
Vis Comput (2012) 28:585–595
DOI 10.1007/s00371-012-0705-0

O R I G I NA L A RT I C L E

Eigen deformation of 3D models

Tamal K. Dey · Pawas Ranjan · Yusu Wang

Published online: 18 April 2012
© Springer-Verlag 2012

Abstract Recent advances in mesh deformations have been
dominated by two techniques: one uses an intermediate
structure like a cage which transfers the user intended moves
to the mesh, the other lets the user to impart the moves to the
mesh directly. The former one lets the user deform the model
in real-time and also preserve the shape with sophisticated
techniques like Green Coordinates. The direct techniques on
the other hand free the user from the burden of creating an
appropriate cage though they take more computing time to
solve larger non-linear optimizations. It would be ideal to
develop a cage-free technique that provides real-time defor-
mation while respecting the local geometry. Using a simple
eigen-framework, we devise such a technique. Our frame-
work creates an implicit skeleton automatically. The user
only specifies the motion in a simple and intuitive manner,
and our algorithm computes a deformation whose quality is
similar to that of the cage-based scheme with Green Coor-
dinates.

Keywords Laplace operator · Eigenvectors · Eigenspace ·
Deformation · Animation

1 Introduction

The creation of deformed models from an existing one is
a quintessential task in animations and geometric modeling.

T.K. Dey · P. Ranjan (�) · Y. Wang
Department of Computer Science and Engineering, The Ohio
State University, Columbus, OH, USA
e-mail: ranjan@cse.ohio-state.edu

T.K. Dey
e-mail: tamaldey@cse.ohio-state.edu

Y. Wang
e-mail: yusu@cse.ohio-state.edu

A user availing such a system would like to have the flexibil-
ity in controlling the deformation in real-time while preserv-
ing the isometry. In recent years, considerable progress has
been made to meet these goals and a number of approaches
have been suggested.

Some of the earliest techniques for mesh deformation in-
volved using skeletons [33]. A user typically creates a skele-
tal shape which is bound to the mesh. The mesh is then
deformed by deforming the skeleton and transforming the
changes back to the mesh. This approach puts a burden on
the user to create an appropriate skeleton and bind the mesh
to it. Later work [1, 9, 32] sought to reduce this burden by
automatically creating a skeleton. Automatic generation of
good skeletons and accurate transformation of deformations
from skeleton to mesh remain challenging until today.

Later approaches replaced the skeletons with a sparse
cage surrounding the mesh and then controlled the defor-
mation through the movement of the cage. The use of a
cage is akin to the concept of control polyhedron that is
used for free-form deformations. The authors in [27] intro-
duced the concept of control polyhedron and others refined
it later [18, 22]. It is well recognized that a control polyhe-
dron does not provide sufficient flexibility to deform meshes
with complicated topology and geometry [15, 21]. More re-
cent techniques increase this flexibility by introducing so-
phisticated coordinate functions that bind the cage to the
mesh. In general, each vertex of the mesh is associated with
weights called coordinates for each vertex of the cage. This
allows the mesh vertices to be represented as a linear com-
bination of the vertices of the cage. Cage based techniques
vary in how the weights of the vertices are computed. Early
attempts include extending the notion of barycentric coordi-
nates to polyhedra [16, 23, 31]. More recently, Mean Value
Coordinates [10, 11, 19], Harmonic [15], and Green [21]
Coordinates have been proposed for the purpose. The au-

mailto:ranjan@cse.ohio-state.edu
mailto:tamaldey@cse.ohio-state.edu
mailto:yusu@cse.ohio-state.edu


586 T.K. Dey et al.

Fig. 1 Creating correct cages for meshes

thors in [21] pointed out that the Mean Value and Harmonic
Coordinates do not necessarily preserve shapes though they
provide affine invariant deformations. They overcome this
difficulty by providing a real-time deformation tool that
preserves shapes. Recently, in [14], Sorkine et al. use bi-
harmonic coordinates to integrate cages and skeletons un-
der a single framework. This allows the user to use dif-
ferent types of techniques simultaneously based on the re-
sult desired. Also, in [3], Ben-Chen et al. use a small set
of control points on the original mesh to guide the defor-
mation of the cage. Nevertheless, the limitation of creating
pseudostructures like cages and skeletons by users still per-
sists.

Creating pseudostructures, especially cages, can be time-
consuming and tricky, as Fig. 1 illustrates. The cage on
the left, for example, fails to envelop the mesh correctly.
The cage on the right envelops the entire mesh, but has
self-intersections leading to incorrect calculation of coordi-
nates. It falls upon the user to manually move the cage ver-
tices to rectify the cage, which can become time-consuming.
A user typically spends more time creating a good cage,
than deforming the mesh. The state-of-the art would be
enhanced if one can have a tool that has the capabilities
of Green Coordinates but without the need for the cage.
Our approach is geared toward that. Figure 2 illustrates
the point by showing how our method produces similar
quality deformations as Green Coordinates but without any
cage.

There are other approaches that impart the deformation
directly to the surface mesh and thus eliminate the need for
intermediate structures like cages or skeletons; see, e.g., [4,
5, 13, 29, 30, 35]. These techniques usually optimize an
energy function tied to the deformation and user control
to achieve high quality deformations. However, they ei-
ther require nonlinear solvers or multiple iterations of lin-
ear solvers to compute new vertex positions, making them
slower for large meshes. Also see [6] for a survey on vari-
ous deformation techniques that use the Laplacian operator
to formulate the energy.

