p(IH ) denotes
the prior of IH . Therefore, the key of MAP-based method is
to estimate p(IH ).

For p(IH ), different algorithms have different solutions.
Baker et al. [57] first proposed the idea of face hallucination
and led the precedent of learning-based method. They es-
timated p(IH ) by using an image Gaussian pyramid under
Bayesian formulation. The method obtained high-frequency
components from a parent structure based on training face
images; however, it intrinsically relied on a complicated sta-
tistical model. Similar to Baker’s work, Capel et al. [83] also
used MAP estimators, with the difference that Capel divided
a face image into six unrelated parts, and applied PCA on
them separately. Dedeoglu et al. [81] extended Baker’s work
to hallucinate face video by exploiting spatiotemporal con-
straints, and they reported a very high (×16) magnification
factor for LR case.

Based on Baker’s work [57] and Freeman’s work [84],
Liu et al. [53, 58] proposed a two-step statistical method.
It integrated a parametric model called global face image
I

g
H recording common facial properties, with a nonparamet-

ric model called local feature I l
H carrying individualities, to

generate the HR image. Then the model (2) could be natu-
rally transformed into

IH = arg max
I

g
H ,I l

H

p
(
IL|Ig

H

)
p
(
I

g
H

)
p
(
I l
H |Ig

H

)
. (3)

They applied PCA linear inferences to maximize p(IL|Ig
H )

× p(I
g
H ) and get an optimal global face image I

g
H , and a

Markov random field prior was used to maximize p(I l
H |Ig

H )

for obtaining a local feature I l
H . However, this method

depends on an explicit down-sampling function, which is
sometimes unavailable in practice.

Enlightened by Liu’s work, many methods treating face
hallucination as a two-step problem have been proposed [73,
80]. They all perform as the following two-step process.
First, a global face image containing low-frequency infor-
mation is obtained, which looks smooth and lacks some de-
tailed features. Second, a residue face image keeping high-
frequency information is synthesized. And then the residue

image is piled onto the global image to get the final super-
resolved face images. For example, Li et al. [80] used a MAP
criterion for reconstructing both the global image and the
residual image. Jia et al. [73] proposed a unified tensor space
representation for hallucinating low-frequency and middle-
frequency information, and then recovered high-frequency
part by patch learning.

In addition, some methods are performed in transformed
feature space rather than pixel density domain. Zhang et
al. [82] performed SR in frequency domain with infer-
ring discrete cosine transform (DCT) coefficients instead of
estimating pixel intensities in spatial domain. Alternating
component (AC) coefficients in DCT were inferred by the
Markov network of low-level vision. Subspace methods are
also applied to restrict the reconstructed HR image locating
within face subspace, such as PCA [54] and kernel PCA sub-
space [79]. However, most of these SR methods only focus
on frontal faces, and fail to deal with unconstrained varia-
tions in pose, illumination, and expression.

3.1.2 Example-based method

In this method, the HR image h is reconstructed as a linear
or nonlinear combination of the HR training images hi by
finding an optimal solution from the given LR image l, i.e.,
it can be mathematically written as

h =
∑

i

αihi . (4)

The key of example-based method is to determine the
weight coefficients αi . They minimize the error caused by
the linear or nonlinear approximation of the LR training im-
ages li (the pairs of hi ) for l as follows:

α = arg min
αi

∥∥∥∥l −
∑

i

αi li

∥∥∥∥

2

. (5)

For obtaining αi , different algorithms have different models.
Wang et al. [36] proposed a representative example-based

method and treated the hallucination problem as a transfor-
mation between LR and HR. They used PCA to fit an input
LR face image as a linear combination of LR training im-
ages. The HR image was then synthesized by replacing the
LR training images with their HR counterparts while retain-
ing the same combination coefficients αi . However, the lin-
ear PCA model could not capture distinct structures of the
input face efficiently and only focused on global estimation
without paying attention to local details. Thus, the results
seemed unclear, lacked detailed features, and caused some
distortions. Moreover, they designed a mask to avoid arti-
facts on hair and background, and performed hallucination
in the interior region of face. In fact, local modeling and ap-
propriate smoothing can be adopted to handle these artifacts
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properly. That is to say, the idea of two-step in [53] can be
used to compensate high-frequency features for the work.

Compared with Wang’s work [36] operated in eigenface
space, Liu et al. [55] performed as the two-step way in patch-
tensor space. LR image was first partitioned into overlapped
patches. HR patches were inferred respectively based on
TensorPatch model and then fused together using a local
distribution structure to form the hallucinated result. To fur-
ther enhance the quality of the HR image, the coupled PCA
method was developed for residue compensation. While the
method added more details to the face, it also introduced
more artifacts. Therefore, whether to adopt residue compen-
sation techniques and when to do them is critical for super-
resolution (SR).

Besides eigenface and tensor space, manifold learning
techniques are used for example-based SR. Manifold learn-
ing theory suggests that the subspace of face images has an
embedded manifold structure. The high-dimensional struc-
ture formed by HR face images is homeomorphic with a
geometric structure in LR space. It means that the features
of LR and HR face images share a common topological
structure, and thus, they are coherent through the structure.
Therefore, some ideas of manifold learning such as local lin-
ear embedding (LLE) [78] and locality preserving projection
(LPP) [85]-[86] are introduced into SR and are discussed as
follows.

Chang et al. [78] introduced the idea of LLE into SR with
neighbor embedding. They assumed that training LR and
HR images form manifolds with similar local geometry in
two distinct feature spaces and used the training image pairs
to estimate the weight coefficients for reconstruction. How-
ever, they treated SR as a patch-based single-step technique
without compensation for local image details.

Zhuang et al. [85] developed locality preserving hallu-
cination method based on LPP [7]. It combined LPP and
radial basis function (RBF) together to hallucinate a global
HR face. Compared with Wang’s work [36], the hallucinated
global HR face contained more detailed features. However,
there were more noises in the local features such as con-
tour, nostril, and eyebrow, because LPP resulted in the loss
of nonfeature information. To improve the details of the syn-
thesized HR face, they developed a residue compensation
method based on patch by neighbor embedding [78].

Inspired by Zhuang’s work, Ma et al. [86] employed
additional constraints on neighborhood reconstruction for
face hallucination. The input LR image determined the
position at which the neighbors of a patch were chosen
in training step, and then the hallucinated patches were
reconstructed using optimal weights of the training im-
age position-patches. The method did not incorporate any
residue compensation step into hallucination. They gave the
reason and discussed why the conventional two-step meth-
ods usually adopted the residue compensation step. Accord-

ing to them, some detailed facial information was lost in the
first global reconstruction step.

In addition, some methods performed example-based SR
on single-frame LR face image [59, 87]. For example, Park
et al. [59] performed SR within PCA feature space with an
extended morphable face model. They defined the model by
the pixel correspondence between a reference face and other
faces. By using the model, all face images were separated
into extended 3D-shape and texture. Then the PCA-based
SR method was implemented on both shapes and textures
of LR input to reconstruct the corresponding HR shapes and
textures respectively, and they were further synthesized into
the result.

Recently, Hu et al. [87] also developed a single-frame SR
method, like Liu’s work [53]. They used both global and lo-
cal constraints for hallucination; the difference was that their
global model was derived from the nonrigid warping of ref-
erence face examples and the learning of the pixel structure.
The warping could capture a moderate range of face vari-
ations. And the effects of warping errors were reduced by
the adaptive weighting in the local prior model. Thus, the
method could infer more faithful individual structures of the
target HR face.

3.1.3 Discussion

Most of the vision-oriented SR methods have attempted to
minimize mean-squared error (MSE) or maximize signal-
to-noise ratio (SNR) between the original HR and the re-
constructed SR images. As we all know, the performances
of face recognition systems mostly rely on the ability to
identify key facial features, which are typically captured by
high-frequency components. However, high-fidelity recon-
struction of low-frequency content in SR may dominate the
image [90]. Therefore, obtaining a lower MSE or a higher
SNR does not necessarily contribute to a better performance.
That is to say, the primary goal of vision-oriented SR meth-
ods is to obtain a good visual reconstruction, but not usu-
ally designed from recognition perspective. As resolution
decreases, SR becomes more vulnerable to unconstrained
variations. It also introduces noises and distortions that af-
fect recognition, especially when the probe identities could
not be included in the process of training selection. Thus,
one problem of what relationships exist between SR and
recognition is generated.

