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Abstract Image deblurring and denoising are fundamental
problems in the field of image processing with numerous ap-
plications. This paper presents a new nonlinear Partial Dif-
ferential Equation (PDE) model based on curve evolution
via level sets, for recovering images from their blurry and
noisy observations. The proposed method integrates an im-
age deconvolution process and a curve evolution based regu-
larizing process to form a reaction-diffusion PDE. The reg-
ularization term in the proposed PDE is a combination of
a diffusive image smoothing term and a reactive image en-
hancement term. The diffusive and reactive terms present
in the model lead to effective suppression of noise with
sharp restoration of image features. We present several nu-
merical results for image restoration, with synthetic and real
degradations and compare it to other state-of-the-art image
restoration techniques. The experiments confirm the favor-
able performance of our method, both visually and in terms
of Improvement in Signal-to-Noise-Ratio (ISNR) and Pratt’s
Figure Of Merit (FOM).

Keywords Image restoration · Deblurring and denoising ·
Regularization · Level set method

1 Introduction

Noise and blur are the most common degradations intro-
duced by an image acquisition system. Formation of a
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blurred and noisy image is typically modeled as

u0 = K[ui] + n (1)

where K denotes a linear blur operator, ui is the ideal undis-
torted image, u0 is the observed image and n is a white
Gaussian noise. The blur operator K can be described by
a Fredholm first kind integral operator

K
[
ui(x, y)

] =
∫

Ω

k
(
x, x′, y, y′)ui

(
x′, y′)dx′ dy′

(x, y) ∈ Ω (2)

where Ω denotes an open and bounded domain in R2 and
(x, y) denotes the spacial location in Ω . Among all linear
blurring operators, many are shift-invariant and can be ex-
pressed in the form of convolution:

K
[
ui(x, y)

] =
∫

Ω

k
(
x − x′, y − y′)ui

(
x′, y′)dx′ dy′

= (k ∗ ui)(x, y) (3)

where k is the so-called point spread function (PSF) associ-
ated with K . With an added noise n, the observed image u0

is

u0(x, y) = (k ∗ ui)(x, y) + n(x, y) (4)

Model (4) is applicable to a large variety of image degra-
dation processes that are encountered in practice. Through-
out this paper, we consider (4) as the model of degradation
where the PSF k is assumed to be known. Typically, k has
the following properties, k(x, y) ≥ 0, k → 0 as (x2 +y2) →
+∞ , and

∫
R2 k(x, y)dxdy = 1. A typical example of con-

volution kernel, which we will use throughout this paper, is
the Gaussian PSF defined as

kσ (x, y) = μe−(x2+y2)/2σ 2
(5)

mailto:biniaa@gmail.com


312 A.A. Bini, M.S. Bhat

where σ 2 is the variance that determines the severity of the
blur and μ is a normalizing constant ensuring that the blur is
of unit mass. The purpose of image restoration is to recon-
struct ui , from our knowledge of the blurring kernel k, the
statistics of noise n and the observed image u0.

The image restoration problem is ill-posed; either the
linear operator K does not admit inverse or it is near sin-
gular, yielding highly noise sensitive solutions. There are
many approaches for image restoration based on statistics
[7, 11, 12, 14], Fourier and/or wavelet transforms [30], or
variational/PDE [15, 24, 29, 33, 40, 41] analysis. Among
them, the nonlinear PDE methods have become very pop-
ular because of their ability to preserve sharp discontinu-
ities. While linear image restoration techniques such as
Wiener filtering and Tikhonov regularization [38] are fast,
they are often inappropriate for image processing applica-
tions in which the desired solution is not smooth. Use of
these methods yield reconstructions in which discontinu-
ities are smoothed out or which suffer from spurious os-
cillations, known as Gibbs phenomenon. This shortcom-
ing led to the development of Total Variation (TV) image
restoration [33, 34]. The TV model preserves edges very
well, but the computational cost is very high and parame-
ter dependent. Furthermore, these methods also suffer from
the undesirable “staircase” effect, namely the transforma-
tion of smooth regions (ramps) into piecewise constant re-
gions (stairs). Marquina and Osher have proposed an im-
proved TV model [29] for deblurring and noise removal
based on level set ideas. Unlike TV, the steady state is
quickly reached by the Marquina–Osher (MO) model us-
ing a simple explicit scheme. The filter in [19] tries to re-
duce the staircase effect in homogeneous areas of the im-
age by switching between isotropic and anisotropic regu-
larization terms depending on the local image features. A
TV restoration, where the image acquisition model is in-
corporated as a set of local constraints has been proposed
in [3]. The inclusion of the local constraints, one for each
pixel of the image, provides better reconstruction of tex-
tured areas in the image. Welk et al. [41] investigated non-
convex regularization in the image deblurring problem. This
model uses the famous Perona–Malik anisotropic diffusion
as the regularizer in the image deconvolution PDE. There
is another class of image reconstruction methods, namely
blind deconvolution models, which does not assume a prior
knowledge of the blurring kernel. Examples can be found in
[10, 42].