Fig. 2 Comparing with green coordinates

1.1 Our work

We introduce a novel approach that allows the user to ap-
ply the deformation directly to the mesh but without solv-
ing any nonlinear system, and thus improving both time and
numerical accuracy. The method uses a skeleton but with-
out explicitly constructing one. It computes the eigenvec-
tors of the Laplace–Beltrami operator to provide a low fre-
quency harmonic functional basis which helps creating an
implicit skeleton. The skeleton is a high-level abstraction of
the shape of the mesh, lacking small features and details.
It deforms this skeleton by computing a new set of eigen
coefficients. These coefficients are solutions of a linear sys-
tem which can be computed in real-time. Finally, it adds the
details back to the skeleton to get the deformed mesh. We
point out that unlike other skeleton-based approaches our
implicit skeleton is simply the original mesh whose vertex
coordinates are derived from a truncated set of eigenvec-
tors.

Our eigen-framework retains the advantages of both the
cage-based and cage-less approaches. Figures 2, 10, and 13
illustrate this point. Our deformation software is easy to use
and efficient. We are also able to handle both isometric as
well as nonisometric deformations like stretching gracefully,
as shown in Fig. 3. More examples can be found in the video
submitted with this paper.



Eigen deformation of 3D models 587

Fig. 3 Comparisons when we stretch the arm and bend the leg of
the armadillo. Note that our method handles stretching better than as–
rigid-as-possible (ARAP), and extreme bending better than harmonic
coordinates (HC)

1.2 Comparison with previous work on spectral
deformation

Recently, Rong et al. [25, 26] proposed a deformation frame-
work using the eigenvectors of the Laplace operator. Al-
though this seems similar to our approach, the reasons why
we use eigenvectors are different. In particular, Rong et al.
perform as-rigid-as-possible [29] deformations by trying to
preserve the Laplace operator. However, they use the eigen-
vectors to change the problem domain from spatial to spec-
tral, thereby reducing the size of the optimization problem
to the number of eigenvectors used. Usually, they need at
least 100 eigenvectors, and more eigenvectors make their fi-
nal deformation look better.

Our method, on the other hand, just needs a functional
basis of low frequency harmonic functions in which the
meshes are represented. We use low frequency eigenvectors
in order to get a smooth fit for a target deformation since our
goal is to guarantee a smoothly varying deformation rather
than isometry. Hence, we can guide deformations by using
as few as 8 eigenvectors. Furthermore, since we do not try
to preserve the Laplace operator, and hence isometry, we
can handle stretching better than [25, 26], as Fig. 4 illus-
trates.

Also, [25, 26] use deformation transfer based techniques
to recover details, and sometimes produce artifacts in the
deformed mesh, as shown in Fig. 12. We develop a more
sophisticated iterative technique to recover the details with
greater accuracy. Finally, in [25, 26], the positions of the
constrained vertices need to be changed each time the user
wish to change the scope of the deformation, increasing
users’ burden to specify the intended deformation.

Fig. 4 Stretching the arm of the armadillo. Note that spectral mesh
deformation (SMD), causes the entire mesh to deform in order to pre-
serve the mesh volume

2 Eigen-framework

2.1 Laplace–Beltrami operator

Consider a smooth, compact surface M isometrically embed-
ded in R

3. Given a twice differentiable function f : M → R,
the Laplace-Beltrami operator �M of f is defined as the di-
vergence of the gradient of f .

The Laplace–Beltrami operator has many useful proper-
ties and has been widely used in many geometric process-
ing applications; see [20, 34] for surveys on Laplacian mesh
processing applications. For example, it is well known that
the Laplace operator uniquely decides the intrinsic geom-
etry of the input manifold M. Hence, isometric manifolds
share the same Laplacian, which makes the Laplace operator
a natural tool to capture or describe isometric deformation.
Indeed, this idea has been used to build local coordinates for
mesh editing and deformation to help produce as-rigid-as
possible type of deformation [28, 35]. The eigenfunctions
of the Laplace operator form a natural basis for square in-
tegrable functions defined on M. Analogous to Fourier har-
monics for functions on a circle, Laplacian eigenfunctions
with lower eigenvalues correspond to low frequency modes,
while those with higher eigenvalues correspond to high fre-
quency modes that describe the details of the input mani-
fold M.

In our problem, the input is a triangular mesh approxi-
mating a hidden surface M. In such case, we need a discrete
version of the Laplace operator computed from this mesh.
Several choices are available in the literature [2, 7, 12, 23,
24]. In this paper, we use the mesh-Laplacian developed in
[2], although other discretizations of the Laplace operator
should also be fine. Both the mesh-Laplace operator itself
and its eigenvalues have been shown to converge to those
of the hidden manifold as the mesh approximates the mani-
fold better [2, 8]. See [6] for a discussion of the effects that
the various discretizations have on Laplacian based surface
deformation techniques.

2.2 Eigenskeleton

Given the Laplace operator �M of an input manifold, let
φ1, φ2, . . . denote the eigenfunctions of �M. These eigen-



588 T.K. Dey et al.

functions form a basis for L2(M), the family of square in-
tegrable functions on M. Hence, we can re-write any func-
tion f ∈ L2(M) as f = ∑∞

i=1 αiφi , where αi = 〈f,φi〉 and
〈·, ·〉 is the inner product in the functional space L2(M). Un-
der this view, the function f can be considered as a vec-
tor α = [α1, α2, . . .] in the infinite-dimensional eigenspace
spanned by the Laplacian eigenfunctions.

