
Vis Comput (2012) 28:959–969
DOI 10.1007/s00371-012-0726-8

O R I G I NA L A RT I C L E

Efficient computation of 3D Morse–Smale complexes
and persistent homology using discrete Morse theory

David Günther · Jan Reininghaus · Hubert Wagner ·
Ingrid Hotz

Published online: 26 May 2012
© Springer-Verlag 2012

Abstract We propose an efficient algorithm that computes
the Morse–Smale complex for 3D gray-scale images. This
complex allows for an efficient computation of persistent
homology since it is, in general, much smaller than the in-
put data but still contains all necessary information. Our
method improves a recently proposed algorithm to extract
the Morse–Smale complex in terms of memory consump-
tion and running time. It also allows for a parallel com-
putation of the complex. The computational complexity of
the Morse–Smale complex extraction solely depends on the
topological complexity of the input data. The persistence is
then computed using the Morse–Smale complex by apply-
ing an existing algorithm with a good practical running time.
We demonstrate that our method allows for the computation
of persistent homology for large data on commodity hard-
ware.

Keywords Persistent homology · Morse–Smale complex ·
Discrete Morse theory · Large data

D. Günther (�)
Computer Graphics, Max-Planck Institute for Informatics,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
e-mail: dguenther@mpi-inf.mpg.de

J. Reininghaus · I. Hotz
Zuse Institute Berlin, Takustraße 7, 14165 Berlin, Germany

J. Reininghaus
e-mail: reininghaus@zib.de

I. Hotz
e-mail: hotz@zib.de

H. Wagner
Institute of Computer Science, Jagiellonian University,
Lojasiewicza 6, 30-348 Krakow, Poland
e-mail: hubert.wagner@ii.uj.edu.pl

1 Introduction

It is clear that with the rapid increase of the amount of data
produced, availability of efficient tools to analyze these data
is of great importance. Computational topology [9], due to
its ability to extract essential features of the analyzed data,
is becoming a widely-used method. In particular, persis-
tent homology introduced by Edelsbrunner et al. [10] has
drawn much attention, since it robustly extracts the topolog-
ical structure of the data.

While algorithms with good practical running times have
been proposed [7], exact computation of persistence for
large 3D image data remains a challenging problem due to
huge memory requirements.

Forman’s discrete Morse theory [11, 12], which is the
theoretical foundation of our algorithm, allows us to reduce
data in a way which preserves the topological structure. This
representation of the data, called the Morse–Smale complex,
is much more compact but still contains all the necessary
topological information for persistent homology computa-
tion.

Inspired by the work of Robins et al. [25], we use dis-
crete Morse theory to compute persistent homology. Gün-
ther et al. [14] showed that the Morse–Smale complex can
be computed in O(cn) ⊆ O(n2), where n denotes the size
of the input data and c the number of its critical points. In
this paper, we propose an improved version of Algorithm 3
in [14]. The memory consumption of our improved algo-
rithm depends solely on the topological complexity of the
input data and it also allows for a parallel computation of
the Morse–Smale complex.

We present results of an efficient implementation, which
show that our algorithm is suitable for real-world appli-
cations. The method introduced in this paper allows for
memory-efficient computation of persistent homology of

mailto:dguenther@mpi-inf.mpg.de
mailto:reininghaus@zib.de
mailto:hotz@zib.de
mailto:hubert.wagner@ii.uj.edu.pl


960 D. Günther et al.

large 3D images. For example, we only need about 14 GB of
memory for a data set of size 1120 × 1131 × 1552, in con-
trast to the 500 GB that would be necessary using standard
algorithms.

The remaining part of this paper is organized as follows.
The related research is described in Sect. 2. In Sect. 3, the
theoretical background of persistence and discrete Morse
theory is introduced. In Sects. 4 and 5, we present our
method and show computational results. Finally, we sum-
marize the paper with a brief discussion in Sect. 6.

2 Related work

Persistence We will focus on previous work on comput-
ing persistence. For general applications of persistence,
see [9]; for application in the context of image data, see
[4, 23].

The standard, algebraic algorithm [9] for persistence has
cubic running time in the size of the input (i.e., image).
While a simplicial complex example was constructed by
Morozov [22], showing that this pessimistic execution can
actually occur, the behavior of this algorithm is only slightly
superlinear in practical situations [7].

When focusing on 0-dimensional homology, union-find
data structures can be used to compute persistence in time
O(nα(n)) [9], where α is the inverse of the Ackermann
functions and n the size of the input.

Milosavljevic et al. [21] showed that persistent homol-
ogy can be computed in matrix multiplication time O(nω)

where the currently best estimation of ω is 2.376. Chen
and Kerber [6] proposed a randomized algorithm to com-
pute only pairs with persistence above a chosen threshold.
Despite showing an improved theoretical complexity, it is
unclear whether these methods are better than the standard
persistence algorithm in practice.

A recent variation of the standard algebraic algorithm [9],
called killing, introduced by Chen and Kerber [7] signifi-
cantly reduces the amount of computations. This idea was
also used by Wagner et al. [27] to compute persistence for
n-dimensional images.

In general, purely algebraic methods suffer from high
memory requirements. In our approach, we alleviate this ef-
fect by reducing the size of data.

Discrete Morse theory Morse theory [20] is a mathemat-
ical theory which relates the topology of the domain of a
function with critical points of this function. For example,
every continuous function defined on a sphere has at least
one critical point. The set of critical points extracted should
therefore satisfy the constraints described by Morse theory.
Note that due to the global nature of topological consistency
it is difficult to enforce these constraints in local numerical

algorithms. Fortunately, Forman [11, 12] developed a dis-
crete version of Morse theory, which allows for algorithms
that provably result in a consistent set of critical points.