Some researchers discussed the problem and made at-
tempts to explore the potential of SR in recognition. Baker et
al. [52] stated that no new information had been added dur-
ing resolution enhancement. Also, face recognition meth-
ods could be developed to theoretically work as well on the
LR images as they did on the hallucination results. Gun-
turk et al. [54] tried to reconstruct the necessary informa-
tion required by face recognition system, especially with
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Fig. 4 The illustration of multimodal SR and recognition process in tensor space

the consideration of the statistics of noises and motion es-
timation errors. However, the method is unsuitable for pose
variations, and is also heavily time-consuming. Wang et
al. [36] explored whether hallucination could contribute to
recognition. They found that the hallucinated images per-
formed much better than the LR images but performances
of both dropped when the face size decreased from 32 × 24
to 16×12 pixels with XM2VTS database. However, the im-
provement in recognition seemed not as significant as that
in face appearance. They gave a relatively reasonable expla-
nation that human visual system could better interpret the
added high-frequency details in the reconstruction process.

In summary, most of the existing vision-oriented SR
methods are not completely suitable for recognition.
A promising way to further improve the robustness perfor-
mance of SR for recognition is to embed SR into recogni-
tion. In the following subsection, we turn to recognition-
oriented SR.

3.2 Recognition-oriented super-resolution for LR FR

Recognition-oriented SR is not to use SR before recogni-
tion in the conventional way. It embeds the elements of
SR methods into face recognition. Specifically, it fuses the
models of the image formation process and the prior infor-
mation, together with feature extraction and classification
to design methods for recognition [3, 12, 16, 64, 91–93].
Compared with vision-oriented SR, recognition-oriented SR
maybe more suitable for LR FR due to the following two

observations. Firstly, it simultaneously performs SR and fea-
ture extraction with the direct goal of recognition. Secondly,
it performs feature SR with the aim of reconstructing not
only the low-frequency content (structure information) but
also the high-frequency content (discriminative information)
for recognition.

3.2.1 Simultaneous super-resolution and feature extraction

The method has drawn much attention. Here, we discuss two
representative methods in detail as follows: multimodal ten-
sor SR (M2TSR) [12] and simultaneous SR and recognition
(S2R2) [16]. Especially for S2R2, it is the first framework
for realizing SR and recognition simultaneously.

Jia et al. [12] made some pioneering explorations in this
field and proposed M2TSR method, though it was still se-
quential and did not achieve complete simultaneity. It ini-
tially computed a maximum likelihood vector in the HR
tensor space. Although it did not simultaneously perform
against pose and illumination variation as illustrated in
Fig. 4, face hallucination and recognition were unified in this
way. The consideration of multimodality could contribute to
LR FR. However, its disadvantage was that the tensor ma-
nipulations for reconstruction demanded high computation
expenses.

Hennings-Yeomans et al. [16, 60, 61] showed that the
performances of conventional SR methods were degraded
under very LR case. Thus, they proposed S2R2 method to
combine identification with reconstruction for dealing with
LR problem by introducing the constraints between LR and
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Fig. 5 The framework of S2R2

HR images in a regularization form, as illustrated in Fig. 5.
Formula (6) denotes the base model of S2R2. yp , f

(k)
g , and

x denote the input LR probe image, the gallery image in
the kth class, and the output HR image, respectively; B , L,
and F represent operators for down-sampling, smoothness
and feature extraction, respectively; besides, α and β are the
regularization parameters. The goal of the S2R2 model is to
obtain a suboptimal output HR image x for satisfying the
need of vision and recognition simultaneously.

‖Bx − yp‖2 + α2‖Lx‖2 + β2
∥∥Fx − f (k)

g

∥∥2
. (6)

In addition, the base S2R2 model was improved by in-
volving the cases of multiframes or multicameras version
B(i). Furthermore, the base SR prior model l(k) and feature
extraction (FL) were modified based on multiresolutions
version (l or L). The modified model is shown in (7), where
α,β, γ are the regularization parameters, and B denotes the
image formation process. The base S2R2 model and the im-
proved version tested on CMU Multi-PIE database on 6 × 6
obtained the accuracies of 62.8 % and 73 %, in comparison
with the PCA baseline method at 47.1 %.

∥∥B(i)x − y(i)
p

∥∥2 + α2
∥∥Lx − l(k)

∥∥2

+ β2
∥∥Fx − f (k)

g

∥∥2 + γ 2
∥∥FLBx − f

(k)
L

∥∥2
. (7)

Compared with the general indirect SR methods, S2R2

improves identification accuracy and gets promising results
on 6 × 6. However, the parametric optimization needs to
be repeated for each gallery image in the database, espe-
cially for large databases; thus, their formulation is quite
time-consuming. Also, this method assumes that gallery and
probe images are in the same pose, frontal or localized per-
fectly, directly resulting in its inefficiency under many gen-
eral scenarios. Therefore, how to obtain the appropriate reg-
ularization parameters and reduce the computational com-
plexity are two important issues in this model.

3.2.2 Feature super-resolution

The method is also called feature hallucination, which was
innovatively proposed by Li et al. [93] to reconstruct HR
features instead of HR images for face recognition. The ker-
nel version of support vector data description (SVDD) [94]
was used to synthesize HR discriminative features both for
vision and recognition perspective [64, 65]. SVDD approx-
imated the support of objects belonging to the normal class.
Its main idea was to find a ball that could achieve two con-
flicting goals simultaneously. One was that it should be as
small as possible and the other was that it should contain as
much training data as possible with equal importance. How-
ever, the method is only for frontal faces and its generaliza-
tion ability remains doubtful.

Besides, some methods are used for video applications.
For example, Arandjelovic et al. [91] proposed an extended
generic model called shape-illumination manifold (gSIM)
framework by separating illumination and down-sampling
effects for feature SR. Their experiments on both the Cam-
bridge database [95] and the Toshiba database reported
promising results for face recognition. However, the method
requiring video sequences at enrollment makes it impracti-
cal for surveillance scenarios.

In addition, we introduce two representative recognition-
oriented SR methods: nonlinear mappings on coherent fea-
tures (NMCF) [92] and discriminative SR (DSR) [3]. Both
of them introduce classification discriminability into SR
process.

Huang et al. [92] proposed NMCF method with canoni-
cal correlation analysis (CCA) to establish coherent features
between LR and HR images represented by PCA. Motivated
by Zhuang’s work [85], they also applied the radial basis
function (RBF) mapping to build the regression model by
adopting the advantages of RBF, such as fast learning and
generalization ability. NMCF was evaluated on 12×12 with
FERET database and obtained the accuracy of 84.4 % com-
pared with 36.9 % of the PCA baseline method.

Recently, Zou et al. [3, 63] proposed the DSR method
with two constraints (new data constraint and discriminative
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Fig. 6 The framework of discriminative SR for recognition with two new constraints

constraint). It modeled the SR problem as a regression prob-
lem in the kernel space under very LR case such as 16 × 12
and 7 × 6, as illustrated in Fig. 6. Formula (8) shows the
mapping relationships under the two constraints. The former
is the new data constraint, while the latter is the discrimina-
tive constraint. The conventional SR method employs the
data constraint ‖DI i

h − I i
l ‖2 (D is the down-sampling opera-

tor) to make full use of the information in LR space for SR.
However, this data constraint may not work well for very
LR case because of the limited information carried by LR
space. So, the data constraint is changed into ‖I i

h − RI i
l ‖2,

where DR = I. The discriminative constraint is to use the
class label information of the training data for improving
the discriminability. DSR shows its superiority from both
visual quality and recognition performance. For example,
super-resolution results on 16 × 12 with Extended Yale B
database are shown in Fig. 7. Also, DSR obtained the recog-
nition accuracy of 73.5 % on 7 × 6 with CMU PIE database
in comparison with 40.5 % in the PCA baseline method.