Now, consider the coordinate functions (fx, fy, fz) de-
fined on M whose values at each point are simply the x-, y-,
and z-coordinate values of the point, respectively. By rewrit-
ing these coordinate functions, we can represent a surface
by three vectors (αx,αy,αz) in its eigenspace. We call these
the coordinate weights of M. The embedding of a manifold
is fully decided by its coordinate weights once the eigen-
functions are given.

Finally, since higher eigenfunctions have higher frequen-
cies and hence capture smaller details, we can truncate the
number of eigenfunctions (i.e., use only the top few coordi-
nate weights) for reconstructing the surface to get varying
levels of detail.

Eigenskeleton Given a surface mesh, also denoted by M,
with n vertices, we compute the eigenvectors of the mesh-
Laplacian computed from M, denoted still by φ1, . . . , φn. We
now restrict ourselves to the first few, say m < n, eigenvec-
tors of the shape. This gives us a higher level abstraction of
the surface that captures its coarser features. Specifically, let
P = {p1,p2, . . . , pn} be the set of points reconstructed from
the vertex set V = {v1, v2, . . . , vn} of M using only the first
m eigenvectors φ1, φ2, . . . , φm of the mesh-Laplacian. That
is, if

f̂x =
m∑

i=1

αi
xφi, f̂y =

m∑

i=1

αi
yφi, f̂z =

m∑

i=1

αi
zφi

then pi = {f̂x(vi), f̂y(vi), f̂z(vi)} for i = 1, . . . , n. Consider
the mesh K = Km with vertices pi and the connectivity same
as that of M. We call this mesh the eigenskeleton1 of M. For
different values of m, the eigenskeleton Km abstracts the in-
put surface M at different levels of detail.

3 Algorithm

Our algorithm will compute the target configuration by de-
forming the eigenskeleton. In particular, the eigenskeleton
Km is decided by the 3m coordinate weights α1

x, . . . , α
m
x ;

α1
y, . . . , α

m
y and α1

z , . . . , α
m
z . We will deform the eigenskele-

ton by computing a new set of coordinate weights by solv-
ing only a linear system. Since the number of eigenvectors

1The concept of eigenskeletons is not new and has been used for mesh
compression in [17]. For more applications, please refer to the survey
papers [20, 34].

Algorithm 1: Deformation framework
Input : Input mesh M
Output: Deformed mesh M∗

1 begin
2 Compute eigenskeleton K for M
3 While (user initiates deformation) {
4 Step 1: Interpret user-specified deformation and
5 compute a coarse target configuration K̃

6 Step 2: Obtain K∗, a smooth approximation to K̃
7 Step 3: Add shape details to obtain M∗
8 }

used is typically much smaller than the number of vertices
involved in deformation, a solution can be obtained in real-
time. We will see later that, other than being efficient, the use
of coordinate weights also has the advantage that the defor-
mation tends to be smooth across the entire shape. Since the
new eigenskeleton lacks smaller features, we design a novel
and effective algorithm to add back details using the one-to-
one correspondence between the vertices of the eigenskele-
ton and the original mesh. The high level framework for our
algorithm is described in Algorithm 1. Next, we describe
each step in detail.

3.1 Step 1: Coarse guess-target configuration

Our software uses a standard and simple interface for the
user to specify the intended target configuration. First, the
user selects a mesh region that he wishes to deform. We call
it the region of interest, R, and let VR ⊆ V denote the set
of vertices in this region. Next, the user specifies the type of
transformation desired for the region of interest, which can
be either a translation-type or a rotation-type. The user then
indicates the target configuration by simply dragging some
point, say v ∈ VR , to its target position ṽ.

From the type of transformation combined with the po-
sition of v and ṽ, our algorithm computes either a trans-
lational vector t = ṽ − v if the desired transformation is a
translation-type, or a rotational pivot p and a rotation matrix
r if the desired transformation is a rotation-type. We then
compute a coarse target configuration K̃ for the eigenskele-
ton K using the following simple procedure: For all points
vi /∈ VR , the target position for the corresponding point pi in
the eigenskeleton is simply p̃i = pi . For each point vi ∈ VR ,
if the type of transformation is translation, then the target
position is p̃i = pi + t. If the type of transformation is rota-
tion, then the target position is p̃i = r(pi − p) + p.

In other words, we simply cut the region of interest and
apply to it the target transformation indicated by the user,
while the rest of the shape remains intact. Such an ini-
tial guess of target configuration is of course rather unsat-
isfactory. In fact, the deformation is not even continuous



Eigen deformation of 3D models 589

Fig. 5 The dragon model with its eigenskeleton created using 8 eigen-
vectors

Fig. 6 Left picture: A coarse discontinuous initial guess. Rotating the
entire region of interest (colored red) causes the discontinuity at its
boundary. We use the mesh connectivity information from the original
mesh to further emphasize this point. Right picture: After Step 2, we
obtain a smooth transition across the boundary

(along the boundary of the region of influence R, there is a
dramatic, noncontinuous change in the deformation). How-
ever, we will see later that in Step 2, our algorithm takes
this initial target configuration and produces a much better,
smoothly bent eigenskeleton. See Figs. 5 and 6 for an exam-
ple: in order to bend the body of the dragon, we specify a
rotation on the back half of the dragon. We then apply this
rotation on the entire region of interest in the eigenskeleton
to obtain a target configuration K̃, as shown in the left im-
age in Fig. 6. Note that Step 2 will produce a nice, global
deformation for the eigenskeleton, as shown on the right in
Fig. 6.