The first such algorithm was proposed by Lewiner et
al. [18, 19] who also conjectured that persistence could be
efficiently computed using discrete Morse theory. Recently,
several other such algorithms were suggested [3, 13, 24].
Gyulassi et al. [15] introduced a fast streaming approach to
extract the essential critical points of large data. The result-
ing complex is iteratively simplified to differentiate between
spurious and important critical points. However, this ap-
proach is not suited for exact persistence computation since
not all points in this complex can be paired.

Robins et al. [25] presented the first algorithm which is
provably correct in 3D in a sense that the computed criti-
cal points correspond one-to-one to the topological changes
in the sublevel sets of the image data. Günther et al. [14]
built on the method by Robins et al. and proposed an opti-
mal Morse–Smale complex extraction algorithm. In this pa-
per, we further improve the algorithm by Günther et al. to
enable also a memory-efficient parallel computation of the
complex.

3 Theoretical background

Complexes The input of the persistent homology computa-
tion is a 3D gray-scale image: an array Ω = m× k × � and a
function f :Ω → R. To capture the topological information,
we need to represent this as a complex, which is a decom-
position of a space into cells of different dimensions. See
Fig. 1a for an example. During the first part of computations,
we use cubical complexes [17], whose cells consist of ver-
tices, edges, squares, and full cubes. The Morse–Smale com-
plex we extract later belongs to the class of CW-complexes,
which is more general and its p-cells are only required to be
homeomorphic to p-spheres [16].

Fig. 1 Illustration of a cubical complex and its derived cell graph.
Image (a) shows the cells of a small uniform grid in an exploding view.
Image (b) shows the derived cell graph GC . The nodes representing the
0-, 1-, 2-, and 3-cells are shown as blue, green, yellow, and red spheres,
respectively



Mose–Smale complex and persistence computation 961

Boundary maps and matrices Cells of different dimen-
sions are connected by boundary relations. For example, the
boundary of an edge E = (a, b) are the vertices a and b. If
a (p − 1)-cell α is in the boundary of a p-cell β , we say α

is a proper face of β . Note that if a complex contains a cell
c, it must also contain all the faces of c.

For any p-dimensional cell c, its boundary, denoted by
∂pc, is the set of its (p − 1)-dimensional faces. We now de-
fine this relation algebraically. Let a p-chain be a formal
sum of p-cells with Z2 coefficients (other groups of coef-
ficients can be used, but this one is the most suitable for
our task). This enables us to extend the boundary operator
linearly to p-chains. For any p-chain c = ∑

aici , we have
∂pc = ∑

ai∂pci . The p-chains, together with (modulo 2)
addition, form a group of p-chains, denoted by Cp .

If we specify a unique index for each cell, a p-chain
corresponds to a vector in Z

np

2 , where np is the number
of p-dimensional cells in the complex. The p-dimensional
boundary operator ∂p can be written as an np ×np−1 binary
matrix (also denoted ∂p) whose columns are the boundaries
of the p-cells.

The above is summarized by the chain complex, which
can be viewed as an algebraic representation of a com-
plex C [11]

C : C3
∂3−→ C2

∂2−→ C1
∂1−→ C0. (1)

Filtration For a given complex K , a filtration is a nested
sequence of complexes: ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

[9, 10]. In our case, it is induced by the input data f :Ω → R

as follows. First, the values given by f on the 0-cells of K ,
are extended to all cells of K by a so-called lower-star fil-
tration: each cell is assigned the maximum function value
of the vertices it contains. The filtration of K with re-
spect to f is then defined by the sublevel complexes Kt =
f −1(−∞, t]. Imagine that we start with an empty complex
and at each step of the filtration one or more cells are added.

Persistence First, we will give a basic intuition behind ho-
mology and persistent homology. For this paper, we can say
that homology detects topological features: connected com-
ponents, tunnels, and voids for a fixed thresholding (sublevel
set) of a gray-scale image. Persistent homology, in turn, de-
scribes the evolution of topological features looking at con-
secutive thresholds.

More precisely, given a complex K and a filtering func-
tion f :K → R, persistent homology studies homological
changes of the sublevel complexes, Kt = f −1(−∞, t]. The
algorithm captures the birth and death times of homology
classes of the sublevel complexes, as the threshold t grows
from −∞ to +∞. By birth, we mean that a homology fea-
ture comes into being; by death, we mean it either becomes
trivial or becomes identical to some other class born earlier.

Fig. 2 Homological persistence of a 1D function f (x). The persis-
tence pairs consist of (x1, x4) and (x3, x2). The persistence of x1 and
x4 is therefore given by f (x4)−f (x1), while the persistence of x2 and
x3 is given by f (x2) − f (x3)

See Fig. 2 for an example. The persistence, or lifetime of
a class, is the difference between the death and birth times.
Homology classes with larger persistence reveal information
about the global structure of the space K , described by the
function f .

The overall output of the computations is a list of per-
sistence pairs of the form (birth, death). This information
can be visualized in different ways. One well-accepted idea
is the persistence diagram [8], which is a set of points in
a two-dimensional plane, each corresponding to a persistent
homology class. The coordinates of such a point are the birth
and death time of the related class.

An important justification for the usage of persistence is
the stability theorem. Cohen-Steiner et al. [8] proved that
for any two filtering functions f and g, the difference of
their persistence is always upper bounded by the L∞ norm
of their difference:

‖f − g‖∞ := max
x∈K

∣
∣f (x) − g(x)

∣
∣. (2)

This enables robust estimation of how persistence is af-
fected by perturbation of the input (e.g., noise). This guar-
antees that persistence can be used as a signature. Whenever
two persistence outputs are different, we know that the func-
tions are definitely different.

