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Abstract Noise removal for Monte Carlo global illumina-
tion rendering is a well known problem, and has seen sig-
nificant attention from image-based filtering methods. How-
ever, many state of the art methods breakdown in the pres-
ence of high frequency features, complex lighting and ma-
terials. In this work we present a probabilistic image based
noise removal and irradiance filtering framework that pre-
serves this high frequency detail such as hard shadows and
glossy reflections, and imposes no restrictions on the charac-
teristics of the light transport or materials. We maintain per-
pixel clusters of the path traced samples and, using statistics
from these clusters, derive an illumination aware filtering
scheme based on the discrete Poisson probability distribu-
tion. Furthermore, we filter the incident radiance of the sam-
ples, allowing us to preserve and filter across high frequency
and complex textures without limiting the effectiveness of
the filter.

Keywords Global illumination - Monte Carlo - Path
tracing - Noise reduction - Poisson probability distribution
1 Introduction

Monte Carlo integration methods for global illumination

have shown their elegance and generality when handling
physically based light transport. They are able to accurately
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synthesise a wide range of optical effects and surface mate-
rials while maintaining relative simplicity. The cost of this
generality is their poor convergence, often requiring thou-
sands of samples per pixel to reduce noise to desirable lev-
els. Techniques for combating noise such as importance
sampling and low discrepancy distributions are beneficial,
but still provide slow convergence and spiked noise. To ac-
curately estimate the measured radiance through a pixel in
a path based Monte Carlo renderer, we must evaluate the
radiance from all surface points visible through that pixel:

P(i,j)=/S/9Le(x,w)+Lr(x,w)dxdw (1)

where L, and L, are the emission from and radiance arriv-
ing at a point on a surface x from the set of all visible surface
positions x € S and scattered in the direction of the camera
®. To estimate L,, we must further integrate over the hemi-
sphere above x to account for the radiance arriving from all
directions @':

L. (x,®) =/ Li(x,a)’)fr (x,w,a)’)(n-a)’) do’ 2)
2

where L; is the radiance arriving at the surface from @',
fr and n are the bidirectional scattering distribution func-
tion (BSDF) and shading normal at x, respectively. Filtering
techniques rely on pixel coherence, providing low bias noise
removal in regions where pixel integrals exhibit similarity.
For regions where pixel coherence breaks down, low vari-
ance sources such as geometry and texture buffers are often
employed to help preserve edges. Such methods have been
popular due to their fast performance, but often sacrifice
quality, resulting in filtering artefacts, loss of high frequency
features, or limitations to certain light transport; wherein lies
the strength of Monte Carlo methods.
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In this work we present a novel framework for the dy-
namic storage and filtering of Monte Carlo samples that ef-
fectively removes noise whilst preserving high frequency
features in both texture and incident illumination. We per-
form per-pixel clustering over the incoming radiance of each
path contribution, separated by their path length. This re-
sults in a clustering framework of multiple layers that to-
gether represent the pixel integral. Treating path tracing as a
Poisson process, these clusters allow us to compare the fre-
quency of sample occurrences in a pixel with the occurrence
of similar luminance samples in its neighbourhood. From
this we gain two advantages. First, we identify and tem-
porarily remove high energy noise in the irradiance, which is
otherwise difficult to distribute across the image often lead-
ing to splotchy artefacts. Second, we compare clusters of
similar luminance across an image-space filter kernel, al-
lowing us to derive filter weights based on similarities in
irradiance. Combined with geometric edge detection from
depth and normal buffers, we reduce bias across edges from
high and low variance sources. Furthermore, complex tex-
ture detail is preserved since we filter the incoming radi-
ance, allowing us to maximise kernel bandwidth and pixel
correlation across regions with complex textures. The final
pixel radiance is reconstructed from our filtered irradiance
using texture data from the rendering pass. Our method ef-
fectively filters noise from the incident illumination, whilst
preserving hard gradients and edges that are otherwise diffi-
cult to identify, providing important visual cues and realism
for complex materials and light transport. The main contri-
butions of our paper are therefore:

Novel layer based clustering, which accurately represents

changes in incident illumination.