In this paper, we present a new nonlinear level set based
PDE model for image restoration, which combines an im-
age deconvolution and a curve evolution based regulariza-
tion processes. While the deconvolution term tries to invert
the convolution operation and deblur the image, the regular-
ization terms in the proposed PDE stabilize the deconvolu-
tion operation and also provide effective noise removal and

edge preservation. The regularization term in the proposed
PDE is a combination of an image smoothing term and an
image enhancement term. A mean curvature motion (MCM)
based diffusion [4, 29] is used in the image smoothing term
to eliminate the noise very effectively and quickly. A time
varying edge stopping function is attached with the diffusion
term in order to reduce the amount of smoothing performed
at the edges. The image enhancement term in the model is a
reactive term, which drives the image level sets towards the
object boundaries and force them to stop there. This term
is used for effective edge preservation and image enhance-
ment. Our model is in the form of a reaction-diffusion PDE
rather than a variational regularization. Reaction-diffusion
models have been proposed for different applications in the
literature, such as shape recovery [23, 36] and image seg-
mentation [21, 37]. The performance and robustness of the
method are tested in various experiments, with synthetic and
real-life degradations. The quality of the results is evalu-
ated both visually and in terms of Improvement in Signal-to-
Noise-Ratio (ISNR) and the Pratt’s Figure Of Merit (FOM).
Detailed comparisons with 2 other PDE based deblurring
and denoising methods [29, 41] are performed, and show
that the proposed method yields significantly better results
than these other methods.

The rest of the paper is organized as follows: Sect. 2 re-
views the major PDE based image deblurring and denois-
ing models. Section 3 describes the proposed level set based
reconstruction model and its numerical implementation. In
Sect. 4, we present the visual and quantitative results on
synthetic and real blurred and noisy images. Section 5 con-
cludes the paper.

2 Variational/PDE-based deconvolution models

Considering the degradation model (4), a naive denoising
and deconvolution model would be the following:

û0 = k̂ûi + n̂ (6)

where x̂ denotes the Fourier transform of the function x.
Leaving aside the noise, this model has an important draw-
back: in order to deconvolve, we need to divide by k̂(l,m)

for every frequency (l,m). This procedure is generally ill-
posed. If k is smooth, high frequencies tend quickly to zero,
implying that those frequencies in û0 get amplified, and the
model above, in spite of its simplicity, is far from efficient.

A classical way to overcome ill-posed problems is vari-
ational regularization. In [38], Tikhonov and Arsenin intro-
duced this idea for image restoration. The Tikhonov regular-
ization is to find an image u, which minimizes the functional

J (u) =
∫

Ω

|∇u|2 dx dy + λ

2

∫

Ω

(k ∗ u − u0)
2 dx dy (7)
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where ∇u denotes the gradient of u. The second term in
J (u) is a fidelity term that forces k ∗ u to be close to the
observed image u0. The first term enforces a smoothness
constraint on u and can be seen as a regularizer in the ill-
posed deconvolution problem. In other words, we search for
a u that best fits the data so that its gradient is low (so that
noise will be removed). The parameter λ represents a reg-
ularization parameter. The Euler–Lagrange equation associ-
ated with the variational problem (7) is

λ
(
k ∗ (k ∗ u − u0)

) − �u = 0 (8)

where �u denotes the Laplacian of u. The solution u(t)

depends on λ, which weights both terms of the equation.
A small λ approximates the purely denoising term, while a
large λ ignores the second term, leaving the deconvolution
part of the equation, k ∗ (k ∗ u − u0), with the obvious so-
lution k ∗ u = u0. Between the two extreme cases, there is
a whole branch of intermediate solutions. This formulation
was an important step, but the results were not satisfactory,
mainly due to the inability of the previous functional to re-
solve discontinuities (edges). The regularization functional
in (7) assumes u is smooth and information corresponding
to high frequencies of u0 is attenuated by it. These observa-
tions motivated the introduction of Total Variation (TV) in
image restoration problems.

The formulation of TV models was first given by Rudin,
Osher, and Fatemi in [34] for the denoising case and Rudin
and Osher in [33] for the denoising and deblurring case. This
approach does not require that a solution be continuous but
merely that it be of bounded variation. There has been a
flurry of recent work, both numerical applications [24, 39,
40] and theoretical analysis [2, 15] that demonstrates the su-
periority of TV over the linear image reconstruction meth-
ods.

On the basis of the BV model, the TV-norm is proposed
as a regularization functional for the image restoration prob-
lem. The minimization functional presented in [33] is

T V (u) =
∫

Ω

|∇u|dx dy + λ

2

∫

Ω

(k ∗ u − u0)
2 dx dy (9)

The Euler–Lagrange equation associated with (9) with ho-
mogeneous Neumann boundary condition is given by

λ
(
k ∗ (k ∗ u − u0)

) − ∇.

( ∇u

|∇u|
)

= 0, (x, y) ∈ Ω

∂u

∂n
= 0, (x, y) ∈ ∂Ω

(10)

where ∂Ω is the boundary of Ω and n is the outward nor-
mal to ∂Ω . Rudin and Osher [33] applied the artificial time
marching method to solve (10)

∂u

∂t
= −λ

(
k ∗ (k ∗ u − u0)

) + ∇.

( ∇u

|∇u|
)

(11)

Since Eq. (11) is not well defined at points where ∇u = 0,
due to the presence of the term 1/|∇u|, it is common to
slightly perturb the TV functional to become
∫

Ω

√
|∇u|2 + ε dx dy (12)

where ε is a small positive parameter. The TV norm does not
penalize discontinuities in u, and thus allows us to recover
the edges of the original image. However, there are compu-
tational difficulties. The steady state is reached with a very
small time step, using (11). Linear semiimplicit fixed-point
procedures devised by Vogel and Oman [39] and primal-
dual implicit quadratic methods by Chan, Golub, and Mulet
[9] were introduced to solve the computational difficulties
of TV restoration problem. These methods give good results
when treating pure denoising problems, but the methods be-
come highly ill-conditioned for the deblurring and denoising
case where the computational cost is very high and parame-
ter dependent. Furthermore, the TV model also suffers from
the undesirable staircase effect.