R = arg min
R

1

N

N∑

i=1

∥∥I i
h − RI i

l
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F
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)})
. (8)

A brief discussion on the similarities and differences of
DSR and NMCF is as follows: Both DSR and NMCF require

a training set containing LR and HR image pairs to learn the
nonlinear mappings from LR to HR feature space, followed
by the reconstruction of SR images or features. Compared
with NMCF, DSR performs more efficiently when LR im-
ages are used for training/gallery sets. Conversely, when HR
training/gallery sets are used, the performance of NMCF is
better than DSR.

3.2.3 Discussion

Some successes have been achieved by recognition-oriented
SR methods such as S2R2 [16] and feature SR [93]. How-
ever, they just provide the framework for recognition-
oriented SR, and their recognition performances largely de-
pend on different reconstruction regularization models and
feature extraction techniques. Some common problems are
still unsolved in these methods. For example, it is unclear
what kind of reconstruction regularization method is more
appropriate for recognition. In addition, feature extraction
is known to be sensitive to large appearance changes due
to pose, illumination, expression, etc. To combine super-
resolution and feature extraction perfectly is also a big issue
for the future work. A possible way to handle these prob-
lems is to adopt more robust feature extraction techniques,
which is the focus in the following section.

3.3 Summary of super-resolution for LR FR

A summary of super-resolution (SR) for LR FR is as fol-
lows:
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Fig. 7 Comparison of different
methods in Zou et al. [3].
(a) Input 16 × 12, (b) Bi-cubic,
(c) Baker et al. [57], (d) Wang et
al. [36], (e) Chakrabarti et
al. [79], (f) Ma et al. [86],
(g) Zou et al. [3], (h) Original
64 × 48

(1) Most of the vision-oriented SR methods focus on
obtaining a good visual reconstruction rather than a
higher recognition rate; however, the essence of the
recognition-oriented SR methods is to satisfy the need
of recognition with LR images.

(2) Both vision-oriented SR and recognition-oriented SR
are sensitive to different variations such as pose, and re-
quire lots of training samples of the same scene.

(3) In general, although SR methods require large compu-
tation costs, they have the potential advantages in very
LR cases like 6 × 6.

4 Resolution-robust feature representation for LR FR

In contrast to super-resolution for LR FR, researches on
resolution-robust feature representation in LR problem
started around year 2008. The difficulties of finding the ef-
fective features in LR case render face recognition more
complicated. Some typical features in HR case such as tex-
ture, shape, and color may fail in the LR case. Therefore,
the only feasible option is to explore the potential of these

features for LR FR. In addition, LR results in a dimensional
mismatch problem under the subspace framework. Building
interresolution space may provide a promising direction for
solving this problem. Resolution-robust feature represen-
tation method is classified into two groups: feature-based
method [17, 18, 56, 69, 96] and structure-based method [15,
19–21, 43, 97–100].

4.1 Feature-based method

This method identifies an LR face directly using the fea-
tures extracted from probe images in resized forms. How-
ever, all the existing resolution-robust features are improved
from the features used in HR FR, such as the improved color
space [17] and the improved local binary pattern descrip-
tor [18]. Similar to the categorization that successfully used
in [24], we further classify feature-based method into two
categories, that is, the global feature-based method and lo-
cal feature-based method.
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4.1.1 Global feature based method

In this method, the whole LR probe image, represented by
a single high-dimensional vector containing the global low-
frequency information, is taken as input. The advantage of
this method is to implicitly preserve all the detailed texture
and shape information, which is useful for recognizing LR
faces. On the other hand, this method is also easily affected
by variations such as pose and illumination like they do as
HR FR. Here, two kinds of global methods are introduced:
color features and improved dimensionality reduction tech-
niques.

Color features are the representative global features.
Choi et al. [17] first demonstrated that color-based features
could significantly improve LR FR recognition performance
compared with gray-based features. The idea was based
on the boosting effects of color features on low-level vi-
sion [101]. A new metric called variation ratio gain (VRG)
as shown in (9) was further defined to prove the signifi-
cance of color effect on LR face images within the subspace
face recognition framework. In VRG, J lum+chrom(γ ) and
J lum(γ ) represent variation ratio parameterized by face res-
olution (γ ) for color-augmentation-based feature subspace
and intensity-based ones respectively. Here, J (γ ) is the ra-
tio between the variations of extra-personal covariance ma-
trices and those of intrapersonal covariance matrices for
classification tasks. As illustrated in Fig. 8, as γ decreases,
VRG (γ ) gets larger, indicating that color components can
compensate a decreased extra-personal variation by inten-
sity component with LR. Based on the phenomenon, RQCr
color space was selected for LR FR. Experiments on the hy-
brid database collected from CMU PIE, Color FEERT, and
XM2VTS with probe resolution 15 × 15 tested on “RQCr”
and “R” space achieved accuracies of 68 % and 54 %, re-
spectively.

VRG(γ ) = J lum+chrom(γ ) − J lum(γ )

J lum(γ )
× 100. (9)

VRG(γ ) demonstrates the role of color in LR classifi-
cation. However, no theories can prove that RQCr is more
efficient for LR case in comparison with other color spaces.
Therefore, to efficiently use color-based features for boost-
ing intensity-based features is still an open issue. It is known
that reducing the correlation of different color components
is certainly helpful to HR FR, and even LR FR. Yang et al.
[102] investigated the potential efficiency of color spaces,
and proposed various normalized spaces such as the im-
proved YRB space to enhance face recognition.

Choi et al. [67, 68] improved their work and proposed a
color feature selection method by boosting-learning frame-
work. Thirty-six different color components were used to
form a color-component pool, and a weighted fusion scheme
was used to fuse the selected color features at the feature

Fig. 8 Average variation ratios with respect to six different resolutions

level. The method was successfully evaluated on very LR
images with SCface database. It improved the accuracy with
RQCr space from 49.61 % to 62.78 % with the new color
pool. The experiment indicated that the framework of color
fusion was perhaps beneficial to LR FR. Furthermore, they
adopted LBP features in color space for LR FR [66]. How-
ever, the role of color features for LR images is degraded by
serious illumination variations despite of their successes in
face recognition.

In addition, improved dimensionality reduction tech-
niques are also proposed for the LR problem. Abiantun et
al. [56] adopted the kernel class-dependence feature analy-
sis (KCFA) method [103] for dealing with very LR case on
the FRGC database Experiment 4. KCFA used a set of min-
imum average correlation energy filters to exploit higher-
order correlations between training samples in the kernel
space, and obtained the accuracy of 27.1 % on 8 × 8 com-
pared with the PCA baseline method of 12 % on HR images.
Wang et al. [96] proposed a new graph embedding method
called FisherNPE for resolution-robust feature extraction,
based on LDA and neighborhood preserving embedding
(NPE) preserving both global and local structures on the
data. Also, Bayesian probabilistic similarity analysis [8] of
intensity differences between LR and HR images was used
for classification. Photon-counting LDA [104] was proposed
for coping with the LR FR, modeling the image pixels with
Poisson distribution by the semiclassical theory of photon
detection.

4.1.2 Local feature based method

In this method, the LR probe image is represented by a
set of low-dimensional vectors containing the local high-
frequency information. Compared with global method, lo-
cal feature based method provides additional flexibility to
recognize a face based on its parts, and is more robust to
variations.
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For example, Hadid et al. [105] proposed a novel dis-
criminative feature space for detecting and recognizing LR
faces from video, employing LBP representation and SVM
classifier. Ahonen et al. [69] adopted local phase quantiza-
tion (LPQ) method based on the assumption of point spread
function. The method used the phase information of Fourier
transformed images for LR FR, revealing that LPQ infor-
mation in the high-frequency domain was almost invariant
to blur. Afterwards, Lei et al. [18] made an improvement on
LPQ and proposed local frequency descriptor (LFD) using
not only phase information, but also magnitude information.
Furthermore, the relative relationships between phase infor-
mation were adopted without the assumption of point spread
function instead of the absolute value. Also, a uniform pat-
tern mechanism [14] was introduced to improve the perfor-
mance.