— A probabilistic, discontinuity aware image-space filtering
algorithm that is sensitive to illumination from multiple
overlapping sources.

— Image based irradiance filtering, enabling the preserva-
tion of complex texture detail without the need to store
BRDFs.

— To our knowledge, the introduction of the Poisson proba-
bility distribution to noise removal, and a framework that
is reliable at low sample counts.

— High intensity noise removal, tunable post-render and

suitable in image-based filtering.

2 Related work

Adaptive sampling Adaptive rendering techniques that
concentrate samples in high variance regions have shown
their effectiveness. Hachisuka et al. [6] introduced a multi-
dimensional adaptive sampling technique, estimating error
in path space, catering for arbitrary lens effects. However
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their sample storage does not scale well to suit global illu-
mination and sample reconstruction can be costly. Rousselle
et al. [12] combine image-based adaptive sampling with fil-
tering, producing good results and a promising avenue for
future methods. Many of these adaptive methods can per-
form poorly for difficult lighting conditions and high fre-
quency features, reducing efficiency. Path space adaptive
methods based on Metropolis sampling and Markov Chain
mutations [1, 16] are more effective and generally improve
convergence, but still suffer from noise early on and in under
sampled areas.

High intensity noise removal DeCoro et al. [3] employ a
sample rejection technique based on the local density in a
5D joint image-colour space, delaying the addition of out-
lying samples that do not conform to the current neighbour-
hood. Despite effectively removing high intensity noise in
well converged areas, for regions with sparse samples it can
have detrimental effects due its harsh rejection properties,
resulting in significant energy loss and removal of illumina-
tion clues. It also does not consider the relative luminance
of samples in the same pixel, removing isolated samples
that may not be responsible for noise due to the presence
of those with higher energy. Pajot et al. [10] also present
density estimation to tackle bright spot removal, based on
per-pixel 1D luminance distributions of the observed sam-
ples to improve performance. Conversely to DeCoro et al.,
neighbourhood similarities are not accounted for, leading to
the rejection of samples representing important illumination
features, but are outliers with respect to a single pixel dis-
tribution. Both approaches are unsuitable at lower sample
counts, and as a pre-process for image based filtering, the
focus of our work. Per-pixel luminance-based clustering is
an approach we also employ, supplemented by additional
data and with the premise of identifying and filtering illu-
mination discontinuities. As Sect. 4.2 will show, our frame-
work is also suited to high intensity noise removal though
we use 1D per-pixel distributions and image space neigh-
bourhood density allowing more robust filtering, adjustable
during rendering to eliminate remaining noise that can be
left behind by existing methods.

Sample-space reconstruction Recent methods such as
[9, 14] rely on identifying statistical relationships between
small numbers of Monte Carlo samples, to remove noise.
Whilst providing impressive results and handling large di-
mensional problems, they do not scale well with increased
input samples which are often required to capture more dif-
ficult lighting phenomenon.

Irradiance filtering  'Ward et al. [17] introduced irradiance
caching, storing a sparse set of samples at surface loca-
tions and interpolating between neighbours to reconstruct
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the irradiance at a surface point. Kontkanen et al. [7] use
image-based irradiance filtering to reduce noise, but rely
on high numbers of samples and additional costly ‘feeler’
rays to detect local geometry. Radiance caching and filter-
ing algorithms have also been proposed [5, 8]. However, all
these algorithms either rely on low frequency illumination
or BRDFs, or are not applicable to general light transport.
Additionally, we build upon unbiased Monte Carlo meth-
ods, allowing us to trivially revert to the unbiased solution,
unlike cache based methods.