In [29], Marquina and Osher introduced a time depen-
dent model for image deblurring and denoising, which elim-
inates the computational difficulties associated with the TV
restoration problem and also reduces the staircase effect to
a certain extend. The model is constructed by evolving the
Euler–Lagrange equation of the Rudin–Osher optimization
problem, multiplied by the magnitude of the gradient of the
solution.

∂u

∂t
= −|∇u|λ(

k ∗ (k ∗ u − u0)
) + |∇u|∇.

( ∇u

|∇u|
)

(13)

The main features of this formulation are: (a) there are
simple explicit schemes such as Roe’s scheme that behave
stably with a reasonable CFL restriction for this evolution
equation, (b) the level contours of the image move quickly
to the steady solution and the presence of the gradient nu-
merically regularizes the mean curvature term in a way that
preserves edges and kills noise through the curvature-based
evolution acting on small scales.

The use of nonconvex regularization functionals in image
restoration has been investigated by Welk et al. [41]. In gen-
eral, variational deblurring and denoising of an image can
be achieved by minimizing the energy functional

J (u) =
∫

Ω

Ψ
(|∇u|)dx dy+ λ

2

∫

Ω

(k ∗ u − u0)
2 dx dy (14)

The function Ψ (|∇u|) = |∇u|2 leads to Tikhonov regular-
ization, whereas Ψ (|∇u|) = |∇u| gives the TV regulariza-
tion. In [41], the nonconvex function

Ψ
(|∇u|) = α2 ln

(
1 + |∇u|2

α2

)
(15)
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has been considered in model (14). The resulting gradient-
descent equation is

∂u

∂t
= −λ

(
k ∗ (k ∗ u − u0)

) + div
(
g
(|∇u|)∇u

)
(16)

where

g
(|∇u|) = 1

(1 + (|∇u|2/α2))
(17)

The term div(g(|∇u|)∇u) represents the Perona–Malik
anisotropic diffusion, where g is the diffusion coefficient
and α is a contrast parameter, which determines above
which steepness edges are enhanced in the gradient descent
process. The nonconvex Ψ functions like (15) allow the re-
construction of sharper images.

3 The nonlinear level set based deconvolution model

In this section, we introduce a new nonlinear level set model
for image deblurring and denoising. To this end, we first re-
view some basic concepts of level set methods and a few
level set models, which are directly related to the proposed
model.

3.1 Level set methods

The level set methods introduced in [32] are efficient numer-
ical techniques for solving curve evolution problems. They
have been widely applied in many problems of image pro-
cessing such as image enhancement and noise removal [4,
13, 26, 35], segmentation [8, 16, 20, 22, 23], and shape re-
covery [27, 28, 37].

The basic idea behind the level set method is that a closed
curve Γ can be represented as the zero level set of an auxil-
iary function φ, called level set function

Γ = {
(x, y) | φ(x, y) = 0

}
(18)

and the level set method manipulates Γ implicitly, through
the function φ. If the curve Γ moves in the normal direction
with a speed V , then the level set function φ satisfies the
level set equation

∂φ

∂t
= V |∇φ| (19)

The motion of a level set characterized by V =
div(∇φ/|∇φ|), the mean curvature of the level set is called
as Mean Curvature Motion (MCM). The MCM

∂φ

∂t
= |∇φ|div

(∇φ/|∇φ|) (20)

is very well known for its geometric smoothing prop-
erties [5]. This property of MCM has been utilized in

the Marquina–Osher deblurring and denoising model (13),
where the MCM has been combined with a deconvolution
term to restore the degraded observations.

Another important level set formulation is the Geodesic
Active Contour (GAC) [8] model for image segmentation.
To segment an image u into its constituent objects, an auxil-
iary level set function φ (defined over the image domain) is
evolved according to

∂φ

∂t
= g

(|∇uσ |)|∇φ|div

( ∇φ

|∇φ|
)

+ ∇(
g
(|∇uσ |)).∇Φ (21)

where g(.) is a decreasing function of the image gradient

g
(|∇uσ |) = 1

1 + (|∇(Gσ ∗ u)|2/α2)
(α > 0) (22)

Here, Gσ denotes a Gaussian convolution of standard devia-
tion σ and α is a contrast parameter. The function g(.) helps
to stop the evolution of the curve at the image edges.

The properties of geodesic snakes (21) induced Sapiro to
use a related technique for image denoising and enhance-
ment [35]. This is done by deforming each of the level sets
of the image according to the GAC, i.e., the image itself acts
as the level set function (φ = u), giving

∂u

∂t
= g

(|∇uσ |)|∇u|div

( ∇u

|∇u|
)

+ ∇(
g
(|∇uσ |)).∇u (23)

This evolution equation is known as a self-snake. The self-
snake algorithm is very effective in preserving and enhanc-
ing edges while denoising the image.

Chen, Vemuri, and Wang [13] proposed a modified self-
snake process for image denoising and enhancement, where
a fidelity term is added to the self-snake (23) to enforce the
closeness of the smoothed image to the original image. The
restored image is given by the steady-state of

∂u

∂t
= g

(|∇uσ |)|∇u|div

( ∇u

|∇u|
)

+ ∇(
g
(|∇uσ |)).∇u − λ|∇u|(u − u0), λ > 0 (24)

where u0 is the noisy image, u is the denoised image, λ is
a weighting parameter and g is as defined in (22). Excel-
lent denoising results are shown by model (24) with sharp
restoration of image features. The authors also establish the
existence and stability of a unique viscosity solution to this
evolution equation.