Discrete Morse theory In the following, we assume that a
three-dimensional cubical complex C is given. We use the
lower-star filtration defined above to extend the input func-
tion to all cells. The cell graph GC = (N,E) encodes the
combinatorial information contained in C. The nodes N of
the graph consist of the cells of the complex C and each
node up is labeled with the dimension p of the cell it rep-
resents. The edges E of the graph encode the neighborhood
relation of the cells in C. If the cell up is in the boundary
of the cell wp+1, then ep = {up,wp+1} ∈ E. We label each
edge with the dimension of its higher dimensional node. An



962 D. Günther et al.

Fig. 3 Basic definitions of discrete Morse theory: (a) the cell graph
GC , the node labels indicate the dimension of the represented cells;
(b) a combinatorial gradient field V defined on GC , the edges con-
tained in V are depicted by solid lines, the unmatched nodes—the crit-
ical nodes—are shown as black spheres; (c) a combinatorial streamline
alternating between V and its complement; (d) two 1-separatrices of
V (blue and green) emanating at a 1-saddle (yellow) and ending in a
minimum (blue)

illustration of a cell graph is shown in Fig. 1b. Note that the
node indices, their adjacency, and their geometric embed-
ding in R

3 are given implicitly by the regular grid structure
of Ω .

A subset of pairwise nonadjacent edges is called a match-
ing M ⊂ E. Using these definitions, a combinatorial gradi-
ent field V on a regular cell complex C can be defined as a
certain acyclic matching of GC [5]. The set of combinato-
rial gradient vector fields on C is given by the set of these
matchings, i.e., the set of Morse matchings Mφ of the cell
graph GC . An illustration of a 2D Morse matching is shown
in Fig. 3b.

We now define the extremal structures of a combinato-
rial gradient vector field V in GC . The unmatched nodes are
called critical nodes. If up is a critical node, we say that it
has index p. A critical node of index p is called minimum
(p = 0), 1-saddle (p = 1), 2-saddle (p = 2), or maximum
(p = 3). A combinatorial p-streamline is a path in the graph
whose edges are of dimension p and alternate between
V ⊂ E and its complement E \ V . In a Morse matching,
there are no closed p-streamlines. This defines the acyclic
constraint for Morse matchings. A p-streamline connecting
two critical nodes is called a p-separatrix. A p-separation
surface is given by all combinatorial 2-streamlines that em-
anate from a critical point of index p. An illustration of ex-
tremal structures is shown in Fig. 3.

Using the above definitions, we can now define the chain
complex associated to the Morse–Smale complex CV with
coefficients in Z2

CV : C3
∂3−→ C2

∂2−→ C1
∂1−→ C0. (3)

The Morse–Smale complex CV is induced by a given com-
binatorial gradient field V ⊂ E in a cell graph GC = (N,E).
The chain groups C� are generated by the critical nodes of

V with index �. The boundary maps ∂� are defined by the
combinatorial streamlines of V : if u� ∈ C� is connected to
w�−1 ∈ C�−1 by an odd number of combinatorial stream-
lines, then w�−1 is in the boundary of u�. Considering only
pairs (w�−1, u�) with an odd number of connections reduces
the general formula by Forman [11] to a simplified version
for Z2 coefficients.

Forman proves that the homology of C is always iso-
morphic to the homology of CV [11]. If the critical nodes
contained in V correspond one-to-one to the topological
changes in the sublevel complexes, the persistent homol-
ogy of C therefore coincides with the persistent homology
of CV [25].

Since, in practice, CV is a lot smaller than C, we can
use discrete Morse theory to devise a memory-efficient al-
gorithm for persistent homology.

4 Method

In this section, we describe our overall algorithmic pipeline
to compute persistent homology in a memory efficient man-
ner. The input of the pipeline consists of a 3D gray-scale
image. It is represented by a 3D array Ω = m × k × � and
a function f : Ω → R. To compute persistent homology, we
initially represent Ω by the cubical complex C.

The pipeline consists of three steps. In Sect. 4.1, we de-
scribe the construction of the discrete gradient field V as-
sociated to C and f . In Sect. 4.2, we propose an improved
algorithm to extract the Morse–Smale complex CV defined
by V . For completeness, we also describe the computation
of the persistent homology of CV in Sect. 4.3. We conclude
this section with a brief analysis of the computational com-
plexity, memory consumption, and some implementational
details in Sects. 4.4 and 4.5.

4.1 Discrete gradient field

To compute the discrete gradient vector field V , we use
the algorithm ProcessLowerStar [25]. The basic idea of this
algorithm is to apply simple homotopic expansions in the
lower star of each 0-node. The algorithm results in a combi-
natorial gradient field V whose critical nodes coincide with
the changes of the topology of the sub-level complexes of C.
For more algorithmic details and the proof, we refer the in-
terested reader to [25].

4.2 Morse–Smale complex extraction

We now describe how we compute the chain complex as-
sociated to the Morse–Smale complex (3) induced by the
combinatorial gradient field V ⊂ E.



Mose–Smale complex and persistence computation 963

Algorithm 1 ComputeBoundary(GC,V, j, �)

Input: GC = (N,E),V ⊂ E,j ∈ {0,1}, � ∈ {1,2,3}
Output: Binary matrix ∂�

1: S ← GetAllManifolds(GC,V, �, j)

2: I ← GetIntersection(GC,V,S, �, j)

3: for all cp ∈ C�−j do
4: Cc ← CountPaths(GC,V, I, cp, �)

5: for all wk ∈ Cc do
6: if k < p then
7: ∂�(c

p,wk) ← ∂�(c
p,wk) + 1

8: else
9: ∂�(w

k, cp) ← ∂�(w
k, cp) + 1

While the chain groups C� can be easily extracted from N

by collecting the nodes not covered by V , efficient compu-
tation of ∂� is challenging. The algorithm ComputeBound-
aryB in [14] computes ∂� by counting the number of paths
between pairs of critical nodes. However, manifolds ema-
nating at different critical points can merge. This yields a
partial multiple traversal of manifolds during a breadth-first
search.