Image-based filtering Suykens and Willems [15] use per-
sample adaptive kernel widths to distribute radiance across
pixels during progressive rendering. This transforms noise
from higher to lower frequencies which are less objection-
able, but does not consider geometric or texture edges re-
sulting in blurry features. Dammertz et al. [2] successfully
modify the a-trous wavelet transform, adding filter weights
derived from geometry buffers and input samples to filter
global illumination in real time. Despite largely respecting
both geometric and illumination edges, the a-trous filter can
lose texture detail, and present noticeable filtering artefacts.
The cross-bilateral filter [4, 11], makes use of range buffers
to preserve strong image features resulting from low vari-
ance sources, restricting filtering to regions of high similar-
ity. This has shown to produce good results for Monte Carlo
rendering (recently [13]). We use the principle of the cross-
bilateral filter in our work, and provide comparisons in our
results. Schwenk et al. [13] use a perception based blending
operator, relying on pixel variance to combine path traced
input samples with a filtered image, producing an unbiased
algorithm in the limit. It further allows them to use a higher
quality cross-bilateral filter for fast previews. Illumination
edges and glossy reflections, however, become blurred due
to the ignorance of illumination features, the main problem
addressed in our paper. Their blending approach is orthogo-
nal to our filtering technique and is in the spirit of our high
quality filtering, making it of interest for future integration
with our work. Whilst in this paper we do not focus on in-
teractive or GPU rendering, we address a difficult problem
not effectively tackled by many authors; detecting disconti-
nuities in high variance illumination. By using a high quality
filter, we can provide biased but low noise previews without
tight restrictions on feature frequency or surface character-
istics common to many approaches.

3 Poisson distribution

Our edge detection makes use of the Poisson discrete prob-
ability distribution, which expresses the probability that a
given number of events will occur within a specified inter-
val, provided they occur with a known average rate and are
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Fig. 1 Poisson distribution showing the probability mass function
P (X = k) for various mean number of observed events, A. Notice as A
increases it more closely resembles the binomial and standard normal
distributions

generated independently of the interval since the last event.
Assuming we have observed an average of A events in a fixed
interval and that the process or processes generating such
events are random with respect to the frequency of occur-
rence, the probability of observing exactly k events is given
by

WKe=n

PX=k)=""

3

Examples of the Poisson distribution for various mean oc-
currences are shown in Fig. 1. Notice that the Poisson dis-
tribution is a skewed distribution, accounting for the ab-
sence of probabilities for negative k. As A moves away from
zero, the Poisson distribution becomes symmetric, following
the normal distribution with mean A and standard deviation
V/A. The Poisson distribution is especially useful when mod-
elling rare events, where a large number of events may be
observed as a result of independent processes, but the gen-
eration of each event itself is rare, such is the case in Monte
Carlo methods. Samples are generated stochastically dur-
ing rendering, and despite making use of stratification and
importance sampling techniques, the generation of a given
sample is not influenced by previous samples.

4 Our method

4.1 Rendering and sample clustering

In order to describe our filtering technique, we first detail the
organisation of our rendered contributions. We use a stan-
dard path tracer with next event estimation, and our method

is orthogonal to variance reduction techniques such as im-
portance sampling and Russian Roulette. Our renderer treats
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the radiance accumulated at the first three path vertices as
individual contributions, returning a pair of radiance and ir-
radiance values for each vertex. Although complicating the
clustering process, this improves sample separation allow-
ing for easier edge detection during filtering. For low vari-
ance pixel integrals this has little impact on filtering perfor-
mance since we can merge clusters that form a continuum.
By separating path contributions, we can filter each layer
independently, regardless of the illumination features and
noise present in the remaining layers. For each path vertex
v, we compute the unbiased radiance contribution R, :

Ry = Li(x0, @) [ | £ (xi, 01, 0}) (ni - ) )

i=1

where L;(xy,®,) is the radiance arriving at x, from the
light source in the direction ), (see Fig. 2). Additionally we
obtain our irradiance contribution 1, by scaling L; (xy, @)
by the path throughput from the first non-specular vertex d
(whered > 1) to v:

I, = (ng - @)

Fig. 2 Geometry illustration for our irradiance contribution calcula-
tions in Egs. (4) and (5). Radiance arriving at each vertex v is scaled
by the path throughput from the first diffuse vertex d to v, omitting the
BRDF and texture reflectance at x4

Fig. 3 Example plot of our 07
layered clustering for a small v=1

v

x Li(xy, @) l_[ fr (i, 0, @}) (n; - o)) 5)

The influence of the BRDF and texture reflectance present
at x4, and the path throughput from xg to x4—1 are thus ig-
nored in our calculation of /,,. This allows us to preserve
high frequency detail for each pixel, whilst sharing the lower
frequency irradiance information. The influence of the omit-
ted fr (x4, wg, ®);) term and path throughput up to d can
be recovered by dividing R, by I,; which becomes useful
when deriving our final pixel radiance values after filter-
ing (Sect. 5.2). Each cluster stores aggregated statistics for
a subset of samples that are contiguous in the 1D luminance
domain of a given layer (Fig. 3).