3.2 The proposed model

PDE based image deblurring and denoising models are gen-
erally made up of two terms, a deconvolution term and a
regularizing/denoising term (see Eqs. (11), (13), and (16)
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in Sect. 2). Knowing the blurring PSF k, the deconvolu-
tion term tries to invert the convolution operation to de-
blur the image, whereas the regularization term numerically
stabilizes the deconvolution operation and it also acts as a
smoothing term to denoise the image. The smoothing and
edge preserving characteristics of the regularization term
will greatly affect the performance of an image deblurring
and denoising model.

While TV regularization and nonlinear diffusion are
common choices in the image deblurring and denoising lit-
erature, we investigate the use of the level set model (23),
known as self-snake as a regularization term in a deblurring
and denoising PDE. Even at high levels of noise, the self-
snake model leads to effective denoising of the image with
strong preservation of edges as demonstrated in [13, 35]. To
utilize the edge preserving and enhancing characteristics of
self-snake algorithm in the deblurring and denoising prob-
lem, we replace the regularization term in MO model (13)
by the self-snake process (23) and our time evolution model
takes the following form:

∂u

∂t
= −λ|∇u|(k ∗ (k ∗ u − u0)

)

+ g
(|∇uσ |)|∇u|div

( ∇u

|∇u|
)

+ β ∇(
g
(|∇uσ |)).∇u (25)

The initial and boundary conditions are

u(x, y,0) = u0(x, y),
∂u

∂n
= 0 on ∂Ω

where u0 is the blurred and noisy image, u is its restored
version, k is the blurring PSF, λ and β are regularization
parameters, and g(|∇uσ |) defined in (22) is a decreasing real
valued function, which tends to zero as |∇uσ | → ∞. The
proposed PDE can also be viewed as an extension of the
denoising model (24) for the more general deblurring and
denoising problem by including a deconvolution operation
in the fidelity term.

The proposed model (25) contains three terms: the first
term is a deconvolution term which arises naturally in the
deblurring context. Knowing the blurring PSF k, this term
tries to invert the convolution operation and deblur the im-
age. This term also moves the level curves of the image in
the direction of zeros of (k ∗ u − u0) ( where u is the re-
stored version of the image and u0 is the distorted image),
since |∇u|(k ∗ (k ∗ u − u0)) represents a level set motion
with speed (k ∗ (k ∗ u − u0)).

The second term is a diffusion term used for image
smoothing, which also acts as a regularizer for the decon-
volution operation. In this term, |∇u|div( ∇u

|∇u| ) represents
MCM [4, 29], which diffuses u in the direction orthogo-
nal to its gradient ∇u and does not diffuse at all in the di-
rection of ∇u. This makes u smooth on both sides of an

Fig. 1 (a) A 1-D edge signal (smoothed version). (b) The correspond-
ing gradient based edge stopping function g and its gradient vectors

edge with a minimal smoothing of the edge itself. The co-
efficient of the second term, namely, g(|∇uσ |) serves the
purpose of selecting the locations in the image for smooth-
ing. For instance, at image locations having large values of
gradient, this coefficient takes on a small value since g(s) is
a decreasing function of s, thereby reducing the smoothing
performed at these locations. In homogeneous areas of the
image, the level curves of the image move with a velocity
equal to their mean curvature values. Areas of high curva-
ture will diffuse much faster than areas of small curvature.
Thus, small jagged noise artifacts in the homogeneous areas
of the image will be quickly removed.

The third term ∇g.∇u is a reactive term, and this term is
responsible for forcing the evolution-based image smooth-
ing to stop exactly at the edges. This term attracts the evolv-
ing level sets toward the middle of the edges acting as an
edge enhancing and sharpening term. In fact, using the dif-
fusion term g(|∇uσ |)|∇u|div( ∇u

|∇u| ), the level sets will be
completely stopped only when g(|∇uσ |) = 0. This happens
only at an ideal edge (|∇uσ | = ∞). In cases in which there
are different gradient values along the edge, as often hap-
pens in real images, g(.) gets different values at different
locations along the edge. Observe in Fig. 1(a) (taken from
Caselles et al. [8]) the one-dimensional case of an edge
(an object of high intensity value with low intensity back-
ground) of an image u. At the center of an edge, the gradient
magnitude attains its maximum value and on both sides of
an edge it decreases. Figure 1(b) shows g(.) and its gradient
vectors. Observe the way the gradient vectors of g(.) are all
directed toward the center of the edge. These vectors pull the
propagating level curves toward the middle of the edges and
eventually force them to stop there. Since the proposed PDE
contains both an edge stopping term and an edge attractive
term, it is even possible to restore the exact location of the
edges with high differences in their gradient values. Further-
more, this term acts as a shock-filter introduced in [31] for



316 A.A. Bini, M.S. Bhat

image deblurring. Near the image edges, ∇g.∇u moves the
level curves of the image in the same direction as the inverse
heat equation would do. Since the level curves move closer
to one another than they were initially, the edges will be en-
hanced and sharpened. In homogeneous areas of the image,
the effect of this term is negligible. Thus, in the proposed
model, the mean curvature motion of the image level sets
give effective denoising in homogeneous areas with a strong
preservation of edges with the help of edge stopping func-
tion g(.) in the diffusion term and the edge attractive force
∇g.∇u. On the other hand, the deconvolution term together
with the shock term ∇g.∇u gives effective deblurring and
sharpening of the image.

The edge preserving properties of the proposed model
and the deblurring and denoising models in Sect. 2 can be
compared by looking at the corresponding PDEs. The regu-
larization term in model (11) moves each level curve of the
image u normal to itself with a velocity equal to the cur-
vature of the level surface divided by the magnitude of the
gradient of u, whereas in model (13), the movement of level
curves of u is pure mean curvature motion. In both cases,
the evolution tends to shrink the level lines of the image and
the continued application of both of these models results in
blurring and deformation of edges (usually the curved edges
appear more curvy).