Observe that the translation-type and rotation-type mo-
tions are only high-level guidance for producing the final
deformation in Step 2. The final deformation is of course
not necessarily rigid. A stretching effect, for example, can
be achieved by a simple translation-type motion. From the
user’s point of view, the amount of work to specify the defor-
mation is very little and rather intuitive, while the algorithm
reconstructs a more complex deformation from the user’s
coarse input.

3.2 Step 2: Eigenskeleton deformation

After Step 1, we have a guess-target configuration K̃ for the
eigenskeleton K. In this step, we wish to compute an im-
proved target deformed eigenskeleton K∗ from the guess-
target configuration K̃. In Step 3 described in next section,

we will add details back to K∗ to obtain a deformed surface
M∗ for the input surface M. The following diagram illustrates
successive structures.

M
Get

skeleton
K

Step 1

guess target
K̃

Step 2

improve target
K∗ Step 3

add details
M∗

vi pi p̃i p∗
i v∗

i

Recall that p̃i is the position of the ith vertex vi in the
guess-target skeleton K̃. Now consider the coordinate func-
tions (f̃x, f̃y, f̃z) of the guess-target skeleton K̃. Note, each
function f̃a , where a ∈ {x, y, z}, is a function M → R on
the input surface M. The guess configuration K̃ is often far
from being satisfactory. In particular, by cutting the region
of influence and simply translating and rotating this part, a
discontinuity exists at the boundary of region of influence.
In other words, there is no smooth transition across the cut.
See the enlarged picture in Fig. 6 left image. This means
that the coordinate functions f̃a are not smooth across the
cut. To get a smooth deformed skeleton, we wish to find a
smooth approximation f ∗

a for each f̃a . This will give rise
to an improved deformed skeleton K∗ with the ith vertex
p∗

i = (f ∗
x [i], f ∗

y [i], f ∗
z [i]).

To this end, note that since the eigenfunctions φj s of
M form a basis for the family of square-integrable func-
tions on M, each f̃a can be written as a linear combi-
nation of all eigenfunctions φis for i = 1, . . . , n. Further-
more, eigenfunctions with low eigenvalues are analogous to
modes with low-frequency while those with high eigenval-
ues correspond to high-frequency modes. Since we aim to
obtain a smooth reconstruction of f̃a , we want to ignore
high frequency modes. Hence, we find a smooth reconstruc-
tion of f̃a using only the top m low-frequency eigenfunc-
tions φ1, . . . , φm of M. This is achieved as follows: Suppose
f ∗

a = ∑m
j=1 α̃

j
aφj , and Aj = (α̃

j
x , α̃

j
y , α̃

j
z ) for j = 1, . . . ,m.

We want to find weights (α̃x, α̃y, α̃z) that minimize the fol-
lowing energy function where φj [i] is the value of the j th
eigenfunction φj on the vertex vi :

E =
n∑

i=1

∥
∥
∥
∥
∥

m∑

j=1

Ajφj [i] − p̃i

∥
∥
∥
∥
∥

2

(1)

Intuitively, the discontinuity in the coordinates of guess-
target configuration K̃ requires high frequency eigenfunc-
tions to reconstruct it, and using only low-frequency modes
produces smoother f ∗

a s, which induces better deformed
skeleton K∗. See the right picture of Fig. 6—the skeleton re-
constructed from new coordinate weights (α̃x, α̃y, α̃z) after
Step 2 shows a smooth transition from the region of interest
to the rest.



590 T.K. Dey et al.

3.2.1 An alternative interpretation

Before we describe how we minimize the above energy
function, we provide an alternative interpretation for the for-
mulation of our energy function. Recall after Step 1, we have
a guess-target configuration K̃ for the eigenskeleton K, and
p̃i is the position of vertex vi in this skeleton K̃. Intuitively,
if K̃ turns out to be the eigenskeleton of an isometric de-
formation M̃ of M, then there exist new coordinate weights
(α̃x, α̃y, α̃z), such that

∥
∥
∥
∥
∥

m∑

j=1

Ajφj [i] − p̃i

∥
∥
∥
∥
∥

2

= 0 ∀vi ∈ V

where Aj = (α̃
j
x , α̃

j
y , α̃

j
z ) represents the j th entry of each

α̃a . This is true because the manifold M̃ has the same eigen-
functions as M, and its corresponding coordinate functions
can be written as a linear combination of the eigenfunctions
of M̃ (i.e., φ1, . . . , φn). The new coordinate weights α̃a are
simply the first m coefficients for φ1, . . . , φm in this linear
combination.

If the deformation is not isometric, then we can try to
find the best fit (α̃

j
x , α̃

j
y , α̃

j
z ) for j ∈ [1,m] by minimizing

the above quantity over all vertices in V , that is, minimiz-
ing the energy function as defined in Eq. (1). Experimental
results show that our method tends to preserve isometry in
practice when such a deformation is possible; see for exam-
ple Fig. 10 and Table 2. At the same time, since we do not try
to preserve the Laplace operator, we can handle nonisomet-
ric deformations like stretching in a more natural manner,
compared to [25, 26, 29]; see, for example, Fig. 4.