ClusterStatistics{
float[3] radiance
float[3] irradiance
float min
float max
int numSamples

outlier

31 bits
1 bit

Along with R, and [, we also store the number of sam-
ples in the cluster and its luminance extents, used to add
samples and merge existing clusters during rendering. Clus-
ters for each layer are stored in ascending order of lumi-
nance to improve clustering and filtering performance. In
order to put an upper bound on our memory usage, we con-
strain the number of clusters stored for any one pixel layer to
eight. Such constraints are adequate for many scenes, since
we only need enough clusters to distinguish between sam-
ples leading to visible edges. This allows us to merge low
luminance groups without reducing the capability of our fil-
ter. The sign bit of the sample count indicates whether this
cluster has been rejected during our high intensity noise re-
moval.

neighbourhood of pixels in a 0.6
shadow penumbra (pixel at

(x, y) is the cyan point in 0.5
Fig. 4). The green and red plots
are offset on the y-axis for
clarity. Lighting discontinuities
form separate clusters, while
smooth regions are clustered .
together. We can see both a ).2
highly occluded pixel (blue

plot), and a pixel lit by all light 0.1
sources (red plot)

Luminance
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We rely upon two heuristics to update and maintain our
clusters; adding to existing clusters as samples are rendered
(creating new clusters if necessary) and merging clusters to
maintain a compact approximation of the integral. We ren-
der samples in batches of four per pixel to reduce cluster
operations while maintaining short frame updates. Cluster
merging allows us to refine our model in regions of the inte-
grand with rapid luminance changes, where discontinuities
are likely, and reducing storage costs for smooth regions.
From Fig. 3 we can observe that cluster gradients can in-
dicate the behaviour of the arriving illumination. Sudden
changes in luminance caused by occlusion or reflected dis-
continuities can be recognised as step-like changes in the
integral, whilst gradual changes from surface curvature or
light falloff appear as shallower gradients. If a new sample
lies within the bounds of an existing cluster or its distance
from the nearest cluster is within a percentage threshold u
of the sample then we increment the cluster’s sample count,
and add the sample’s R, and I, values. If it lies outside
the threshold, we assume that our current clusters do not
sufficiently represent the integral at that luminance and in-
sert a single element cluster. The parameter u dictates how
sensitive the overall framework is to changes in luminance,
and is the minimum percentage change in sample luminance
that our framework can differentiate between during filter-
ing. Our algorithm is not overly sensitive to w and values
between 0.1 and 1.0 (£10 % to £100 %) produce visibly
similar results for our test scenes. We use the same p value
of 0.5 for all images rendered in this paper. Increasing p im-
proves performance since clusters are merged more readily,
providing fewer clusters per pixel. Merging existing clus-
ters relies on a heuristic comparing the absolute luminance
difference (first derivative), and change in gradient (second
derivative) between neighbouring clusters:

Ca in —Crmax
Stnnt1) = (Cuy = Cug1,) - § + —rpn—tmen ©)

Nmax

where C 4 is the gradient of the cluster C:
CA = (Cmax - Cmin)/(cnum - 1)

To perform our merging we evaluate S, 1) for each neigh-
bouring cluster pair in the current layer, merging the clusters
where § is smallest in order to maintain a minimal cluster
set. We use a constant ¢ to weight the influence of gra-
dient change in our heuristic, and have found a value of
0.75 to behave well by experimentation. Favouring gradient
change provides a better balance between cluster merging
at extreme ends of the luminance range. For low intensity
samples the gradient change is comparatively small, so in-
creasing ¢ favours merging between lower energy clusters,
where discontinuities have less visible impact. For high lu-
minance samples the opposite is true, and high values of ¢
separate high intensity outliers and discontinuities. It would

be desirable to replace S and p by a perceptual metric, al-
lowing more optimal clustering.