We now present our improved method to compute ∂� with
a worst case complexity of O(n2). The main idea of Al-
gorithm 1 is the following. We first collect all critical (un-
matched) nodes in V . For each of these nodes, we then in-
tegrate the corresponding manifolds to collect the critical
nodes in the respective (co-)boundaries but avoid multiple
traversals of the manifolds. Since the connections between
critical points are defined as intersection of their manifolds,
we apply a backintegration for each of the (co-)boundary
nodes restricted to the already integrated manifold. This re-
sults in a set of edges describing all connections between
critical nodes.

The challenging task is now to check whether a pair of
critical nodes is connected by an odd number of separatrices.
If this is the case, these nodes are connected in the sense
of Z2 and are inserted in the boundary matrix. To count the
number of connections, we compute the multiplicity of paths
from one critical node to another critical node but restricted
to the intersection of the corresponding manifolds.

The input of Algorithm 1 consists of the cell graph
GC = (N,E), a discrete gradient field V ⊂ E, a flag j , and
the index � of the resulting boundary map ∂�. If j = 0, the
algorithm computes ∂� by finding the boundaries of the el-
ements contained in C�. If j = 1, the algorithm computes
∂� by finding the co-boundaries of the elements contained in
C�−1. Note that both cases result in the same ∂�, the choice
of j only affects the running time; see Sect. 4.5.

For notational simplicity in the following explanation, we
only describe the algorithms in detail for j = 0—we con-
sider the boundary of c� ∈ C�. However, all algorithms are
designed to work also for j = 1.

Algorithm 2 GetAllManifolds(GC,V, �, j)

Input: GC = (N,E),V ⊂ E,� ∈ {1,2,3}
Output: S ⊂ E

1: E� ← {ek ∈ E : k = �}
2: S ← ∅
3: for all cp ∈ C�−j do
4: E� ← E� \ S

5: S ← S ∪ AlternatingRestrictedBFS(GC,V,E�, c
p)

Algorithm 3 AlternatingRestrictedBFS(GC,V,R, cp)

Input: GC = (N,E),V ⊂ E,R ⊂ E,cp ∈ N

Output: T ⊂ R ⊂ E

1: T ← ∅
2: Q.push({cp, false})
3: while Q �= ∅ do
4: {up,flag} ← Q.pop()

5: W ← AlternatingEdges(GC,V,up,flag)

6: W ← (W ∩ R) \ T

7: for all {up,wk} ∈ W do
8: T ← T ∪ {up,wk}
9: Q.push({wk,¬flag})

Algorithm 4 GetIntersection(GC,V,S, �, j)

Input: GC = (N,E),V ⊂ E,S ⊂ E,
� ∈ {1,2,3}, j ∈ {0,1}

Output: I ⊂ E

1: CS ← {u�−1+j ∈ N : ∃{u�−1+j ,wk} ∈ S} ∩ C�−1+j

2: I ← ∅
3: for all cp ∈ CS do
4: S ← S \ I

5: I ← I ∪ AlternatingRestrictedBFS(GC,V,S, cp)

We first compute the edges S ⊂ E that are covered by the
combinatorial �-streamlines emanating from all elements of
C� (Line 1) using Algorithms 2, 3, and 7. Note that each
edge is traversed only once. All already visited edges are re-
moved from the set of admissible edges (line 4, Algorithm 2
and line 6, Algorithm 3).

We then collect all critical nodes CS ⊂ C�−1 that are cov-
ered by S. These nodes are the possible boundary nodes. To
compute the boundary of an individual c�, we need to count
the number of combinatorial streamlines connecting c� with
c�−1 ∈ CS .

To do this efficiently, we first compute the set of edges
I ⊂ S of all combinatorial streamlines connecting the ele-
ments of C� with CS (line 2) using Algorithms 4, 3, and 7.
Each edge is again only traversed once.

All edges I ⊂ E between the elements of C� and CS are
now computed. In the following we need to count the num-
ber of paths in I that connect c�−1 ∈ CS to c� ∈ C�.



964 D. Günther et al.

Algorithm 5 CountPaths(GC,V, I, cp, �)

Input: GC = (N,E),V ⊂ E,I ⊂ E,cp ∈ N

Output: Cc ⊂ N

1: NS ← GetManifoldNodes(GC,V, I, cp, �)

2: CV ← {up ∈ N : �{up,wk} ∈ V }
3: P ← ∅
4: L ← {cp}
5: Q.push({cp, false})
6: while Q �= ∅ do
7: {up,flag} ← Q.pop()

8: P ← P ∪ {up}
9: W ← AlternatingEdges(GC,V,up,flag)

10: W ← W ∩ I

11: for all {up,wk} ∈ W do
12: if wk ∈ NS then
13: if up ∈ L then
14: L ← L	{wk}
15: Z ← AlternatingEdges(GC,V,wk,flag)

16: Z ← Z ∩ I

17: NZ ← {zq ∈ N : ∃{zq,wk} ∈ Z}
18: if NZ ⊂ P then
19: Q.push({wk,¬flag})
20: Cc ← L ∩ CV \ cp

Algorithm 6 GetManifoldNodes(GC,V, I, cp, �)

Input: GC = (N,E),V ⊂ E,cp ∈ N,� ∈ {1,2,3}
Output: NS ⊂ N

1: E� ← {ek ∈ E : k = �} ∩ I

2: S ← AlternatingRestrictedBFS(GC,V,E�, c
p)

3: NS ← ∅
4: for all {up,wk} ∈ S do
5: if up /∈ NS then
6: NS ← NS ∪ {up}
7: if wk /∈ NS then
8: NS ← NS ∪ {wk}

This is done in line 4 using a simple graph algorithm
shown in Algorithm 5. Since I represents all paths between
critical nodes, we need to extract the paths for a given pair
(c�−1, c�). The nodes covered by these paths then restrict
the counting of the paths. This is obtained in line 1 using
Algorithm 6. Since we are only interested in the Morse–
Smale complex with coefficients in Z2, it suffices to count
the number of paths modulo 2. This is obtained by taking
the symmetric difference 	 in line 14 in Algorithm 5.