3.2.2 Minimizing the Energy function E

There are 3m variables in the energy function in Eq. (1). To
minimize E, we compute its gradient with respect to Ak

∂E

∂Ak

= 2
n∑

i=1

φk[i]
(

m∑

j=1

Ajφj [i] − p̃i

)

= 2

(
m∑

j=1

Aj 〈φk · φj 〉 − (〈φk · f̃x〉, 〈φk · f̃y〉, 〈φk · f̃z〉
)
)

where (f̃x, f̃y, f̃z) are the coordinate functions of the guess-
target skeleton. Now, setting the partial derivatives to zero
for all Ak , we get

m∑

j=1

〈φk · φj 〉Aj = (〈φk · f̃x〉, 〈φk · f̃y〉, 〈φk · f̃z〉
)

which leads to a linear system of equations in the following
form: ΦA∗ = b, where Φ is an m by m matrix with Φi,j =

〈φi ·φj 〉,2 A∗ is an m by 3 matrix with A∗
i,· = Ai and b is also

an m by 3 matrix with the ith row as (〈φi · f̃x〉, 〈φi · f̃y〉, 〈φi ·
f̃z〉). Using A∗ as coordinate weights, we reconstruct the
new deformed eigenskeleton K∗.

3.3 Step 3: Shape recovery

We now have the deformed eigenskeleton K∗. Since we use
only the top few eigenvectors for deformation, this skeleton
lacks small features and fine details of the original mesh. To
obtain the deformed mesh M∗, we need to add appropriate
details back to K∗.

In order to keep track of all the shape details, when cre-
ating the original eigenskeleton K, we also keep track of the
difference between vi and its reconstruction pi . We call it
the detail vector which is given by dvi

= vi − pi . However,
since the mesh is deforming, we cannot simply add dvi

back
to p̃i .

To address this issue, we keep track of dvi
in a local coor-

dinate frame around pi . In particular, for each pi , we com-
pute three axes that are given by: (i) the normal at pi , (ii)
projection of an edge incident at pi onto a tangent plane at
pi , and (iii) a third vector orthogonal to the previous two.
This frame remains consistent with the local orientation of
the vertex. For each detail vector dvi

, we record its coordi-
nates in this local frame, which is the projection of dvi

onto
the three axes. After the eigenskeleton is deformed to a new
configuration K∗, we compute the new frames, and recon-
struct d̃vi

using the same coordinates but in the new frame.
We then obtain the deformed location ṽi for vertex vi by
adding the new detail vector back to the skeleton point p̃i ;
that is, ṽi = p̃i + d̃vi

.
A drawback of this local-frame based scheme is that the

resulting eigenskeleton becomes very thin near the extrem-
ities, with a lot of small features collapsing together, when
very few eigenvectors are used. This leads to poor normal es-
timation around sharp features. See the dragon foot in Fig.
7(a). To overcome this difficulty, we compute two sets of
new detail vector d̃vi

: one is obtained by using the local-

frames as described above, denoted by d̃
(1)
vi

; and the other,

denoted by d̃
(2)
vi

, is obtained by simply applying the target
deformation transformation computed in Step 1 to the orig-
inal dvi

. The advantage of d̃
(2)
vi

is that it tends to preserve

local details. However, just using d̃
(2)
vi

alone has the problem
that the changes around boundary of R are often dramatic.
See the body of the dragon in Fig. 7(b).

2In the ideal case, the Laplace–Beltrami operator is symmetric, which
makes its eigenvectors orthonormal, and Φ the identity matrix. How-
ever, we use area weights when building the Laplace–Beltrami oper-
ator, which makes it asymmetric, and Φ a matrix with non-zero off
diagonal entries.



Eigen deformation of 3D models 591

Fig. 7 Adding details back to the dragon

To get the best out of both strategies, we obtain a fi-
nal detail vector d̃vi

by interpolating between the two de-

tail vectors d̃
(1)
vi

and d̃
(2)
vi

. In particular, we assign a large

weight to the local-frame based detail vector (i.e., d̃
(1)
vi

) near
the boundary of R and diminish away from the boundary
both inside and outside R. We do so because we observed
that the normal estimation (and hence d̃

(1)
vi

) is reliable away
from the extremities and near the boundary of the region
of interest and that d̃

(2)
vi

provides accurate recovery of the
sharp features. This works for most models commonly used
in the real world, although it is theoretically possible for a
mesh and its corresponding skeleton to be very thin even in
regions away from the extremities. The details of this inter-
polation scheme are described in Sect. 4.1. Figure 7 shows
results for recovering the details of the deformed dragon us-
ing each individual strategies (a, b) and using the integrated
strategy (c).

4 Implementation

4.1 Recovery details

For interpolating the detail vectors, we need to assign a
weight to each vertex which should depend on how far it
is from the boundary of the region of interest. To do this, we
need to (1) identify the boundary ∂R of the region of interest
R; (2) compute a per-vertex function denoting the distance
from the boundary ∂R; and (3) use this function to assign
the interpolation weights.

The boundary vertices are identified by considering all
vertices in R and simply choosing the ones whose one-ring
neighborhood contains vertices that are not in R. We pre-
compute the one-ring neighborhoods on the original mesh
just once to reduce computation time during actual defor-
mation of the mesh.