4.2 High intensity sample rejection

Our high intensity noise removal approach builds on recent
density estimation methods by DeCoro et al. [3] and Pajot et
al. [10] improving on efficiency, robustness and suitability
in image-based filtering. In our approach, we filter irradi-
ance from individual path vertices, as opposed to the final
radiance contributions of a complete path. This allows us to
ignore texture changes as a source of variance, and by us-
ing per-vertex contributions we reject a lower percentage of
samples since we can isolate noise from multiple sources
(Fig. 4). Neither method operates well over low sample den-
sities, resulting in a large proportion of contributions being
removed across a region, providing few input samples for
an image based filter. We take the view that it is better to
filter contributions with a risk of artefacts, than to remove
radiance entirely from a region which would provide no in-
dication of the underlying materials or light transport. Al-
gorithm 1 outlines our noise removal strategy. By storing
clusters in ascending order of luminance we can process
high luminance clusters first and if accepted, enable remain-
ing non-zero clusters in the pixel since we know their lower
energies can be handled during the filtering stage. After an
initial pass of our algorithm, we make incremental updates
when new clusters are created by trivially finding Lm,x, and
only running the algorithm again when parameters change or
after a set number of frames. Since we use disjoint clusters

Fig. 4 Example of the layers in our framework. Top: Direct lighting
v = 1 (left) and single bounce indirect v = 2. Bottom: v > 3 (left) and
composite image v > 0 (right)
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Algorithm 1 High intensity noise removal. A full search is
often unnecessary, once an acceptable high luminance den-
sity is found (Lines 10 and 23)

1: d < global density threshold

2: Lpax <0 > Highest accepted luminance

3: for depth=0— 3 do

4 density <0

5: ¢ < #clusters — 1
6: while ¢ > 0 do
-
8
9

> Num. similar samples

C < Clusters|[c]
density <— density + Crum
: bool ¢t < density > d
10: if Chnin < Lax then ¢ < true

11: if !z then > Check pixel neighbours
12: for all pixels P in kernel do

13: for all clusters C), in P do

14: float v <— Overlap(C),, C)

15: if v > 0 then

16: density < density + Cp, ..

17: t <t & (density > d)

18: if 7 then goto 21

19: if  then

20: Lmax <Max(Lmax, Cmax)

21: while ¢ > 0 do

22: Clusters[c] < set as enabled

23: c<c—1

24: c<«c—1 > where @ is boolean OR

to represent the sample distribution, as opposed to a sparse
set of individual samples, we need to estimate the number of
similar samples in the clusters of neighbouring pixels. Our
parameter u is employed again to determine cluster similar-
ity. Treating clusters as sub-integrals of their respective pixel
luminance integrals, we compute the difference between the
two clusters as a proportion of the neighbouring pixel clus-
ter (denoted C ). In other words, the intersection of the areas
A, of the definite integral for the current cluster and Cp, as a
ratio of C:

A(CNA(C))

Overlap(C,, C) = AC)
p

)

where C’ is the current pixel cluster extended according to
(. Since we store a complete, compact representation of the
rendered samples, we can adjust our noise removal parame-
ters during or post-render, allowing us to clean up a final im-
age, without having to choose parameters in advance. This is
useful for removing residual noise in the estimate with mini-
mal bias. Additionally, since we do not rely on a high dimen-
sional domain, we can extend our kernel width o with min-
imal performance impact. This improves filtering for large
regions of sparse samples such as caustics, whilst still re-
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moving high intensity noise in regions corrupted with more
general noise.