4.3 Persistence

To compute persistence, we use the standard algebraic algo-
rithm [9] with a modification by Chen and Kerber [7]. This
algorithm operates on a boundary matrix, ∂�, of the complex

Algorithm 7 AlternatingEdges(GC,V,up,flag)

Input: GC = (N,E),V ⊂ E,up ∈ N,flag ∈ {false, true}
Output: W ⊂ E

1: if flag = true then
2: W ← {{up,wk} ∈ E : {up,wk} ∈ V }
3: else
4: W ← {{up,wk} ∈ E : {up,wk} ∈ E \ V }

C, representing the input data. A reduced matrix is com-
puted, from which the list of persistent pairs, as defined in
Sect. 3, can be easily read. We refer the reader to [7] for
more details.

In contrast to previous work [7, 27], we apply the ma-
trix reduction algorithm to the Morse–Smale complex CV

instead of the initial complex C. Since CV is much smaller
than C in typical situations, storing the boundary matrices
consumes significantly less memory (see Table 1).

4.4 Computational complexity

We now give a brief analysis of the computational complex-
ity of our method. We denote the number of vertices of C by
n and the number of critical nodes in a combinatorial gra-
dient field by c. Note that the pseudocode shown in the al-
gorithms in this section has been optimized for compactness
and clarity instead of a best computational complexity. In the
following analysis, we consider an optimal implementation
of these algorithms. The realization of such an implementa-
tion from the pseudo code only poses some minor technical
difficulties.

The complexity for the construction of the combinato-
rial gradient field using the algorithm proposed in [25] is
O(n)—for each node of index 0 we only work on its lower
star which has a constant size in the case of cubical com-
plexes.

Analyzing the complexity of the Morse–Smale complex
extraction described in Algorithm 1 is more intricate.

We start with the essential Algorithm 3. Due to line 6,
the union in line 8 is disjoint, which implies that the com-
plexity of Algorithm 3 is O(|T |). Since Algorithm 2 only
calls Algorithm 3, its complexity is O(|S|). The complexity
of Algorithm 4 is O(|I |), since due to line 4, the union in
line 5 is disjoint.

Finally, we need to consider the complexity of the loop
in Algorithm 1. The loop in line 3 is executed O(c) times.
The complexity of its body is given by the complexity of
Algorithm 5. In line 1 of Algorithm 5 Algorithm 6 is called,
which is a direct application of Algorithm 3. Each node is
uniquely inserted and its complexity is therefore O(|NS |) ⊆
O(|I |). The complexity of the body of the while loop in line
6 of Algorithm 5 is constant. It therefore suffices to count
the number of times that line 19 is executed. The node wk



Mose–Smale complex and persistence computation 965

Table 1 Running times and memory consumption for 3D images of
different size and topological complexity. The second column shows
the topological properties of the data sets. The third column shows
the total memory consumption of our method compared to Wagner et

al. [27] using 1 and 24 logical cores. The total running time for the
construction of the initial gradient field, the boundary matrix and the
matrix reduction using 1 and 24 logical cores are compared to the times
of Wagner et al. [27] in the fourth column

Data Properties Memory (MB) Time (sec)

Dimensions
∑ |C�| |I | [27] 1× 24× [27] 1× 24×

Silicium 98 × 34 × 34 1,109 13,882 30 1 1 5 1 <1

Fuel 64 × 64 × 64 667 4,982 82 1 1 1 3 <1

Neghip 64 × 64 × 64 5,709 47,025 82 2 3 2 3 <1

Hydrogen 128 × 128 × 128 24,257 168,626 538 17 19 37 21 2

Engine 256 × 256 × 128 1,035,127 7,331,167 2,127 296 236 82 141 16

X-Mas present 246 × 246 × 221 4,836,087 21,201,265 3,112 727 901 16,007 444 153

Aneurysm 256 × 256 × 256 75,485 1,308,765 4,250 135 146 211 170 14

Bonsai 256 × 256 × 256 344,277 5,886,696 4,250 225 273 175 219 22

Foot 256 × 256 × 256 1,658,617 12,162,264 4,250 405 505 171 270 30

Noise 256 × 256 × 256 11,761,873 42,389,191 * 1,517 1,866 * 619 101

Supine 512 × 512 × 426 27,440,949 142,886,726 26,133 4,701 5,876 1,496 2,369 339

Prone 512 × 512 × 463 28,976,885 152,326,748 28,406 5,009 6,262 2,180 2,525 354

X-Mas tree 512 × 499 × 512 50,043,123 215,181,923 * 7,392 9,162 * 3,374 562

Molecule 1,120 × 1131 × 1552 1,766,615 40,178,429 * 13,837 14,168 * 18,134 1,504

is only inserted into Q if it belongs to the local intersection
(line 12) and all neighboring nodes zq ∈ NZ have already
been processed (lines 8 and 18). Since wk can only be in-
serted by a neighboring node zq , it can therefore be inserted
only once. The complexity of Algorithm 5 is hence O(|I |),
since only nodes contained in I can enter the queue at all.