Next, we first compute the following function for each
vertex vi : g(vi) = minv∈∂R dg(vi, v), where ∂R is the set of
boundary vertices of the region of interest R, and dg(vi, v)

denotes the geodesic distance between two vertices. Again,
we precompute the all-pair geodesic distance matrix once
for the original mesh and use it subsequently for all defor-
mations.

Once we have g, we find the approximate diameter of R

as diamR = maxv∈R g(v). We use the diameter to compute
two cutoff values δ1 = diamR

8 , and δ2 = diamR
4 The interpola-

tion weights are then computed as

w(vi) =
⎧
⎨

⎩

1 if g(vi) < δ1

0 if g(vi) > δ2
δ2−g(vi )
δ2−δ1

otherwise

The final detail vector at each vertex vi is then

d̃vi
=

(

w(vi) · d̃
(1)
vi

‖d̃(1)
vi

‖
+ (

1 − w(vi)
) · d̃

(2)
vi

‖d̃(2)
vi

‖

)

· ∥∥d̃(1)
vi

∥
∥

Note that the two detail vectors d̃
(1)
vi

and d̃
(2)
vi

have the
same length. The above formula simply interpolates their
directions to obtain d̃vi

. Intuitively, the closer a point is to
the boundary ∂R of the region of interest, the larger role
the local-frame detail vector d̃

(1)
vi

plays to guarantee smooth
transition. When a point is far from ∂R, the skeleton tends
to be much thinner, and in this case we rely more on the
transformation-based detail vector d̃

(2)
vi

to reconstruct d̃vi
.

4.2 Choice of number of eigenvectors

The eigenvectors capture details at different scales. Conse-
quently, the use of different number of eigenvectors for de-
formation causes changes at different scales.

In general, the eigenskeleton created with only the top
few eigenvectors causes shape changes at a global level. To
capture local changes, we need a larger number of eigenvec-
tors. Specifically, if the region of interest R is small, then we
need more eigenvectors to build the skeleton so that R is re-
constructed reasonably well in this skeleton and the change
of the corresponding coordinate weights are sufficient to de-
form R. See Fig. 8 where if we choose too few eigenvec-
tors, the eigenskeleton of the ear collapses into roughly a
point, and cannot represent the ear at all. Since deformation
is computed for the eigenskeleton, the deformation of the ear
cannot be described by such a skeleton. Using more eigen-
vectors, we can capture the ear in the skeleton and further
deform it.

On the other hand, if the region of interest is large, the
change usually needs to be spread over a large area. If
we now choose too many eigenvectors, minimizing the en-
ergy function in Step 2 tries to preserve local details of the



592 T.K. Dey et al.

Fig. 8 Far left: head of camel. Right: Eigenskeleton of the head of the
camel constructed using 8, 50, and 300 eigenvectors, respectively

eigenskeleton (as there are more terms, i.e., Aj s with large
j , describing them). Roughly speaking, the optimization of
the weights of the lower eigenvectors is overwhelmed by
the large number of higher eigenvectors. Hence, the defor-
mation of the eigenskeleton returned in Step 2 tends to have
some dramatic changes for a few points while trying to pre-
serve local details elsewhere. Therefore, in the case of a
large region of interest, we need to choose a small number
of eigenvectors to build the eigenskeleton so that the weight
for global deformation is emphasized.

In summary, the number of eigenvectors nev to be used
to reconstruct the eigenskeleton should be chosen based on
the size of R, the region of interest. At the same time, it
turns out that the deformation returned by our algorithm is
rather robust with respect to nev, as long as nev is within a
reasonable range. We thus use the following simple strat-
egy to decide nev. First, compute δ3 = diamR

diam(V \R)
, where

diam(V \ R) = maxv �∈R g(v) is the approximate diameter of
the complement of the region of interest. Now choose nev as

nev =
⎧
⎨

⎩

8 if δ3 ≥ 0.75
50 if 0.75 > δ3 ≥ 0.1
300 otherwise

This simple strategy works well for all the models we
experimented with. However, the user can easily override
these defaults to choose their own value for nev.

4.3 Additional modifications

Finally, we observe that since the eigenskeleton can be
rather coarse when nev is small (8 or 50), the local frame es-
timation sometimes simply becomes too error-prone on K∗

nev

to recover a smooth shape through the interpolation strategy.
For this reason, we iteratively improve the quality of the

eigenskeleton based on the algorithm introduced in Sect. 3
as follows: Recall that K∗

m denotes the deformed eigenskele-
ton reconstructed using m eigenvectors. Instead of directly
recovering the deformed mesh M∗ from K∗

m, we first recover
another intermediate eigenskeleton K̃n′ from K∗

nev
, with n′ >

nev using Algorithm 1. This is achieved by using the detail
vectors to record the change from K̃nev to K̃n′ , instead of K̃nev

to the original mesh M. In particular, in our software, nev = 8
or 50, and n′ = 300 (this iterative approach is not needed if
nev = 300). The result is an eigenskeleton that already cap-
tures the main deformation, and that also contains sufficient
details.

Fig. 9 Adding details back to the dragon. Left: Directly from
eigenskeleton. Right: After iterative improvement

Next, we feed K̃n′ as the coarse-guess configuration to the
linear solver in Step 2 to obtain a new deformed eigenskele-
ton K∗

n′ . This is done to smooth out any errors that may have
been introduced due to poor local frame estimation on K∗

nev
.