5 Illumination preserving filter

Our method builds upon the principles of the cross-bilateral
filter, utilising depth and normal buffers to identify changes
in geometry and world space position, and a Gaussian filter
to smooth local pixel regions. Our method’s effectiveness
is independent of texture features, resulting in more usable
samples using the same kernel size. Discontinuities caused
by occlusion and high frequency BSDFs provide both strong
edges and high variance, and hence do not fit into a cross-
bilateral framework. We therefore make use of the discrete
Poisson probability distribution to provide additional filter
weights that detect high gradient changes not present in
range buffers. We operate over each depth layer individu-
ally, with attention to only the discontinuities present in the
current layer. First, this allows us to filter samples without
the corruption of noise from features in the remaining lay-
ers, meaning we have more usable samples in our input to
smooth noise. Second, our filtering is less restricted since
we only constrain our filter to discontinuities that affect the
current layer. This allows us to filter indirect lighting across
the shadow boundaries of direct lighting. Figure 4 is an ex-
ample of strong direct lighting boundaries diluted by noise
from indirect lighting, and where discontinuities in the indi-
rect lighting layers on the glossy spheres interfere with one
another despite both resulting in visible edges in the final
render.

5.1 Poisson based filter weights

We use the Poisson probability distribution as a basis to
compute luminance similarity weights for each contribut-
ing pixel ¢ in our filter kernel, centred around the target
pixel p that we are de-noising. In order to identify high fre-
quency changes in luminance across our pixel neighbour-
hood we combine the per-pixel clusters in our filter kernel
using our parameter (. once again as an indicator of lumi-
nance change. This process and our filtering is performed
per layer for each pixel in the image, and is outlined in Al-
gorithm 2. In the resulting set of kernel clusters, we store
the radiance R, irradiance / and number of samples N con-
tributed from each filter pixel individually in order to com-
pute our Poisson weights and final radiance. We first assume
that the light transport for all filter pixels and the target pixel
are the same. For each pixel c in our filter kernel, we take the
number of samples Ny contributed to the kernel cluster and
compute the expected probability of observing N, events;
the number of events empirically evaluated in the pixel p
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Algorithm 2 Incident radiance filtering
I: P<0 > Final radiance for pixel p
2: K Clusters < initialise kernel clusters from p
3: for all pixels c in filter kernel do

4 for all clusters C in ¢ do

5: for all clusters K in K Clusters do

6: b < Overlap(C, K) > Eq. (7)
7 if b then

8 addCto K

9: break
10: if !5 then

11: insert C into K Clusters

12: for all clusters K in K Clusters do

13: for all pixels c in filter kernel do

14: Whois(c) <= Poisson(K[N.], K[N,]) > Eq. (8)
15: W(c) <= Wpois(c) - We(c) - Wy (c) > Eq. (9)
16: Ié; <« radiance from K > Eq. (13)
17: R, < R,+ (RS /K[N:]-W(c)) > Eq.(14)

18: P« P+ R » > Add normalised radiance

that we are de-noising. Using the Poisson equation (Eq. (3))
we obtain a probability Wy;s for the filter pixel c:

Npe—Nc

Wpais () = ———— ®)
!

obtained from a precomputed lookup table. We normalise
these probabilities with respect to the maximum expected
probability (with A = k = N, from Eq. (3)), and interpret
them as similarity weightings for each pixel. Performing this
for each kernel cluster allows us to de-noise multiple over-
lapping illumination sources, glossy reflections and high and
low frequency features (see Fig. 5). Combined with our per
pixel geometry weights W), and Gaussian weights W, we
obtain the overall similarity for this cluster in each filter
pixel ¢ with respect to our target pixel:

Wic) = We(c) - Walc) - Wp(o) C))

In the majority of cases, pixel neighbourhoods exhibit
smooth irradiance, producing a single kernel cluster rep-
resentative of all samples across the neighbourhood, result-
ing in equal Poisson weights W5 across our filter pixel.
For more complex regions that include illumination edges
we obtain multiple kernel clusters, each one representing a
distinct band of luminance that are together responsible for
illumination edges. Each cluster is filtered independently so
that we can deal with overlapping illumination features from
multiple sources without interference.