4.1.3 Discussion

Finding resolution-robust features is a conventional issue
for face recognition in the LR or HR case. Although many
researchers concerned resolution-robust feature representa-
tion, the performance is far from perfect due to different
complicated variations. Most methods mentioned above are
only against one variation and not against multiple. For ex-
ample, compared with local features, global features are
more sensitive to illumination variation. With regards to
pose and expression variation, local features are more sus-
ceptive than global features. A possible way to further im-
prove the robustness may lie in the combination of local-
based and global-based features. However, what features
should be combined and how to combine them for concen-
trating their advantages are the future issues for LR FR.

4.2 Structure-based method

Compared with the feature-based method concerning reso-
lution-robust features, the structure-based method focuses
on constructing the relationships between LR and HR fea-
ture space for facilitating direct comparison of LR probe
images with HR gallery ones from a classification perspec-
tive. The method aims to build the holistic framework for
LR matching by especially solving the particular problem
in LR FR, namely dimensional mismatch. Here, we intro-
duce three kinds of structure-based methods. Coupled map-
pings [19] aim to find the structure relationships. Resolution
estimation [43] determines the kinds of structures chosen for
building LR FR system. Finally, the sparse representation
based method [98] is adopted for representing LR probe im-
ages using HR training images from a structure perspective.

4.2.1 Coupled mappings

Choi et al. [15] first pointed out the dimensional mismatch
problem, and proposed eigenspace estimation (EE) tech-
niques for obtaining a common LR feature space for match-
ing between LR and HR. Then Li et al. [19, 70] proposed a
more general framework called unified feature space based
on coupled mappings (CMs) (10). In CMs model, li and hi

represent an LR face image and an HR one, respectively,
and AL and AH are two coupled mapping matrices. For
LR FR, the mapping between each LR image and the corre-
sponding HR image is expected to be as close as possible in
the new unified feature space. Obviously, EE is one special
case of CMs with AH of down-sampling and AL of iden-
tity matrix. Although CMs provides a promising framework
for learning the relationships between LR and HR, it has an
obvious shortcoming in poor discriminability for classifica-
tion. Therefore, Li et al. introduced the locality preserving
objective [7] into nonparametric CMs model, and proposed
coupled locality preserving mappings (CLPMs) method as
shown in (11). It significantly improved the performance by
involving the weight relationships (Wij ) among data points.
Evaluation on FERET database obtained the accuracy of
90.1 % on 12×12 in comparison with PCA baseline method
with 61.8 %. However, CLPMs still exhibits sensitivity to
the parameters and pose variations.

J (AL,AH ) =
Nt∑

i=1

∥∥AT
Lli − AT

H hi

∥∥2
, (10)

J (AL,AH ) =
Nt∑

i=1

Nt∑

j=1

∥∥AT
Lli − AT

H hj

∥∥2
Wij . (11)

Other works with the aim of improving CMs have been
developed. Zhou et al. [100] improved the classification
discriminability of CMs by introducing linear discriminant
relationships [5] between intraclass scattering and inter-
class scattering into CMs. Ren et al. [106] adopted canon-
ical correlation analysis with local discrimination crite-
rion [107] to compute the two coupled mapping matrices.
With the process of regularization and piecewiseness on fea-
ture space, the method showed its superiority compared with
CMs/CLPMs in both recognition accuracy and time com-
plexity. Furthermore, Ben et al. [108] used the ideas of CMs
to couple gait feature with LR face images and map them
onto a common space for LR FR.

Recently, Ren at al. [21] further introduced the kernel
tricks into CLPMs and proposed coupled kernel embed-
ding (CKE) method for dealing with LR FR. In the CKE
model (12), Ψ and Φ represent two different nonlinear map-
pings such as the Gaussian-quadratic kernel function. Exper-
iments on the CMU Multi-PIE database obtained the accu-
racy of 84 % on 6 × 6. Although the Rank-1 accuracy on
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Fig. 9 The framework of MDS transformation learning method

SCface database is only 11 %, it still outperformed the LR
baseline method with 4 %. By the kernel tricks, on one hand,
CKE improved the classification performance; on the other
hand, it increased the time complexity.

J (AL,AH ) =
Nt∑

i=1

Nt∑

j=1

∥∥AT
LΨ (li) − AT

H Φ(hj )
∥∥2

Wij . (12)

In resolution mismatch problem, there exist three rela-
tionships (LR vs. LR, LR vs. HR, and HR vs. HR) involved
in data. CMs/CLPMs only considered LR vs. HR. Deng et
al. [109] further considered the other two relationships and
adopted regularized coupled mappings with two new color
spaces to get more information. However, the efficiency of
the method empirically depends on the regularized parame-
ters.

Similar to the work in [19, 109], Biswas et al. [20, 71,
72] skillfully utilized the three relationships between LR
and HR, as illustrated in Fig. 9. During training, they em-
bedded LR images into a new Euclidean space in order
to achieve the best distances between their HR counter-
parts using multidimensional scaling (MDS) [110], and a
transformation matrix W was obtained. During the test, LR
gallery and probe images were transformed independently
using the learned transformation matrix. Then the match-
ing process was performed. It should be emphasized that

they highlighted the pose problem involved in LR recogni-
tion. This is an important contribution for researches on LR
FR. They evaluated MDS on CMU Multi-PIE (8 × 6) and
SCface database (12 × 10), and obtained the accuracies of
52 % and 71 %, respectively. In their experiments for LR
FR, MDS performed better than sparse representation based
super-resolution [111].

For further extension, here we provide a more gen-
eral CMs model (13), including super-resolution (SR) and
resolution-robust feature extraction. F represents feature ex-
traction or subspace dimensionality reduction techniques.
Then different stable features can be integrated into the
framework. When AL is replaced by SR constraints with
the settings of AH = IM , the new model will be turned into
SR. That is to say, SR is one special case of the model. Al-
though S2R2 [16] is essentially different from the general
indirect SR methods, it can also be represented by the new
model when A and F are simultaneously used from both
reconstruction and recognition perspectives. When F is pro-
vided as the form of kernel processing, the model will be
turned into CKE [21] and MDS [20]. Finally, if F is ig-
nored and just A is preserved, it returns to the base CMs
model. In short, the new model is more general. However,
to efficiently compute the two coupled mapping matrices
AH and AL is also the key to the new model like the CMs
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model.

J (AL,AH ) =
Nt∑

i=1

∥∥AT
LFli − AT

H Fhi

∥∥2
. (13)

In fact, ideas similar to CMs are also applied to other
problems of face recognition. Lin et al. [112] proposed the
idea of common discriminant feature extraction to solve the
heterogeneous face recognition problems such as matching
between visual (VIS) image and near infrared (NIR) im-
age, and photo-sketch recognition. Recently, Lei et al. [113]
proposed coupled spectral regression (CSR) to address VIS-
NIR recognition. Furthermore, they improved CSR method
in [114], which was also evaluated on LR images.

4.2.2 Resolution estimation

The method is another way proposed for dealing with the
dimensional mismatch problem. It determines the kinds of
structures chosen for building the LR FR system. Wong et
al. [43] proposed two innovations for the LR problem. One
was the concept of an underlying resolution, which did not
rely on the size of face image. The other was that the local
features sensitive to resolution were exploited for LR classi-
fication. Based on the innovations, they proposed a resolu-
tion detection and compensation framework for dynamically
choosing the appropriate face recognition system. A similar
method was proposed by Pedro et al. [115]. They developed
the concept of estimating the acquisition distance in three
different scenarios (close, medium, and far distance). And
the distance was taken as the weight to fuse two systems
(PCA-SVM system and DCT-GMM system) at the score-
level. They demonstrated that training with medium distance
images was a good way to control the performance degrada-
tion due to the varying distance.