Note that there holds O(|I |) ⊆ O(|S|) ⊆ O(n). The over-
all complexity of Algorithm 1 is hence O(|S|+|I |+c|I |) ⊆
O(cn). Since there is a lower bound on the worst-case com-
plexity for the Morse–Smale complex extraction problem in
3D of O(n2) [25], our proposed algorithm is optimal.

The choice of j does not affect the overall computational
complexity—it only affects the practical running time of the
algorithm; see Sect. 4.5.

The computational complexity of the matrix reduction al-
gorithm [7] applied to the Morse complex with c critical
cells is O(c3).

The overall complexity for our method is O(cn + c3).

4.5 Implementational details

Running time To compute the combinatorial gradient field,
the cell graph is decomposed into lower stars of the 0-nodes.
Since this is a disjoint decomposition, each lower star can
be processed in parallel. Also, the boundaries of the critical
points are independent of each other, which allows a parallel
computation. We process Algorithms 1, 2, and 4 in parallel
using OpenMP.

The flag j of Algorithm 1 influences solely its run-
ning time. In 3D, the combinatorial 1-streamlines can only

merge, while the 3-streamlines can only split. As shown
in [25], the computation of the co-boundaries of all 0-nodes
(j = 1, � = 1) has thereby only a complexity of O(n). The
same applies to the boundaries of the 3-nodes (j = 0, � = 3).
In contrast, the computation of ∂2 has a worst case com-
plexity of O(n2), regardless of j . The choice of j thereby
does not affect the overall complexity of Algorithm 1. The
practical running time, however, depends on j . For most
inputs, the best choice is (j = 0, � = 1), (j = 0, � = 2),
(j = 1, � = 3), since the computation of the (co) boundaries
of the 2- and 1-nodes only amounts to a line integration, as
in this setting, |W | ≤ 1 in Algorithm 3, line 5.

Memory requirements We need only to compute the
boundary matrices ∂� of the Morse–Smale complex CV ,
which does not require much memory. On the other hand,
explicit representation of the initial cubical complex C

would require enormous amounts of memory. We therefore
represent C only implicitly, using the regular structure in-
duced by the grid [13, 27]. The adjacency information rep-
resented in the cell graph GC = (N,E) is always computed
on-the-fly using index calculations. Since we enumerate the
nodes N and the edges E without gaps, we can represent
the combinatorial gradient field V simply by an array of bits
of length |E|. The sets used in the algorithms depicted in
this section can also be represented using such Boolean ar-
rays. However, Boolean arrays of size |E| would result in
a huge memory overhead using a parallel computation (see
Table 1). Since we only work on the intersection of man-
ifolds, arrays of size O(|I |) are sufficient. A look-up map



966 D. Günther et al.

Fig. 4 Comparison of running times for an analytic function. (a) The
gray and yellow surfaces depict two different isolevels of the analytic
function g. (b) The circle and cross markers show the running times
to construct the boundary matrix over different resolutions for the al-

gorithms in [25] and Algorithm 1, respectively. The semisolid line de-
picts a least-square fitting of a linear function for the cross markers.
The dotted line depicts a fitting of a quadratic function for the circle
markers

translates global into local indices. This allows for efficient
set operations.

If the data values on the 0-cells of the complex are de-
fined by 32-bit single precision floats, then the total mem-
ory overhead factor of our method is about 3 in our current
implementation.

5 Results

In the following, we present some examples to illustrate our
method. All experiments were performed on a machine with
two Intel Xeon E5645 CPUs, which provide 12 physical and
24 logical cores, and 24 GB RAM.

Table 1 shows the running time and memory consump-
tion for different 3D data sets provided by [1, 2, 26]. We
measured the total memory usage of our method with one
and 24 cores. We also included the memory consumption of
a persistence method [27] working on the boundary matrices
of the initial cubical complex.

In the last column of Table 1, we compared the total run-
ning times of our method with the method proposed by Wag-
ner et al. [27]. Note that a further comparison to other tech-
niques is also given in [27].

The total memory consumption of our method is up to
a factor 30 less than using a standard persistence approach.
In practice, the Morse–Smale complex CV is much smaller
than the cubical complex C. This enables the persistence
computation of large data. However, the memory consump-
tion compared to [14] is in most of the examples slightly
larger. This results from the usage of a translation map.
Its size depends on the size of the intersection. The mem-
ory overhead for the parallel computation, however, is ne-
glectable.

The overall running time using a single core is of similar
order as the timings as in [27]. Using a parallel computa-
tion, we observe a speedup factor up to ten in our current
implementation.

To investigate the behavior of Algorithm 1 for noisy data,
we sampled pure uniform noise in the range of [0,1] on a
uniform 2563 grid. While the cell complex consists of about
108 nodes, its gradient field contains only about 107 criti-
cal points. Even in the case of pure noise, the majority of
nodes in G are noncritical nodes, which yields a reasonable
memory consumption of a factor 2 less than a standard per-
sistence approach. Due to the large number of critical points
and the absence of large scale structures, the corresponding
separatrices are relatively small and well distributed. Hence,
they can be efficiently integrated. The timings as well as the
memory consumption are also given in Table 1.

Figure 4 shows the running times of the Morse–Smale
complex extraction step using the existing algorithm by
Robins et al. [25] as well as of Algorithm 1. The data set is
given by sampling an analytic function g on a uniform grid
of increasing resolution and adding a small amount of uni-
form noise in the range of [−0.5,0.5] to the samples. The al-
gorithm in [25] scales quadratically with the number of ver-
tices n in the complex. In contrast, our method scales only
linearly. The individual running times using a single core of
Algorithm 1 applied to the analytic function g sampled on
a uniform 963 grid are: (Sect. 4.1) 10 sec, (Sect. 4.2) 25 sec
and (Sect. 4.3) 0.1 sec. In contrast, the algorithm in [25]
needs (Sect. 4.2) 486 seconds.