The action of Welk model [41] can be understood by de-
composing the PDE (16) as

∂u

∂t
= −λ

(
k ∗ (k ∗ u − u0)

) + g
(|∇u|)uξξ

+ 1 − |∇u|2/α2

(1 + |∇u|2/α2)
2

uηη (26)

where η and ξ are local coordinates that are aligned with the
gradient and level set directions of the image. The evolution
(26) varies as a function of the values of |∇u|. The second
term in (26) represents a one dimensional diffusion in the
direction orthogonal to the gradient, whereas the third term
takes positive or negative values depending on the value of
|∇u| relative to α, which respectively corresponds to a for-
ward or inverse heat diffusion. Thus, the edge preservation
capability of Welk model depends on the contrast of the
edges compared to the diffusion threshold. Edges above this
threshold undergo an “inverse diffusion” in the gradient di-
rection and are enhanced, while edges below this threshold
are smoothed (blurred) in both directions.

Note that our model is different from MO model [29].
The diffusion term in the proposed PDE is a mean curva-
ture motion (MCM) based diffusion [4, 29] as in model [29].
However, our formulation involves a time varying edge stop-
ping function with the curve evolution based diffusion term,
which reduces the amount of smoothing performed at the

edges, and our PDE has an additional reactive term that is
not present in the MO model. This term is responsible for
forcing the evolution based image smoothing to stop exactly
at the edges and providing an effective image enhancement.
Even though the proposed PDE (25) has the mean curvature
motion as the smoothing term, it does not deform the edges
even for a larger stopping time because of the presence of the
edge stopping term g(|∇uσ |) and the term ∇g.∇u, which
helps to stop the evolving level lines exactly at the center of
the edges. Thus, the proposed method gives better localiza-
tion of edges compared to other methods. Further, the term
∇g.∇u acting as a shock filter enhances and sharpens the
edges.

3.3 Numerical implementation

The numerical implementation of the proposed deblurring
and denoising PDE (25) is based on the upwind finite differ-
ence scheme developed by Osher and Sethian [32] for curve
evolution via level sets. Let un(i, j) be the approximation
to the value u(i�x, j�y,n�t), where �x, �y and �t are
the spatial step sizes and time step size, respectively. Imple-
menting the time derivative is straightforward with

∂u

∂t
= un+1[i, j ] − un[i, j ]

�t
(27)

and the diffusive term is approximated using the central fi-
nite differences, with

|∇u|div

( ∇u

|∇u|
)

= u2
yuxx − 2uxuyuxy + u2

xuyy

u2
x + u2

y

(28)

The data term |∇u|(k ∗ (k ∗ u − u0)) and the doublet term
(shock term) ∇g.∇u have to be implemented with special
care. To implement the shock term, we have to use forward
and backward finite differences adaptively so that their di-
rections are always away from discontinuities. For a discrete
grid point (i, j), let

�+
x un(i, j) = un(i + 1, j) − un(i, j)

�−
x un(i, j) = un(i, j) − un(i − 1, j)

�+
y un(i, j) = un(i, j + 1) − un(i, j)

�−
y un(i, j) = un(i, j) − un(i, j − 1)

�xu
n(i, j) = (

un(i + 1, j) − un(i − 1, j)
)
/2

�yu
n(i, j) = (

un(i, j + 1) − un(i, j − 1)
)
/2

(29)

then

(∇g.∇u)[i, j ] = max
(
�xg

n[i, j ],0
)
�−

x un[i, j ]
+ min

(
�xg

n[i, j ],0
)
�+

x un[i, j ]
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+ max
(
�yg

n[i, j ],0
)
�−

y un[i, j ]
+ min

(
�yg

n[i, j ],0
)
�+

y un[i, j ] (30)

and the upwind scheme for the data term |∇u|(k ∗ (k ∗
u − u0)) is given by

(|∇u|(k ∗ (k ∗ u − u0)
))[i, j ]

= max
(
F [i, j ],0

)∇+un[i, j ]
+ min

(
F [i, j ],0

)∇−un[i, j ] (31)

where F [i, j ] = (k ∗ (k ∗ u − u0))[i, j ],

∇+un[i, j ] = {(
max

(
�−

x un[i, j ],0
))2

+ (
min

(
�+

x un[i, j ],0
))2

+ (
max

(
�−

y un[i, j ],0
))2

+ (
min

(
�+

y un[i, j ],0
))2}1/2 (32)

and

∇−un[i, j ] = {(
max

(
�+

x un[i, j ],0
))2

+ (
min

(
�−

x un[i, j ],0
))2

+ (
max

(
�+

y un[i, j ],0
))2

+ (
min

(
�−

y un[i, j ],0
))2}1/2 (33)

For a detailed discussion on this scheme, we refer the
reader to [25, 32].

4 Experimental results

We now present a set of deblurring and denoising exper-
iments illustrating the performance of the proposed algo-
rithm. To assess the relative merit of the proposed method,
the results of the proposed method are compared with two

other PDE based deconvolution methods from the literature:
Marquina–Osher (MO) model [29] and Welk model [41].
The discretization of PDEs associated with algorithms [41]
and [29] is done as described in these papers. We examine
the conventional Signal to Noise Ratio (SNR) and the Im-
provement in Signal-to-Noise-Ratio (ISNR) to measure the
restoration quality of different methods tested. To Compare
the edge preservation performance, we use Pratt’s Figure Of
Merit (FOM). The SNR is defined in decibels as

SNR = 10 log10

∑
i (x0

i − μ)
2

∑
i (x

i − x0
i )

2
dB (34)

where x0 is the original undistorted image, μ is the mean of
x0 and x is the restored image.