In a way, the compensation frameworks show the po-
tential of multiple face recognition systems for address-
ing LR FR. For example, color feature selection frame-
work [67] is just a typical one. A combination of different
classifiers [116, 117] also provided multimodal fusion at the
classifier-level for the LR problem. In addition, a combi-
nation of several common methods was also proposed for
dealing with the LR problem in [97]. They first adopted
sparse representation [98] to describe patches represented
by LBP features with different sizes. Then AdaBoost was
used to select the most discriminative patches for classifi-
cation. However, compared with feature selection [118], the
method tested on Extended Yale B database showed poor
performance. Thus, it remains doubtful whether such com-
bination is efficient for LR FR, even just for HR FR.

4.2.3 Sparse representation based method

Sparse representation is first proposed by Wright et al. [98]
for coping with robust classification problem. It is recently

warmed and has become one of the standard methods of
face recognition within the literature followed by many re-
searchers. They cast the recognition problem as one of clas-
sifying among multiple linear regression models. If the num-
ber of features was sufficiently large, and the sparse rep-
resentation was correctly computed, they demonstrated that
the choice of features was no longer critical. It was right
even in the down-sampled images, though their work was
not specialized for the LR case. However, like most of the
other methods, sparse representation also requires the train-
ing/gallery samples covering different variations such as
pose, illumination, and expression. It will be a big obstacle
for real applications.

Furthermore, Yang and Wright et al. [111] adopted sparse
representation for super-resolution (SRSR) on face images.
More recently, inspired by their work, Bilgazyev et al. [90]
performed SRSR on high-frequency components learned
by wavelet decomposition-based rules. They reported that
the recognition performance outperformed SRSR [111] and
S2R2 [16] for the CMU PIE database. Moreover, Shekhar
et al. [99] proposed an LR FR method with especially han-
dling illumination variations based on sparse representation.
In short, sparse representation may provide a new theoretical
framework for dealing with LR FR problem in the future.

4.2.4 Discussion

The key of the coupled mappings is to obtain an interresolu-
tion space or unified feature space for solving the mismatch
problem. The interresolution may be intuitively less than HR
but greater than LR. However, EE [15] takes a new LR space
as the interresolution space. Also, CLPMs [19] achieves the
best performance in the interresolution less than the resolu-
tion of probe images. Thus, a question will be naturally gen-
erated as which the interresolution is suitable for LR FR. It is
difficult to answer due to many factors such as different fea-
ture representations, face databases, and applications. Other
strategies in the structure-based method, such as resolution
estimation, system compensation, and sparse representation
may provide the promising directions for addressing LR FR.

4.3 Summary of resolution-robust feature representation
for LR FR

A summary of resolution-robust feature representation for
LR FR is as follows:

(1) In general, resolution-robust feature representation meth-
ods are mainly applicable in relatively LR cases rather
than very LR cases like 6 × 6.

(2) The feature-based methods can be used for multiple res-
olutions from HR to LR, but they need online training.
However, the structure-based methods are more suitable
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Table 3 Comparison between
super-resolution and
resolution-robust feature
representation

Comparison issues Super-resolution Resolution-robust feature representation

Main purpose For visual quality For recognition discriminability

Resolution tolerance Very LR Relatively LR

Performing mode Indirect way Direct way

Computational complexity High Low

Unconstrained variations Sensitive Very sensitive

Requirements of training samples Many Few

for offline training, but they are mainly used for a sin-
gle resolution application with the balance between ef-
ficiency and speed.

(3) Obviously, the combination of feature-based and struc-
ture-based methods will contribute to very LR cases.
More characteristics about resolution-robust feature
representation methods are shown in Table 3, which
also provides a comparison between super-resolution
and resolution-robust feature representation.

5 Evaluations on LR FR methods

In order to have a clear idea on various LR FR methods, it is
important to evaluate them based on certain evaluation cri-
teria with some standard LR face databases. Unfortunately,
such a requirement is seldom satisfied in practice due to the
lack of general criteria and databases originally developed
for LR FR. At present, LR FR methods are just evaluated
based on HR FR criteria and databases.

As for the evaluation criteria for face recognition, gener-
ally speaking, face recognition can be described in terms of
the following two tasks. One is face verification where the
input is a face image and an identity label, and the output
is a binary decision, yes or no, to confirm the identity label.
Thus, face verification is a 1-to-1 problem. The other is face
identification where the input is a face image, and the output
is to assign the identity label assigned to the face by point-
ing out the subject. Evidently, face identification is a 1-to-N
problem and also popularly called face recognition. More-
over, some new tasks have been proposed, such as screening
and watch list, which are the transformed versions of verifi-
cation or identification [62].

In this review, face identification (recognition) is our fo-
cus. In identification, the cumulative match characteristic
(CMC) curve is usually adopted to plot the percentage of
identification accuracy (IDA) vs. Rank. (IDA is the num-
ber of correctly assigned labels to the total number of input
faces.) All these metrics are generally derived from HR FR
and can also be used in LR FR with different resolutions.
Other metrics, such as the minimal resolution and execution
time, are occasionally applied to evaluate LR FR methods.
However, the performances of different methods depend on

different databases to some extent. Therefore, a few standard
LR face databases are necessarily built for fair comparisons,
which is the future work. In this section, we evaluate some
representative methods on image-based standard databases
and video-based real environment, respectively, to find the
problems existing in LR FR. The performances and the lim-
itations of these methods are finally summarized.

5.1 Evaluation on image-based standard databases

While HR FR is investigated in depth, many image-based
standard databases have been established to compare per-
formances of these methods, such as AR [119], Yale [120],
Extended Yale B [121], and CAS-PEAL [122]. However,
there is currently no database for LR FR, so that for eval-
uations on most of the existing LR FR methods, face im-
ages with frontal view, neutral expression, and illumina-
tion variations are selected and preprocessed such as down-
sampling and blurring instead of the actual LR images
taken by surveillance cameras. Currently, the widely used
databases for LR FR are FERET [123]/Color FERET [124],
CMU PIE [125]/CMU Multi-PIE [126], FRGC [127], and
SCface [128].

FERET [123] consists of one gallery set and four probe
sets (fafb, fafc, dup1, dup2). There are 1,196 images of
1,196 subjects in the gallery set and the four probe sets
contain 1,195, 194, 722, and 234 images, respectively. Fafb
probe images are obtained as frontal view and expression
variation, and usually taken as the experiment data in most
LR FR methods such as CLPMs [19], LFD [18], S2R2 [16],
and NMCF [92]. As for other methods such as M2TSR [12],
the experimental data are collected from the four probe sets.
Moreover, Color FERET [124] is also used for evaluating
LR FR methods such as RQCr [17]. It is worth noting that
S2R2 is just evaluated on 6 × 6, and LFD and RQCr are
tested on blurred images.