We then use this new eigenskeleton K∗
n′ and local-frame

based detail estimation (instead of the interpolation method)
to recover the shape-detail of the deformed mesh M∗. See
Fig. 9 for an example. The final deformation algorithm for
the case that nev = 8 or 50 is summarized in the following
diagram.
Iteration 1:

Knev

Step 1
K̃nev

Step 2
K∗

nev

Step 3

Interpolation based
K̃n′

Iteration 2:

K̃n′
Step 2

K∗
n′

Step 3

local-frame based
M∗

For the case where nev = 300, the original Algorithm 1 is
applied as before. We remark that potentially one can per-
form more iterations to improve the deformation quality.
However, we observe in practice that two iterations provide
a good trade-off between quality and simplicity/efficiency.

4.4 Interactivity

To make the software interactive, we precompute the eigen-
vectors for the mesh along with the matrix Φ since it de-
pends on the original mesh only. Notice that Φ is symmetric,
and hence can be factored using Cholesky decomposition.
We also precompute the all-pairs geodesic distance matrix
used for interpolating detail vectors. To maintain interactive
rates, we only deform the eigenskeleton. Once the user is
satisfied with the shape of the eigenskeleton, the details are
added. When deforming the eigenskeleton, the right-hand
side (b) for our linear-solver can be quickly computed by
multiplying the matrix of eigenvectors with a matrix con-
taining the coarse guess. We can then compute the new co-
ordinate weights by performing simple backward and for-
ward substitutions. The entire process is simple and can be



Eigen deformation of 3D models 593

Fig. 10 Bending a bumpy plane (dense mesh)

Fig. 11 Bending a bumpy plane (coarse mesh)

computed in real-time. Adding details can be a little slow
(see Table 1) since we need to compute the normal for each
vertex, and hence is separated from the interactive part.

5 Results

We implemented our deformation algorithm using C,
OpenGL and MATLAB. For comparisons, we wrote our
own code for as-rigid-as-possible deformations [29] and
used the implementation of cage-based deformation us-
ing harmonic coordinates provided in open-source software
called BLENDER. For spectral surface deformation, we used
the code provided by the authors.

Figure 3 compares our method with harmonic coordi-
nates and as-rigid-as-possible deformations. For as-rigid-
as-possible deformation, red dots denote the fixed vertices,
while yellow dots represent the vertices that are moved. The
partial cages used for deforming using harmonic coordinates
are depicted using black edges. For our method, the red por-
tions are the regions of interest. Figures 10 and 11 show the
results of bending a plane with smooth bumps using differ-
ent techniques. Harmonic coordinates are not able to orient
the details correctly while for as-rigid-as-possible, the qual-
ity of the deformation seems to depend on mesh density.

Table 1 Timing data (in seconds) for our algorithm

Model (# vertices) nev Step1 & 2 Step 3

Armadillo (25k) 50 0.018 0.125

Dragon (22.5k) 8 0.013 0.161

Camel (7k) 8 0.002 0.049

300 0.012 0.013

Plane (10k) 50 0.016 0.061

Bar (13.5k) 50 0.017 0.074

Children (20k) 50 0.017 0.095

Table 2 Comparison of relative RMS errors in deformations using as-
rigid-as-possible (ARAP) and our method (ED)

Model ARAP ED

Armadillo (Stretch Arm) 0.0023 0.0022

Armadillo (Bent Knee) 0.001 0.0007

Armadillo (Combined) 0.0052 0.0021

Plane 0.0028 0.0022

Fig. 12 Moving the arm of Neptune using our method and spectral
mesh deformation (SMD)

Fig. 13 Twisting a bar using our method

The timing data for different stages of our algorithm are
presented in Table 1. Timings of Steps 1 and 2 are cou-
pled together since they are used in each step of interactive
deformation. Step 3 is used after the user is satisfied with
the shape of the skeleton. Table 2 compares the root mean
square error in edge lengths. Our method introduces very lit-
tle error in edge lengths, similar to as-rigid-as-possible ap-
proach which aims to optimize such error. Figure 13 shows
the result of twisting a bar using our method, while Fig. 14
shows that we can handle meshes of arbitrary genus. More



594 T.K. Dey et al.

Fig. 14 Editing the dancing children

deformations using our method can be found in the video
submitted with this paper.

We also present comparisons with spectral mesh defor-
mation in Figs. 4, 12. The results of spectral mesh defor-
mation are global and cannot be constrained to small re-
gions. For example, in Fig. 4, even though only the arm was
stretched, the entire mesh got deformed in an attempt to pre-
serve the volume and the Laplace operator of the mesh. Our
method is able to handle such deformations more naturally.
Also, the detail recovery method used in spectral mesh de-
formation can introduce artifacts into the deformed mesh.
For example, in Fig. 12, although only the arm was moved,
the staff of Neptune got slightly deformed as well. Even the
hand looks unnatural after the deformation. This happens
because 100 eigenvectors are not enough to capture the finer
details of the model.

Acknowledgements We would like to thank the anonymous review-
ers for their comments, and also the authors of [26] for providing the
software implementation of their work. Meshes used in this paper were
obtained from AIM@Shape Shape Repository. This work is supported
by the National Science Foundation Grants CCF-0830467 and CCF-
0747082.