The ISNR is given by

ISNR = 10 log10

∑
i (y

i − x0
i )

2

∑
i (x

i − x0
i )

2
dB (35)

where y is the degraded version of the image and the other
symbols are as defined above. The FOM is defined as

FOM = 1

max{N̂,Nideal}
N̂∑

i=1

1

1 + d2
i γ

(36)

In (36), N̂ and Nideal are the number of detected and ideal
edge pixels, respectively, di is the Euclidean distance be-
tween the ith detected edge pixel and the nearest ideal edge
pixel, and γ is a constant, typically set to 1/9. FOM ranges
between 0 and 1, with unity for ideal edge detection.

4.1 Synthetic image experiments

We use two gray scale images, Trui (256 × 256) and Man
(1024×1024) shown in Fig. 2 for our deblurring and denois-

Fig. 2 Original Test Images
used for different experiments
(a) Trui: 256 × 256, (b) Man:
1024 × 1024
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ing experiments. We first scale the intensities of the images
into the range between 0 and 1 before we begin our exper-
iments. The degraded images are obtained using the image
acquisition model (4). For that, we use the Gaussian blur
given in (5) with a blurring parameter σ and a Gaussian
noise of standard deviation σn. Note that the severity of the
blurring is increased for a larger value of σ and the amount
of noise is increased for a larger value of σn. In the first
experiment, the “Trui” image is corrupted with a Gaussian
noise of standard deviation σn = 0.02 and two different lev-
els of blur. The top row of Fig. 6: (a) and (b), show the im-
ages blurred with a Gaussian kernel of σ = 2 and 3, respec-
tively, each with a noise of σn = 0.02.

4.1.1 Selection of filter parameters

The proper selection of different parameters of a filter is cru-
cial for getting the best results from that filter. The output of
the proposed filter is affected mainly by the regularization
parameters λ and β , the contrast parameter α (in Eq. (22))
and the number of iterations applied. The selection of proper
regularization weight λ is important to get a good restoration
of the image.

In the proposed model (25), the regularization parameter
λ controls the amount of penalty applied to the L2-distance
square between k ∗ u and u0. According to (4), the squared
L2-distance between k ∗ ui and u0, where ui is the ideal
clean image, is equal to the variance of the additive Gaussian
noise n. Therefore, an appropriate λ should give a solution
u of (25) satisfying ‖k ∗ u − u0‖ ≈ ‖k ∗ ui − u0‖. A large
value of λ ignores the diffusion term in (25) and causes the
restored images to be noisy; while a very small λ will elim-
inate small-scale details in the image. The issue of automat-
ically selecting λ is important, but beyond the scope of the
present work. In general, the value of λ should be inversely
proportional to the noise variance. In our experiments, we
used the formula λ = C/max(σ 2

n ,10−12), for images with
intensity scaled to the range [0,1], where σn is the stan-
dard deviation of the Gaussian noise and C is a constant.
The value of constant C was determined empirically so that
the restored images had maximum possible signal-to-noise
ratios (SNRs). The regularization parameter λ is found in
the same way for the other two algorithms also which are
compared with the proposed algorithm. This is done to en-
sure that we compare the best possible result from each of
the algorithms considered. The constant C is found to take
a value of 0.01 to 0.1 for the proposed method in most of
the test cases. More sophisticated techniques exist for au-
tomatic regularization parameter selection such as L-curve
method [17, 18]. However, these methods require intensive
computations involving the operator K .

In order to avoid overload computing and achieve opti-
mal results, different stopping rules are available in the liter-
ature. In this experiment and all the following experiments,

Fig. 3 The stopping criterion for the proposed method

we start the proposed algorithm by employing the degraded
(blurred and noisy) image as the initial guess and the pro-
cess is terminated if the normalized norm of the difference
between two successive iterates is within a prescribed toler-
ance factor of the current iterate, i.e.,

Fn = ‖un − un−1‖
‖un‖ ≤ tol (37)

Figure 3 shows variation of Fn with number of iterations
for the proposed method when applied to the “Trui” image
in Fig. 6(b) (Gaussian blur of σ = 3 and Gaussian noise of
σn = 0.02). In the numerical implementation, a time step of
�t = 0.1 is set for the proposed method. Note that, although
the proposed method is terminated using the stopping crite-
rion (37) with a tol factor of 10−8 for the degraded image in
Fig. 6(b) (which will cause the evolution to stop by around
128 iterations), we let the PDE run until 500 iterations to
see the stability of our method. The evolution of algorithms
[41] and [29] are also started by employing the degraded im-
age as the initial guess and the process is terminated by the
same criterion described above.

The values of parameters β and α also affect the image
restoration quality significantly. As discussed in Sect. 3.2,
the term ∇g.∇u increases the speed of level set evolution by
attracting the evolving level curves towards the edges and
thereby preserves well the location of edges. On the other
hand, the contrast parameter α in the edge stopping function
g(.) (22) can also be adjusted to preserve the useful features
in an image. A low value of contrast parameter will try to
preserve the low contrast features in the image. Since both
β and α affect the edge preservation capability of the filter,
varying one of them affects the performance of the other.
Figures 4 and 5 show the variation in performance (in terms
of SNR over iterations) with parameter β for two different
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values of α when applied to the “Trui” image in Fig. 6(b). It
can be observed from Figs. 4 and 5 that the SNR of the re-
stored image is improved at a higher rate for a higher value
of beta compared to an evolution with a lower value of beta
or zero beta. In this particular example, the PDE evolution
will be stopped around 128 iterations as per the stopping
tolerance. A value of β = 1 gives the best SNR at 128 iter-
ations. However, as the number of iterations increases, the
SNR value decreases and the rate of deterioration of SNR is