CMU PIE [125] includes 41,368 images of 68 subjects
(21 samples/subject). Among them, 3,805 images have co-
ordinate information of facial feature points. Some meth-
ods such as EE [15], RQCr [17] and DSR [3], evaluated on
this database, select the frontal view images with illumina-
tion variation for experiments from the 3,805 images. CMU
Multi-PIE [126] is a recent extension of CMU PIE database.
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Table 4 Experiments and performances of LR FR on FERET database

No. of subjects Probe resolution Gallery/Probe Primary variation Method Accuracy Baseline

1196 12 × 12 1196/1195 Frontal, Expression CLPMs [19] 90.1 % 61.8 % (PCA)

1196 33 × 30 1196/1195 Frontal, Blur LFD [18] 86 % 48 % (LBP)

865 6 × 6 N/A Frontal, Expression S2R2 [16] 62 % 60 % (LDA)

295 14 × 9 1/4 Pose, Illumination M2TSR [12] 74.6 % 51.4 % (Tensor)

1196 12 × 12 1196/1195 Frontal, Expression NMCF [92] 84.4 % 36.9 % (PCA)

140 15 × 15 1/4 Frontal, Blur, Color RQCr [17] 68 % 54 % (R)

Note: “Frontal View” is abbreviated as “Frontal” in Tables 4–9 with the consideration of the table size. “1196/1195” means that 1,196 individuals
for the gallery set and 1,195 individuals for the probe set fafb. Other “gallery/probe” shows the number of gallery/probe for one individual

Table 5 Experiments and performances of LR FR on CMU PIE database

No. of subjects Probe resolution Gallery/Probe Primary variation Method Accuracy Baseline

68 11 × 11 3/39 Frontal, Illumination, Neutral Expression EE [15] 58.4 % 48.3 % (PCA)

68 15 × 15 1/20 Frontal, Illumination RQCr [17] 68 % 54 % (R)

68 7 × 6 8/13 Frontal, Illumination, Expression DSR [3] 73.5 % 40.5 % (PCA)

It has a total of 337 subjects (compared with 68 subjects in
CMU PIE) who participated in one to four different record-
ing sessions, separated by at least a month (unlike CMU
PIE, where all images of each subject are captured on the
same day in a single session). As in CMU PIE, facial pose,
expression, and illumination variations due to flashes from
different angles are recorded. The frontal view images with
neutral expression and illumination variations are chosen for
LR FR methods, e.g., S2R2 [16], MDS [20], CKE [21], and
evaluated on CMU Multi-PIE, which is also similar to CMU
PIE.

FRGC [127] consists of 50,000 images divided into train-
ing and validation sets. The training set is designed for train-
ing methods and the validation set is used for assessing per-
formance of methods in a laboratory setting. The valida-
tion set includes 16,028 images of 466 subjects. The FRGC
database consists of six experiments. Among the six experi-
ments, in experiment 1, the gallery consists of a single con-
trolled still image of a person and each probe consists of a
single controlled still image. Experiment 2 studies the effect
of using multiple still images of a person on performance.
In experiment 2, each biometric sample consists of the four
controlled images of a person taken in a subject session.
Experiment 4 measures recognition performance from un-
controlled images. In experiment 4, the gallery consists of a
single controlled still image, and the probe set consists of a
single uncontrolled still image. S2R2 [16], KCFA [56], and
DSR [3] methods are evaluated on FRGC database experi-
ments 1, 2, and 4, respectively.

SCface [128] is a database of static images of human
faces. Images were taken in an uncontrolled indoor envi-
ronment using five video surveillance cameras of various

qualities. The database contains 4,160 static images (in vis-
ible and infrared spectrum) of 130 subjects. Images from
different quality cameras mimic the real-world conditions
and enable robust testing, emphasizing law enforcement and
surveillance scenarios. MDS [20], DSR [3], and CKE [21]
methods are evaluated on this database.

The performances of LR FR methods tested on FERET,
CMU PIE, CMU Multi-PIE, FRGC, and SCface are sum-
marized in Tables 4, 5, 6, 7, and 8, respectively. Moreover,
other databases such as XM2VTS [129], UMIST [130],
ORL [131], and KFDB [132] are also used to evaluate
LR FR methods such as RQCr [17], NMCF [92], and
SVDD [64], which are shown in Table 9. Most methods
listed in Tables 4–9 aim at face identification (recogni-
tion) with CMC (Identification accuracy vs. Rank-1) as
the evaluation criterion except for KCFA in Table 7 aim-
ing at face verification with receiver operating characteris-
tic (ROC) curve (Verification accuracy vs. False acceptance
rate).

On these databases, different methods are able to be
compared on a relatively fair basis. And one can easily
pick up the methods with good performances. The direct
performance comparison of LR FR methods is not pro-
vided in this review mainly due to the lack of standard
LR databases and evaluation protocols; however, the perfor-
mances of baseline methods shown in the above tables can
be taken as references for rough comparisons. Here, we dis-
cuss the results and attempt to give some relatively reason-
able comparisons. Compared with other recent databases,
FERET database mainly covers expression variation, which
is relatively old. Tested on FERET, resolution-robust fea-
ture representation methods such as CLPMs [19] slightly
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Table 6 Experiments and performances of LR FR on CMU multi-PIE database

No. of subjects Probe resolution Gallery/Probe Primary variation Method Accuracy Baseline

337 6 × 6 7/13 Frontal, Illumination, Neutral Expression CKE [21] 84 % 53 % (LPP)

337 8 × 6 N/A Frontal, Illumination, Neutral Expression MDS [20] 52 % 40 % (PCA)

224 6 × 6 1/13 Frontal, Illumination, Neutral Expression S2R2 [16] 62.8 % 47.1 % (LDA)

Table 7 Experiments and performances of LR FR on FRGC database

No. of subjects Probe resolution Gallery/Probe Primary variation Method Accuracy Baseline

300 6 × 6 1/20 N/A S2R2 [16] 55 % 44 % (CFA)

311 7 × 6 8/2 Near Frontal, Illumination, Neutral
Expression

DSR [3] 56.5 % 38.5 % (PCA)

466 8 × 8 8014/8014 Near Frontal, Expression, Severe
Illumination

KCFA [56] 27.1 % 12 % (PCA)

Table 8 Experiments and performances of LR FR on SCface database

No. of subjects Probe resolution Gallery/Probe Primary variation Method Accuracy Baseline

130 16 × 16 N/A Pose, Blur, Expression CKE [21] 11 % 4 % (LPP)

130 12 × 10 1/4 Near Frontal, Expression MDS [20] 71 % 19 % (PCA)

130 16 × 14 5/5 Pose, Blur, Expression DSR [3] 22.5 % 14.5 % (PCA)

Table 9 Experiments and performances of LR FR on other databases

Database No. of subjects Probe resolution Gallery/Probe Primary variation Method Accuracy Baseline

XM2VTS 133 15 × 15 1/7 Frontal, Illumination RQCr [17] 68 % 54 % (R)

UMIST 20 14 × 11 10/5 Pose NMCF [92] 93 % 90 % (PCA)

ORL 40 8 × 8 5/5 Pose, Illumination, Expression NMCF [92] 95 % 84.5 % (PCA)

KFDB N/A 16 × 16 N/A Frontal, Neutral Expression SVDD [64] 93 % 84 % (N/A)

outperform recognition-oriented super-resolution methods
such as S2R2 [16] and NMCF [92]. The result further sup-
ports that the former is more suitable for simple condi-
tions, e.g., single expression variation. However, for rela-
tively complicated databases such as FRGC and SCface,
the situation will be reversed. That is to say, recognition-
oriented super-resolution methods obtain much better per-
formance, although the resolution-robust feature represen-
tation method MDS [20] tested on SCface is greatly supe-
rior to DSR [3]. This result is attributed to the use of frontal
view probe images. In addition, the evaluations on CMU PIE
or CMU Multi-PIE demonstrate that recognition-oriented
super-resolution methods such as S2R2 [16] and DSR [3] are
more easily against unconstrained variations, e.g., illumina-
tion and expression. However, the resolution-robust feature
representation method CKE [21] also obtains promising re-
sults on CMU Multi-PIE mainly with the help of the kernel
trick.

From the above analyses, we can know that it is very
difficult to rank all the methods based on the existing and
widely used image-based standard databases. Also, we find
that no method can satisfactorily handle the LR problem in
face recognition under all complicated variations. For ex-
ample, M2TSR [12] is the only method specially designed
to deal with pose and illumination problem in LR classifica-
tion. However, its performance on the FERET database with
14 × 9 is only 74.6 %, which is still far below the require-
ment of practical use. Therefore, this review mainly focuses
on the discussions of different methodologies for LR FR, in
hope of providing helpful technical insights and promising
directions for interested researchers.