The reason for this behavior stems from the structure of
the data. The function g contains some large scale struc-
tures. Adding noise to it results in many critical points and
the combinatorial 2-streamlines often merge and split. While
this property dramatically increases the practical running



Mose–Smale complex and persistence computation 967

Fig. 5 Distance field of a molecule. An isosurface of a distance field,
computed from a molecule, as gray transparent surface is shown. The
maxima and the 2-saddles are shown as red and yellow spheres, respec-
tively. Each sphere is scaled by its persistence

time of the algorithm by Robins et al. [25], our Algorithm 1
is not affected by this perturbation of the data.

We applied our method to a distance field, computed
from a Chaperone protein, shown in Fig. 5. The objective
is the extraction of the maxima and 2-saddles. While the
maxima represent the points with the greatest distance to
the atoms, the 2-saddles correspond to the narrow points of
the field. These points define the minimal size of an atom
to enter the molecule from the outside. The data set is of di-
mension 1120×1131×1552 and contains 1,766,615 critical
points. A standard persistence computation would theoreti-
cally require about 500 GB memory. Our approach, in con-
trast, only requires about 14 GB even using multiple cores,
and can thereby be applied on commodity hardware. The to-
tal running time as well as the memory consumption for this
example are shown in the last row of Table 1.

6 Conclusion and future work

We presented an improvement of the algorithm proposed
in [14] to extract the Morse–Smale complex from a given
combinatorial gradient field induced by a 3D gray scale im-
age. This allows for a parallel computation of the Morse–
Smale complex as well as a memory-efficient persistent ho-
mology computation. As shown in Sects. 4 and 5, our algo-
rithm combines many useful properties:

1. The algorithm for the Morse–Smale complex extrac-
tion is optimal with a worst-case complexity of
O(cn) ⊂ O(n2).

2. The overall complexity for the persistence computation
is O(cn + c3).

3. The Morse–Smale complex computation requires signif-
icantly less memory and can be done in parallel.

There are some limitations of our approach:

1. Extending our techniques to more general inputs like
simplicial complexes is possible, but would result in high
memory-usage—we heavily exploit the compact repre-
sentation of the initial, cubical complex.

2. Our current method is limited to three dimensions.

Despite these drawbacks, we believe that our method en-
ables the application of persistent homology in new fields.
Our current implementation can already be used to analyze
very large, complex datasets.

A fundamental question, which is still an open problem
in the homological persistence literature, is the relation of
the topological complexity of a given input data and the
persistence computation times. Since matrix reduction is a
global operation, the structure of the underlying Morse–
Smale complex is crucial. This structure also depends on
the imaging process and the data format. For instance, the
aneurysm and bonsai data are given as 8-bit integer while
the prone and supine data are 16-bit integer CT scans. This
may also contribute to the different timings shown in Ta-
ble 1.

Acknowledgements This work was supported by the MPI of Bio-
chemistry, the MPI for Informatics, the DFG Emmy-Noether research
program, and Foundation for Polish Science Geometry and Topology
in Physical Models program. We thank Daniel Baum for providing the
molecule data set. We also thank Herbert Edelsbrunner and Chao Chen
for many fruitful discussions.

Appendix

Let Ω = [−2,2]3. The function g:Ω → R is given by

g(x, y, z) = 1 sin(1x) sin(2y) sin(3 z)

+ 2 sin(2x) sin(1y) sin(3 z)

+ 3 sin(3x) sin(2y) sin(1 z)

+ 4 sin(1x) sin(3y) sin(2 z)

+ 5 sin(2x) sin(3y) sin(1 z)

+ 6 sin(3x) sin(1y) sin(2 z)

+ 1 cos(3x) cos(1y) cos(2 z)

+ 2 cos(2x) cos(1y) cos(3 z)

+ 3 cos(1x) cos(2y) cos(3 z)

+ 4 cos(3x) cos(2y) cos(1 z)

+ 5 cos(2x) cos(3y) cos(1 z)

+ 6 cos(1x) cos(3y) cos(2 z).



968 D. Günther et al.

References

1. The Institute of Computer Graphics and Algorithms. http://www.
cg.tuwien.ac.at/research/vis/datasets/

2. Volvis: Voxel Data Repository (2010). http://www.volvis.org/
3. Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simpli-

fication of discrete functions on surfaces. Discrete & Computa-
tional Geometry 47(2), 1–31

4. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness
and persistence for images. Proc. - IEEE Conf. Inf. Vis. 16, 1251–
1260 (2010)

5. Chari, M.K.: On discrete Morse functions and combinatorial de-
compositions. Discrete Math. 217(1–3), 101–113 (2000)

6. Chen, C., Kerber, M.: An output-sensitive algorithm for persis-
tent homology. In: Proceedings of the 27th Annual ACM Sym-
posium on Computational Geometry (SoCG ’11), pp. 207–216.
ACM, New York (2011)

7. Chen, C., Kerber, M.: Persistent homology computation with a
twist. In: 27th European Workshop on Comp. Geometry (EuroCG
2011) (2011)

8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persis-
tence diagrams. Discrete Comput. Geom. 37, 103–120 (2007)

9. Edelsbrunner, H., Harer, J.: Computational Topology. An Intro-
duction. American Mathematical Society (2010)

10. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological per-
sistence and simplification. Discrete Comput. Geom. 28(4), 511–
533 (2002)

11. Forman, R.: Morse theory for cell complexes. Adv. Math. 134,
90–145 (1998)

12. Forman, R.: A user’s guide to discrete Morse theory. In: Seminaire
Lotharingien de Combinatoire, vol. B48c, pp. 1–35 (2002)