Fig. 5 A green grid above a white plane lit by three coloured lights
of varying size. Top: Path traced reference. Second row: Path traced
input with 16 spp. Third row: Our approach filters noise effectively
handling overlapping sources, shadow gradients, and colours. Bottom
row: cross-bilateral filter

5.2 Pixel radiance computation

Computing our filter weights now allows us to evaluate a
weighted radiance contribution from each pixel ¢ using our
set of kernel clusters. In physically based rendering, re-
flectance at a surface f;(x;, ®;, w;) can be broken down into
a scalar BRDF coefficient f;(x;, ;, wg) and the texture de-
tail f;(i) for a surface location x;. Assume in our framework
we wish to obtain a radiance value for a single irradiance
contribution 7, (recall Eq. (5)). To compute R, the scalar
surface reflectance (abbreviated f;) of the BRDF and the
path throughput f; of any preceding specular vertices up to
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and including d need to be accounted for:

d
= H fi() - fe(n)) (10)

During path tracing, we account for f;(1) to f;(d) scaled
by the specular throughput f;(1) to fs(d — 1) for each pixel
using a set of texture buffers, one for each layer, accounting
for anti-aliasing of textures and detail maps for each pixel.
The unknown BRDF scalar coefficient can be obtained by
rearranging Eq. (10):

Ry

fs(d) = (11)
L - fid) - T1Z] fi(m)

As described in the previous section, each kernel cluster for
pixel p contains an individual R and I value from each con-
tributing pixel ¢, including values from p itself. We can cal-
culate a representation of f;(d) for all samples in the kernel
cluster from each pixel ¢ using Eq. (11) with R and [ and
the texture buffer for c:

5 d—1
A R

fi= ﬁ where f, = f,(d) - 1_[ Ji(n) (12)

! n=1

Using this approach, high frequency detail is encapsulated
for a pixel in f, and the lower frequency changes in BRDF
are represented by the ﬁ term calculated for each kernel
cluster. For glossy surfaces, f; can also change quickly, but
in such cases the irradiance filtering becomes more tightly
restricted by the Poisson derived filter weights. To remove
noise caused by insufficient sampling of the illumination,
we need to use the irradiance data I and fY from each con-
tributing pixel, while preserving the texture detail ftp for the
pixel being de-noised. We compute the final radiance con-
tributed to p by pixel ¢ for a kernel cluster as:

RO =1°ff- fF (13)

We then combine IQ; for each ¢ using the respective filter
weights to influence its contribution to the radiance of the
kernel cluster:

R,=Y RS -W(o) (14)

This provides a filtered contribution from each kernel clus-
ter, representing the contributions of a subset of samples in
the pixel integral at that luminance range. The total pixel ra-
diance is the sum of R p for each kernel cluster, normalised
using the sum of the sample counts in those clusters. To im-
prove performance, we can merge kernel clusters that have
uniform Poisson weights over the kernel reducing the loop
over K in Algorithm 2 to a single cross-bilateral filter over
the irradiance. This can improve performance for smooth re-
gions, without loss in quality.
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6 Results and discussion

We implement our method using a CPU-based renderer run-
ning on a 2.66 GHz Intel Core i7 920 with 8 Gb of RAM. We
trace a single path per pixel using next event estimation at
each vertex, making use of BSDF importance sampling and
applying Russian roulette after three bounces. To demon-
strate the generality of our parameters, we use the same set-
tings for all images in the paper. For our method we use o
= 11 (our filter kernel size) and set u = 0.5. Our high in-
tensity noise removal uses a low density threshold, remov-
ing samples with fewer than four similar samples within the
112 pixel neighbourhood. For our comparisons with cross-
bilateral filtering, we do not filter the direct lighting on spec-
ular or glossy surfaces, and use the same kernel size, texture,
depth and normal buffers for both methods. Figure 6 shows
a scene with complex realistic textures, pure specular and
glossy objects, using materials based on aluminium and cop-
per metals with varying degrees of roughness. We compare
our method with the cross-bilateral filter, with two sets of
parameters. The first is tweaked post-render to try and visi-
bly reduce noise, and the second uses a narrow range to try
and preserve maximum texture detail in the specular reflec-
tions and on visible diffuse surfaces. Relying on the incident
illumination means that using our method, this texture de-
tail is always preserved, regardless of the parameters used.
Our edge detection means we avoid overly blurring high fre-
quency features such as the overlapping direct shadows on
the floor, as well as the glossy reflections. We effectively re-
move noise from all areas of the image using a combination
of our high intensity noise removal and irradiance filtering.
The cross-bilateral filter fails to reduce noise across small
texture features, like the mortar in the brickwork, since the
kernel is too restricted by the texture range buffer to suitably
distribute the energy across the image.