5.2 Evaluation on video-based real environment

After evaluations on image-based standard databases, let
us conduct some further experiments on video-based real
environment to evaluate the performances of various LR
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Fig. 10 The illustration of the surveillance camera system for differ-
ent distances and illuminations. In each scenario, the left is a frame
acquired by the surveillance camera, while the right is an up-sampled

version of the frame. (a) 2.0 meters distance with good illumination,
(b) 2.0 meters distance with poor illumination, (c) 3.0 meters distance
with good illumination, (d) 3.0 meters distance with poor illumination

FR methods. Some typical video databases such as CMU
MoBo [133], Honda/UCSD [134], and CLEAR2006 [135]
are widely used for video-based face recognition even for
LR FR. Recently, some researchers attempted to build LR
databases to mimic real environment. Huang et al. [136] pre-
sented a database named “labeled faces in the wild” (LFW),
containing images that were collected from the web. Al-
though it has natural variations in pose, illumination, expres-
sion, etc., there is no guarantee that such a database can ac-
curately capture all variations found in the real world [137].
Besides, most objects in LFW only have one or two images,
which might not be enough to conduct different face recog-
nition experiments. Yao et al. [138] created a face video
database, UTK-LRHM, obtained from long distances and
with high magnifications, both indoors and outdoors under
uncontrolled surveillance conditions. Also, they developed
a wavelet transform based multiscale processing algorithm,
which was used to deal with image degradations related to
long-distance acquisition and was successful in improving
recognition rate. Ni et al. [139] manually put together a re-
mote face database including the face images with varia-
tions due to occlusion, blur, pose, and illumination, which
were taken from long distances and under unconstrained
outdoor environments. The remote database was just eval-
uated on two state-of-the-art face recognition methods in-
cluding baseline methods such as PCA, LDA, SVM, and
the recently developed methods, e.g., sparse representation.
But it did not form into a complete database for LR FR. In
a word, there is still no LR benchmark database for public
comparisons at present.

To evaluate the performances of the existing LR FR
methods for real applications, we construct a video-based
face database with uncooperative subjects in an uncon-
trolled indoor environment using a video camera (QVGA,
320 × 240). Images from the low-fidelity quality camera
mimic the real-world LR FR conditions factually. The test-
ing environment mainly includes two conditions, good/poor
illumination, and 2.0/3.0 meters distance, which are illus-
trated in Fig. 10. The database contains 800 training/gallery
images (20 images per subject) and 160 testing/probe videos
(4 videos per subject) from 40 subjects. Here, we do not dis-
cuss the process of detection for capturing and tracking face

frames as that is out of the scope of this paper, though it is
very important for video-based recognition.

In our experiments, S2R2 [16] and CLPMs [19] are used
for the real environment evaluation, as they are the repre-
sentatives in recognition-oriented super-resolution method
and resolution-robust feature representation method, respec-
tively. For S2R2, all the HR training images and the corre-
sponding down-sampled LR images are used for computing
Fisherface features for representation, and learning regular-
ization parameters and the discriminant coefficient. For the
details of the system implementation, please refer to [16]. In
the testing procedure, since the current S2R2 method needs
large computation and fails to reach the requirement of real
time, frame images are taken as the probe samples at a fixed
distance such as 2.0 and 3.0 meters instead of performing on
video directly. For CLPMs, all the HR training images and
the corresponding down-sampled LR images are used for
computing the two coupled mapping matrices. For the de-
tails of the training process, please refer to [19]. Compared
with S2R2, CLPMs is more suitable for real-time applica-
tion. In experiments, only one aligned HR image (64 × 48)
with frontal view and good illumination is taken as gallery
for each subject. For each subject, five probe images are ran-
domly selected at 2.0 and 3.0 meters distance, and their face
sizes are resized into 32 × 24 and 21 × 15, respectively.

We design three group experiments for evaluating the
effects of distance (resolution), illumination, and misalign-
ment on the abilities of the two methods for dealing with
the LR FR problem. For testing the effect of distance (res-
olution), the other two factors are taken as good illumina-
tion/manual alignment. In the same way, 2.0 meters dis-
tance/manual alignment and 2.0 meters distance/good illu-
mination are set for testing the effects of illumination and
alignment, respectively.

In 2.0 meters distance, S2R2 and CLPMs obtain the
promising identification accuracies (IDA vs. Rank-1) of
80 % and 87.5 %, which are shown in Fig. 11. Compared
with 2.0 meters case, the performances of S2R2 and CLPMs
decreased rapidly in 3.0 meters distance, and the decrease
amplitude of CLPMs is larger than that of S2R2. It is worth
noting that both of their decrease amplitudes are even close
to that of the LR case. In the experiments for testing the
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Fig. 11 The illustration of cumulative matching characteristic (CMC)
performance (IDA vs. Rank1-5) due to the effect of distance (resolu-
tion) under good illumination/manual alignment. “1” denotes 2.0 me-
ters distance and “2” denotes 3.0 meters distance. HR denotes matching
at base high-resolution and LR denotes matching at probe low-resolu-
tion, and they all use the Fisherface method

Fig. 12 The illustration of CMC performance due to the effect of il-
lumination under 2.0 meters distance/manual alignment. “1” denotes
good illumination and “2” denotes poor illumination

effect of illumination, the performances of all methods are
decreased with the amplitude of about 6 % except for the
LR case about 10 % when the illumination is changed from
good into poor case, which are illustrated in Fig. 12. For test-
ing the effect of misalignment, the probe images have to be
manually aligned with the positions of two eyes and mouth.
The performances of all methods are improved by align-
ment, which is shown in Fig. 13. And the result of CLPMs
with alignment is even close to the HR case. However, S2R2

without alignment is even inferior to the LR case with align-
ment. It is enough to demonstrate that alignment is very im-
portant for face recognition, especially for LR FR. Finally,
we gather the three factors (distance, illumination, and mis-
alignment) for testing the methods, that is, 3.0 meters dis-
tance, poor illumination, and misalignment. From Fig. 14,
the results of S2R2 and CLPMs are very poor, and they only

Fig. 13 The illustration of CMC performance due to the effect of
alignment under 2.0 meters distance/good illumination. “1” denotes
manual alignment and “2” denotes misalignment

Fig. 14 The illustration of CMC performance due to the effect of dis-
tance (resolution), illumination, and misalignment together. That is,
the methods are tested on 3.0 meters distance, poor illumination, and
misalignment

obtain the accuracies of 30 % and 25 %, which are a little
better than that of the LR case.

From the results of our tests on the real-world environ-
ment, we can see that the existing LR FR methods have
not performed well under real-world scenarios. The repre-
sentatives of LR FR methods such as S2R2 and CLPMs are
severely affected by complicated conditions, e.g., distance,
illumination, misalignment. In such cases, compared with
S2R2, the performance of CLPMs is much poorer, which is
probably attributed to no stable features involved in CLPMs.
However, S2R2 is also unsuitable for real-time application
mainly due to the complication of the model parameter
learning. In a word, the existing LR FR methods should be
greatly improved so as to be used for real applications.

5.3 Discussion

Based on the evaluations on image-based standard databases
and video-based real environment, we can have an idea
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Table 10 Comparison between evaluation on image-based and video-based database

Database S2R2 CLPMs Comparison issues

Image-based
(e.g. FERET)

62 % (6 × 6) 90.1 % (12 × 12) Manual Alignment/Frontal View/Expression/Image/Illumination/Blur

Video-based
(real environment)

30 % (21 × 15) 25 % (21 × 15) Misalignment/Pose/Expression/Video/Illumination/Motion Blur/Noise

on the performances of the existing LR FR methods. As
for image-based standard databases, the down-sampled im-
ages contain some variations in pose, illumination, expres-
sion, which can mimic real testing environment to some ex-
tent. However, the probe images with frontal view and neu-
tral expression are generally selected and aligned for ex-
periments in current testing procedures, which is unrealis-
tic for surveillance applications without subjects’ coopera-
tion especially for moving subjects. As for video-based real
environment, LR images captured from surveillance cam-
eras typically contain the misalignment problem, which will
severely affect the performances of face recognition sys-
tems. Besides, other particular factors in video-based test-
ing, e.g., noises, motion blurs, and detection of LR face
images will further make the problem much more compli-
cated. And the requirement of real-time applicability is also
an obstacle for most LR FR methods. In short, environmen-
tal conditions (e.g., noise, motion blur, distance, illumina-
tion), individualities of different subjects (e.g., pose, expres-
sion), and other factors (e.g., misalignment) will bring a
lot of effects on LR FR. Table 10 gives a concise compar-
ison of the representative methods S2R2 and CLPMs evalu-
ated on image-based and video-based database, respectively.
From the table, we can see that the performance evaluated
on the video-based database is obviously inferior to image-
based database. And the promising results on image-based
database are largely attributed to the preprocessing steps
such as alignment and the selection of frontal view images.
Therefore, we can conclude that the existing LR FR meth-
ods are not fully satisfied for LR application, especially for
video-based real environment. Future directions addressing
LR FR problem are generalized in detail in the following
section.