13. Günther, D., Reininghaus, J., Prohaska, S., Weinkauf, T., Hege,
H.C.: Efficient computation of a hierarchy of discrete 3d gradient
vector fields. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.)
Topological Methods in Data Analysis and Visualization. II. Math-
ematics and Visualization (TopoInVis 2011), Zürich, Switzerland,
April 4–6, pp. 15–30. Springer, Berlin (2012)

14. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Memory ef-
ficient computation of persistent homology for 3D image data
using discrete Morse theory. In: Lewiner, T., Torres, R. (eds.)
Proceedings of Conference on Graphics, Patterns and Images
(SIBGRAPI), Maceió, Los Alamitos, vol. 24, pp. 25–32. IEEE
Press, New York (2011)

15. Gyulassy, A., Bremer, P.T., Hamann, B., Pascucci, V.: A practi-
cal approach to Morse–Smale complex computation: scalability
and generality. IEEE Trans. Vis. Comput. Graph. 14, 1619–1626
(2008)

16. Hatcher, A.: Algebraic Topology. Cambridge University Press,
Cambridge (2002)

17. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Ho-
mology. Applied Math. Sciences, vol. 157. Springer, Berlin
(2004)

18. Lewiner, T.: Geometric discrete Morse complexes. Ph.D. thesis,
Dept. of Mathematics, PUC-Rio (2005)

19. Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse func-
tions for 2-manifolds. Comput. Geom. 26(3), 221–233 (2003)

20. Milnor, J.: Topology from the Differentiable Viewpoint. Univer-
sity of Virginia Press, Charlottesville (1965)

21. Milosavljević, N., Morozov, D., Skraba, P.: Zigzag persistent ho-
mology in matrix multiplication time. In: Proceedings of the 27th
Annual ACM Symposium on Computational Geometry (SoCG
’11), pp. 216–225. ACM, New York (2011)

22. Morozov, D.: Persistence algorithm takes cubic time in the worst
case. In: BioGeometry News. Duke Computer Science, Durhmam
(2005)

23. Mrozek, M., Wanner, T.: Coreduction homology algorithm for in-
clusions and persistent homology. Comput. Math. Appl. 60, 2812–
2833 (2010)

24. Reininghaus, J., Günther, D., Hotz, I., Prohaska, S., Hege, H.C.,
TADD: A computational framework for data analysis using dis-
crete Morse theory. In: Mathematical Software (ICMS 2010), pp.
198–208. Springer, Berlin (2010)

25. Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for
constructing discrete Morse complexes from grayscale digital im-
ages. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658
(2011)

26. Röttger, S.: http://www9.informatik.uni-erlangen.de/External/
vollib/

27. Wagner, H., Chen, C., Vucini, E.: Efficient computation of per-
sistent homology for cubical data. In: Peikert, R., Hauser, H.,
Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis
and Visualization. II. Mathematics and Visualization (TopoInVis
2011), Zürich, Switzerland, April 4–6, pp. 91–108. Springer,
Berlin (2012)

David Günther studied mathemat-
ics with a focus on nonlinear fi-
nite element calculus at the Hum-
boldt University of Berlin, Ger-
many, where he received his M.S.
degree in 2007. He is a main author
of OpenFFW, an open source finite
element framework in Matlab. Cur-
rently, he is a junior researcher in
the research group “Feature-Based
Data Analysis for Computer Graph-
ics and Visualization” at the Max-
Planck Institute for Informatics in
Saarbrücken, Germany, where he is
working on his Ph.D. thesis. His re-

search interests are topological data analysis, discrete Morse theory,
and mathematical programming.

Jan Reininghaus received the M.S.
degree in Mathematics from the
Humboldt University of Berlin, Ger-
many, for a thesis on the numerical
treatment of Maxwell’s equations.
He is a main author of OpenFFW,
an open source finite element frame-
work written in Matlab. Currently
he is with the Scientific Visualiza-
tion Department of Zuse Institute
Berlin (ZIB) where he is working
on his Ph.D. thesis. His current re-
search interests include Hodge the-
ory, volume rendering, finite ele-
ment exterior calculus, and discrete
Morse theory.

http://www.cg.tuwien.ac.at/research/vis/datasets/
http://www.cg.tuwien.ac.at/research/vis/datasets/
http://www.volvis.org/
http://www9.informatik.uni-erlangen.de/External/vollib/
http://www9.informatik.uni-erlangen.de/External/vollib/


Mose–Smale complex and persistence computation 969

Hubert Wagner received the M.S
degree in Computer Science from
the Jagiellonian University, Krakow,
Poland. Currently he is a Ph.D. stu-
dent at the same university, super-
vised by Professor Marian Mrozek.
He is a coauthor of the CAPD/
RedHom library for homology com-
putations. His current research in-
terests include computational topol-
ogy, discrete Morse theory with ap-
plications to image, and text data
analysis.

Ingrid Hotz Ingrid Hotz received
the M.S. degree in theoretical Phys-
ics from the Ludwig Maximilian
University in Munich Germany and
the Ph.D. degree from the Computer
Science Department at the Univer-
sity of Kaiserslautern, Germany.
During 2003–2006, she worked as
a postdoctoral researcher at the In-
stitute for Data Analysis and Visu-
alization (IDAV) at the University
of California. Currently, she is the
leader of a junior research group
at the Zuse Institute in Berlin, Ger-
many. Her research interests are in

the area of data analysis and scientific visualization with focus on ten-
sor and vector fields.


	Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory
	Abstract
	Introduction
	Related work
	Persistence
	Discrete Morse theory

	Theoretical background
	Complexes
	Boundary maps and matrices
	Filtration
	Persistence
	Discrete Morse theory

	Method
	Discrete gradient field
	Morse-Smale complex extraction
	Persistence
	Computational complexity
	Implementational details
	Running time
	Memory requirements


	Results
	Conclusion and future work
	Acknowledgements
	Appendix
	References