Figure 7 shows the complex Ajax bust in a flooded Cor-
nell box. The face is partially occluded by the peak of
the hat, and geometry detail is only visible due to self-
shadowing. Our irradiance-aware Poisson weights minimise
blurring of the self-shadows providing more depth and clar-
ity to the beard and hair especially in regions lit indirectly.
We can also effectively handle transmission, with fewer arte-
facts even at low sample counts at which the path tracing
image is plagued with noise, and the texture detail is barely
visible. Our irradiance filtering ensures that we maximise
the use of the input samples in geometrically similar regions,
preserving the texture even through the water and handling
the sparse illumination better than the cross-bilateral filter.

Figure 5, shows our ability to handle multiple light
sources of varying intensities, colours and sizes. The bars
result in numerous overlapping shadows with hard to soft
boundaries. Since the cross-bilateral filter is ignorant of
shadow boundaries, it blurs across the image removing all
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Reference  Path Tracing Our Method Cross-Bilateral Cross-Bilateral Reference (20,224 samples)

(22 samples) (16 samples) (Smoothing  (Preserving
Noise) Texture)

Fig. 6 This scene contains multiple glossy materials and complex preserve texture detail, but not both and still cannot preserve small tex-

textures. Our method preserves all texture detail, and edges in reflec- ture features. The images for path tracing and our method are equal
tions and illumination. By adjusting the range sensitivity of the texture time comparisons (see Table 1) and the cross-bilateral filter uses the
weightings, the cross-bilateral filter can be tuned to smooth noise, or same input samples as our method

Reference (20,224 samples) Reference Path Tracing Our Method Cross-Bilateral

(21 samples) (16 samples)
Fig.7 Ajax bustin water, displaying complex geometry, transmission, the geometry, where the depth and normal buffers are not sufficient
caustics and self shadowing. Our method blends soft shadows whilst to avoid blurring shadow detail. The images for path tracing and our
preserving features on the face of the Ajax bust caused by self shad- method are equal time comparisons (see Table 1) and the cross-bilateral
owing. We better preserve texture detail on the water surface, and in filter uses the same input samples as our method
Table 1 Time spent in each stage of our algorithm with reference to and generation of the geometry and texture buffers. Cluster updates and
path tracing after running both algorithms for equal time. The path trac- noise removal are performed every four frames

ing stage for our method includes management of the sample clusters,

Scene Samples Path tracing Noise removal Filtering Total time

Glossy Spheres PT 22 4425 - - 442s
Our method 16 32.7s 0.51s 8.6s 41.8s

Ajax in Water PT 21 4525 - - 45.2s
Our method 16 35.1s 0.74 s 74s 432

@ Springer
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Table 2 Clusters and memory statistics for our results. Single denotes
the number of clusters representing just one sample, and the last col-
umn is the percentage of outlying samples. Memory use includes our
texture, depth and normal buffers (29 MB per image)

Scene Total clusters Single Memory Outliers
Spheres 6.19M 1.67TM 236 MB 0.109 %
Ajax 5.56M 1.91M 223 MB 0.274 %

shadow detail. We can preserve these edges, differentiating
between samples from different sources and effectively de-
noise the image without merging features.

7 Conclusions

We have described a cluster based filtering approach that can
reduce noise in Monte Carlo methods, whilst preserving im-
age discontinuities from both high and low variance sources.
Using a layered approach, we can separate irradiance con-
tributions according to their path length. This enables us to
de-noise each layer independently, oblivious to discontinu-
ities and noise in remaining layers and maximising the use
of the input samples. In the future we would like to address
the problem of finding optimal per-pixel and layer specific
kernel bandwidths, providing a good balance between noise,
bias and performance as rendering progresses. Further per-
formance and visual improvements could be gained by ap-
plying perception based metrics to produce a more optimal
clustering scheme.
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