6 Existing problems and future trends

Compared with other subareas such as pose-invariant face
recognition and illumination-invariant face recognition, LR
FR is a new sub-area in face recognition. Thus, its first
priority is to guarantee efficiency and accuracy rather than
real time and low computational complexity. Although re-
searchers have exerted efforts on improving LR FR meth-
ods, some specific problems still exist in real applications,

especially in surveillance scenarios. Based on the four main
parts of LR FR systems, including preprocessing, facial rep-
resentation, feature extraction, and feature classification, we
point out four challenges and corresponding four future di-
rections, namely automatic alignment, insensitivity to multi-
ple variations, resolution-robust feature extraction, and dis-
criminative nonlinear coupled mapping.

6.1 Automatic alignment

Alignment is one of the most important preprocessing is-
sues in face recognition, especially in LR FR. In most LR
FR methods such as S2R2 [16], RQCr [17] and CLPMs [19],
face images are manually aligned and cropped with the posi-
tions of eyes and mouth. However, the way of manual align-
ment is very difficult in practical LR FR applications such
as video surveillance. Furthermore, state-of-the-art face de-
tectors such as AdaBoost [46] remain poor in detecting LR
face images. To cope with this problem, some researchers at-
tempted to propose automatic alignment techniques to regis-
ter LR faces in raw images. Jia et al. [73] developed a pixel-
wise alignment method by iteratively warping the probe face
to its projection in the eigenface space. Park et al. [59] pro-
posed an extended shape model with two constraints (face
detection errors and shape estimation errors) to solve the
misalignment problem. In a word, the development of auto-
matic face alignment methods will facilitate the application
of LR FR in real world.

6.2 Insensitivity to multiple variations

The performance of face recognition highly depends on un-
constrained variation, e.g., pose, illumination, expression.
Many methods have been proposed for reducing the effects
of the changes, such as the Gabor filter function and the DCT
on an edge map. However, most of the successful techniques
could not be efficiently applied to LR data. For the LR case,
the variations are the largest noises to some extent. Most of
the existing LR FR methods assumed the constrained cases
such as frontal pose, good illumination, and neutral expres-
sion, while few methods focused on facial representation
against different variations.

For example, Shekhar et al. [99] proposed a synthesis-
based method for handling the illumination-invariant LR
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FR problem. Chang et al. [140] just examined the effect
of resolution reduction with illumination variations. Arand-
jelovic et al. [91] adopted an extension of the generic shape-
illumination method, which was invariant to changes in
pose, illumination, and subject motion pattern. For pose
variation, only two methods namely MDS [71, 72] and
M2TSR [12] definitely pointed out the pose problem, which
shows that pose variation is one of the biggest obstacles in
LR FR. 3D face model reconstruction [141] maybe an ef-
fective way for dealing with the problem. It should be em-
phasized that the M2TSR method addressed not only the
pose-invariant problem, but also illumination-robust recog-
nition. However, a majority of the methods only considered
single variation by preprocessing or selecting the most suit-
able samples before recognition. In fact, multiple variations
also cause many effects on HR FR, which are still not fully
resolved.

6.3 Resolution-robust feature extraction

Most of the effective features used in HR FR such as texture
and color may fail in LR case. Thus, it is difficult to find
resolution-robust features for LR FR, especially under facial
and environmental variations such as pose, illumination, and
expression. Choi et al. [17] made an attempt to adopt color
features such as RQCr space and fusion of different color
spaces for LR FR. It is known that color features are sensi-
tive to illumination variation, which will be a big obstacle
for LR FR application. Lei et al. [18] proposed a novel tex-
ture descriptor named LFD based on LBP and Fourier trans-
formation. Abiantun et al. [56] used a new dimensionality
reduction method called KCFA for dealing with LR feature
extraction. Moreover, combination of global and local fea-
tures, fusion of robust features, and effective subspace learn-
ing methods are future directions.

6.4 Discriminative nonlinear coupled mapping

Different resolutions between HR gallery images and LR
probe images cause a dimensional mismatch problem in the
traditional classification framework. In fact, this problem is
the most essential problem in LR FR compared with HR FR.
Other problems such as misalignment, noise affection, and
lack of effective features commonly exist in face recognition
system no matter HR or LR case. Li et al. [19] proposed the
CMs/CLPMs model to build a unified feature space. Further-
more, this review gives the general CMs model including
super-resolution and robust features for increasing the dis-
criminability and generalization. Besides the relationships
between LR and HR, other two relationships such as LR
vs. LR and HR vs. HR were considered in [109]. To sum
up, three problems in CMs need to be solved. The first is
to improve its ability in discriminability. The second is how

to efficiently solve the eigenvalue decomposition problem
and obtain the two optimal mapping matrices. The third is
to generalize CMs from single LR to multiple LR appli-
cations even for across all resolutions. In addition, kernel
tricks have great potentials in the application of LR FR such
as CKE [21], MDS [20], KCFA [56], SVDD [64], and DSR
[3]. Thus, the kernel can probably be used for describing
nonlinear mappings.

Except for the four main directions, the way of Multi-
Frames should be particularly considered for improving LR
FR systems used in video surveillance applications. Most
LR FR methods focus on single-frame (image-based) recog-
nition, i.e., from only one LR input. Few methods deal with
the multiframes (video-based) case. Hadid et al. [142] found
that hidden Markov model (HMM) based methods with long
sequences performed better than with short ones in both LR
and HR, which means abundant information for recogni-
tion is included in video. Dedeoglu et al. [81] proposed the
concept of video hallucination by exploiting spatiotempo-
ral regularities. Wheeler et al. [143] adopted a sequence of
video frames represented by the active appearance model
(AAM) for LR FR. In a way, video-based feature extraction
or video-to-video matching will provide a promising way for
addressing the LR problem. Furthermore, multimodal bio-
metric recognition systems, including LR FR may be used
for recognition at a distance in the future. For example, mul-
timodal face recognition is performed with LR, pose, and
sketch images [144]. Fusion of LR face and finger veins is
used for multimodal biometric recognition [145]. Integra-
tion of face and gait was proposed for human recognition at
a distance in video [146].

7 Conclusions

This paper devotes to providing a comprehensive survey on
LR FR. After giving an overview of the LR FR concept and
introducing some structural categories of the existing meth-
ods, many representative methods have been reviewed and
evaluated in detail. Discussions on major challenges as well
as future research directions toward complete LR FR are
provided.

Although significant progress has been made in the last
decade, we believe that a robust LR FR system should be
effective under the following variations:

• multiple resolutions, at a distance,
• noise, motion blur,
• orientation, pose, partial occlusion,
• illumination, expression.
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From the discussions above, the conclusion can be drawn
that LR is a challenging and interesting subarea in face
recognition. The existing methods in LR FR fail to form
a unified theoretical framework, and there are no standard
databases and criteria to evaluate the performances of the
LR FR methods. What are the effective features represent-
ing LR faces for recognition? How can we improve super-
resolution processing to satisfy both vision and recognition
purpose? Is there a unified feature space where LR faces are
separable? All of them will spur researchers to create more
effective methods. Answers to these questions may lead to
a clearer understanding of LR FR even general LR object
recognition, which are similar to the findings of nonlinear
mappings in pose-invariant face recognition and linear sub-
spaces in illumination-invariant face recognition.
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