Fig. 4 SNR versus iterations for different values of β when α = 0.005

Fig. 5 SNR versus iterations for different values of β when α = 0.02

higher for a higher value of beta. Also the deterioration starts
at an early point for a higher value of beta. This is expected
because at the later stages of evolution, a higher value of β

causes more and more image sharpening and contrast en-
hancement. Because of this, a very high value of β will not
be able to achieve considerable SNR improvement before
it starts to degrade. Thus, the β value should not be made
too high. Considering the above facts, we use a continua-
tion strategy for the value of parameter β where the initial
β value is reduced successively during the PDE evolution
to get a good quality restoration. The higher values of β in
the early stages of evolution helps to get a high quality/SNR
image and the successively decreased β keeps the high qual-
ity of the image without over sharpening the edges. For a
higher value of contrast parameter α (see Fig. 5), the deterio-
ration of SNR starts at an even early point when compared to
a lower value of α. We tested the method with different val-
ues of β and α and the values producing the maximum SNR
is chosen in each case. In all our experiments, a β value of
1 or 2 produced the optimum performance and the optimum
α is found to vary between 0.001 to 0.03 depending on the
image features. For the “Trui” image with a blur of σ = 3
and noise of σn = 0.02, the maximum SNR is achieved by
β = 1 and α = 0.005.

The optimum set of filter parameters used for the present
experiment are given in Table 1. The reconstructed im-
ages obtained by methods [29], [41], and the proposed
method are shown in the second, third, and fourth rows
of Fig. 6, respectively. From Figs. 6(c) and (d), we can
see that method [29] eliminates many important details in
the image and the restored images are less sharper when
compared to the results obtained by other methods. Also,
the edges appear more rounded at the sharp corners. The
rounding of the sharp corners is more severe for higher
levels of blurring. Figures 6(g) and (h) show that the pro-
posed method achieved considerable improvement in the
image quality compared to the degraded images and the re-
stored images given by other methods. Even at high lev-
els of blurring, the image is well restored by preserving
all important details in the image and minimal rounding
of sharp corners. Many low contrast features eliminated by
the other two algorithms are retained by the proposed al-
gorithm. However, we notice that the proposed algorithm
produces more block effect compared to the other two al-
gorithms. This is because of the shock term present in the

Table 1 Optimal set of filter
parameters used for the “Trui”
image with noise standard
deviation σn = 0.02 and
different levels of blur σ = 2,3

Model λ {σ = 2,3} β α {σ = 2,3} σ dt iter. {σ = 2,3}

MO [29] {200, 300} – – – 0.1 {43, 98}

Welk [41] {1, 2} – {0.005, 0.005} – 0.01 {9892, 13386}

Proposed {80, 250} 1 {0.005, 0.005} 1 0.1 {72, 128}
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Fig. 6 (Top row) Trui degraded images with noise of standard devia-
tion σn = 0.02 and different levels of blurring (a) σ = 2 (b) σ = 3;
(second row) (c), (d) corresponding reconstructed images by MO;
(third row) (e), (f) by Welk model; (bottom row) (g), (h) by the pro-
posed method

proposed PDE, which acts as an inverse heat equation near
the object boundaries, and thereby preserving and sharp-
ening edges. This term has characteristics similar to the
shock filters introduced by Rudin and Osher [31], which

is known to reconstruct piecewise constant (patches) im-
ages [6]. The quantitative results are compared in Table 2.
High ISNR and FOM values can be seen for the pro-
posed method for both blur levels. However, the comput-
ing time of the proposed method is slightly higher when
compared to the MO model [29]. It should also be men-
tioned that the Welk model [41] requires a much higher
computing time when compared to the proposed method
and [29].

Below we summarize the main steps of our level set
based deconvolution algorithm (see Algorithm 1).

Algorithm 1 Level set based deconvolution algorithm

1. Input the noisy image u0 corrupted by blur and additive Gaussian
noise.

2. Calculate the regularization weight λ as λ = C/max(σ 2
n ,10−12)

(with a C value of 0.01 to 0.1 depending on the image) where σn

is the noise standard deviation.
3. Initialize the parameter β to a value 1 or 2.
4. Assign the contrast parameter α a value between 0.001 and 0.03

depending on the image features.
5. Specify the stopping tolerance value tol defined in (37) to 10−m,

where m = 7 or 8 is sufficient in most of the cases.
6. Select a time step of �t = 0.1 for the PDE evolution.
7. Initialize the restored image un

rest = u0

8. while ‖un+1
rest −un

rest‖
‖un

rest‖ > tol do, Evaluate un+1
rest using the PDE defined

in (25) in the image domain.
9. Assign un

rest = un+1
rest

10. end while

In the next experiment, we consider the “Trui” image
again and the image is corrupted with a Gaussian blur of
σ = 2 and different levels of Gaussian noise. The top row
of Fig. 7: (a)–(c), show the degraded images with Gaussian
noise of standard deviation σn = 0.02, 0.05, and 0.07, re-
spectively. The various parameter settings used for this ex-
periment are given in Table 3. The results obtained by differ-
ent methods for this experiment are shown in Fig. 7 and Ta-
ble 4. From Table 4, we observe that for all the noise levels,
the proposed method obtained the highest ISNR and FOM
values.

The numerical results are further supported by qualitative
examination. The restored images using MO model [29],
Welk model [41], and the proposed method are shown in the
second, third, and fourth rows of Fig. 7. From Fig. 7, we can
see that the proposed method yielded, in all cases, a signif-
icant improvement in image quality. Even at a high level of
noise, the proposed method effectively removes noise while
preserving important features of the image. More low con-
trast features are preserved by the proposed method when
compared to other two models. The restored images ob-
tained by MO model [29] are less sharper and the edges
appear more rounded at the sharp corners. The Welk model
[41] gives a much better edge/detail preservation compared
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Table 2 Results obtained with
different filters applied to the
Trui image with noise σn = 0.02
and different levels of blurring
with σ = 2,3

Model ISNR (dB) {σ = 2,3} FOM {σ = 2,3} Computing time(s) {σ = 2,3}

Noisy 0 {0.2039, 0.2022} –

MO [29] {4.2080, 4.3132} {0.4728, 0.3429} {2.3651, 5.3900}

Welk [41] {4.4094, 4.5186} {0.5613, 0.5113} {364.6659, 481.8960}

Proposed {5.4586, 5.6429 } {0.6281, 0.5928} {7.4232, 12.9252}

Fig. 7 (Top row) Blurred and
noisy Trui images with blurring
parameter σ = 2 and different
levels of Gaussian noise (a)–(c)
σn = 0.02,0.05,0.07,
respectively; (second row)
(d)–(f) corresponding
reconstructed images by MO
model; (third row) (g)–(i) by
Welk model; (bottom row)
(j)–(l) by the proposed method
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Fig. 8 (a) Man blurred with
σ = 7 and a noise of σn = 0.02;
(b) restored image by MO;
(c) by Welk model; (d) by the
proposed method

Table 3 Optimal set of filter
parameters used for the “Trui”
experiment with blur parameter
σ = 2 and different levels of
Gaussian noise with
σn = 0.02,0.05, and 0.07

Model λ {σn = 0.02,0.05,0.07} α {σn = 0.02,0.05,0.07} β σ dt iter. {σn = 0.02,0.05,0.07}

MO [29] {200, 90, 40} – – – 0.1 {43, 48, 55}

Welk [41] {1, 0.3, 0.1} {0.005, 0.005, 0.004} – – 0.01 {9892, 15624, 18495}

Proposed {80, 10, 3} {0.005, 0.005, 0.005} 1 1 0.1 {72, 294, 487}

Table 4 Results obtained with
different filters applied to the
Trui image with blur parameter
σ = 2 and different levels of
Gaussian noise with
σn = 0.02,0.05, and 0.07

Model ISNR (dB)
{σn = 0.02,0.05,0.07}

FOM
{σn = 0.02,0.05,0.07}

Computing time(s)
{σn = 0.02,0.05,0.07}

Noisy 0 {0.2039, 0.2016, 0.2011} –

MO [29] {4.2080, 5.4281, 6.0556} {0.4728, 0.4538, 0.4162} {2.3651, 2.7400, 3.3250}

Welk [41] {4.4094, 4.5133, 5.2562} {0.5613, 0.5303, 0.5222} {364.6659, 576.5256, 682.4655}

Proposed {5.4586, 6.5279, 6.8789} {0.6281, 0.5769, 0.5492} {7.4232, 30.7230, 50.8915}

to [29]. However, the Welk model did not clearly mark the

low contrast edges as the proposed method did. Of course,

the contrast parameter α can be reduced to better preserve

the low contrast edges in Welk model, but the method fails

to satisfactorily eliminate the noise in this case.

As a next example, we show the performance of differ-

ent models when applied to the “man” image in Fig. 2(b).

In this experiment, the “Man” image is corrupted with a

Gaussian blur of σ = 7 and a Gaussian noise of standard de-

viation σn = 0.02. Figure 8 shows the degraded and restored

images obtained by different filters. For this experiment, we

used Fn ≤ 10−9 as the stopping tolerance. The ISNR and

FOM values obtained by each method are also given with

the restored images.
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Fig. 9 (a) Nemo image with
real out-of-focus blur;
(b) restored image by MO;
(c) by Welk model; (d) by the
proposed method

Fig. 10 (a) Building image
with real out-of-focus blur;
(b) restored image by MO;
(c) by Welk model; (d) by the
proposed method
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4.2 Experiments with real blurred images

Besides testing the selected methods with synthetically de-
graded images, we tested different algorithms using a num-
ber of real blurred photographs. Figures 9 and 10 show the
results obtained by different filters when applied to two real
out of focus blurred images. Figures 9(a) and 10(a) are taken
from the Real Blurred Image Database (BID) [1]. The im-
ages in this database were taken by consumer cameras and
Figs. 9(a) and 10(a) are two of the 142 out-of-focus images
in this database. These two images contain different lev-
els of blur with a significant amount of noise in both. The
“Nemo” image contains a higher level of blur compared to
the “building” image. We can see that the recovered images
obtained by the proposed method are more sharper and have
more visible details than the blurred ones and the other re-
constructed results. The restoration quality of the proposed
method seems to be better than other methods by visual
comparison. The blurring PSF is assumed to have a width of
σ = 7 for the “Nemo” image and σ = 3 for the “building”
image. The other parameters are given values as follows:
λ = 125, α = 0.005, β = 2, and tol = 10−8 for the “build-
ing” image and λ = 250, α = 0.005, β = 1, and tol = 10−8

for the “Nemo” image.

5 Conclusion

We have presented a new nonlinear PDE model for image
deblurring and denoising based on evolution of image level
sets. The proposed method is capable of effectively deblur-
ring and denoising the image while preserving and enhanc-
ing the important features of the image. The numerical im-
plementation of the method is based on the upwind finite
difference scheme proposed by Osher and Sethian. The per-
formance of the method is analyzed using different synthetic
and real degraded images having different levels of blur and
noise. The favorable performance of our algorithm has been
demonstrated visually and quantitatively.
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