References

1. Baran, I., Popović, J.: Automatic rigging and animation of 3D
characters. In: Proc. SIGGRAPH’07, pp. 72:1–72:8 (2007)

2. Belkin, M., Sun, J., Wang, Y.: Discrete Laplace operator on
meshed surfaces. In: Proc. SCG’08, pp. 278–287 (2008)

3. Ben-Chen, M., Weber, O., Gotsman, C.: Variational harmonic
maps for space deformation. In: Proc. SIGGRAPH’09, pp. 34:1–
34:11 (2009)

4. Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis
functions. Comput. Graph. Forum 24(3), 611–621 (2005)

5. Botsch, M., Pauly, M., Gross, M., Kobbelt, L.: Primo: coupled
prisms for intuitive surface modeling. In: Proc. SGP’06, pp. 11–
20 (2006)

6. Botsch, M., Sorkine, O.: On linear variational surface deforma-
tion methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230
(2008)

7. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing
of irregular meshes using diffusion and curvature flow. In: Proc.
SIGGRAPH’99, pp. 317–324 (1999)

8. Dey, T.K., Ranjan, P., Wang, Y.: Convergence, stability, and
discrete approximation of Laplace spectra. In: Proc. SODA’10,
pp. 650–663 (2010)

9. Du, H., Qin, H.: Medial axis extraction and shape manipulation of
solid objects using parabolic PDEs. In: Proc. ACM Sympos. Solid
Modeling Appl.’04, pp. 25–35 (2004)

10. Floater, M.S.: Mean value coordinates. Comput. Aided Des. 20(1),
19–27 (2003)

11. Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates in
3D. Comput. Aided Des. 22(7), 623–631 (2005)

12. Hildebrandt, K., Polthier, K.: On approximation of the Laplace–
Beltrami operator and the Willmore energy of surfaces. In: Proc.
SGP’11, pp. 1513–1520 (2011)

13. Hildebrandt, K., Schulz, C., Tycowicz, C.V., Polthier, K.: Interac-
tive surface modeling using modal analysis. ACM Trans. Graph.
30(5), 119:1–119:11 (2011)

14. Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded bi-
harmonic weights for real-time deformation. In: Proc. SIG-
GRAPH’11, pp. 78:1–78:8 (2011)

15. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic
coordinates for character articulation. In: Proc. SIGGRAPH’07,
pp. 71:1–71:10 (2007)

16. Ju, T., Schaefer, S., Warren, J., Desbrun, M.: A geometric con-
struction of coordinates for convex polyhedra using polar duals.
In: Proc. SGP’05, pp. 181–186 (2005)

17. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry.
In: Proc. SIGGRAPH’00, pp. 279–286 (2000)

18. Kobayashi, K.G., Ootsubo, K.: T-ffd:free-form deformation by us-
ing triangular mesh. In: Proc. Sympos. Solid Modeling Appl.’03,
pp. 226–234 (2003)

19. Langer, T., Belyaev, A., Seidel, H.-P.: Spherical barycentric coor-
dinates. In: Proc. SGP’06, pp. 81–88 (2006)

20. Levy, B.: Laplace–Beltrami eigenfunctions: towards an algorithm
that understands geometry. In: IEEE Internat. Conf. on Shape
Modeling Appl.’06 (2006). Invited talk

21. Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. In: Proc.
SIGGRAPH’08, pp. 78:1–78:10 (2008)

22. MacCracken, R., Joy, K.I.: Free-form deformations with lattices of
arbitrary topology. In: Proc. SIGGRAPH’96, pp. 181–188 (1996)

23. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and
their conjugates. Exp. Math. 2(1), 15–36 (1993)

24. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace–Beltrami spectra
as “shape-dna” of surfaces and solids. Comput. Aided Des. 38(4),
342–366 (2006)

25. Rong, G., Cao, Y., Guo, X.: Spectral surface deformation with dual
mesh. In: Proc. Internat. Conf. on Comput. Animation and Social
Agents’08, pp. 17–24 (2008)

26. Rong, G., Cao, Y., Guo, X.: Spectral mesh deformation. Vis. Com-
put. 24(7–9), 787–796 (2008)

27. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geo-
metric models. In: SIGGRAPH’86, pp. 151–160 (1986)

28. Sorkine, O.: Differential representations for mesh processing.
Comput. Graph. Forum 25(4), 789–807 (2006)

29. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In:
Proc. SGP’07, pp. 109–116 (2007)

30. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Sei-
del, H.-P.: Laplacian surface editing. In: Proc. SGP’04, pp. 179–
188 (2004)

31. Warren, J.: Barycentric coordinates for convex polytopes. Adv.
Comput. Math. 6(2), 97–108 (1996)

32. Weber, O., Sorkine, O., Lipman, Y., Gotsman, C.: Context-aware
skeletal shape deformation. Comput. Graph. Forum 265–274

33. Yoshizawa, S., Belyaev, A.G., Seidel, H.-P.: Free-form skeleton-
driven mesh deformations. In: Proc. ACM Sympos. Solid Model-
ing Appl.’03, pp. 247–253 (2003)

34. Zhang, H., van Kaick, O., Dyer, R.: Spectral mesh processing.
Comput. Graph. Forum 29(6), 1865–1894 (2010)

35. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum,
H.-Y.: Large mesh deformation using the volumetric graph Lapla-
cian. ACM Trans. Graph. 24(3), 496–503 (2005)



Eigen deformation of 3D models 595

Tamal K. Dey is a professor of
computer science at The Ohio State
University. His research interests
include computational geometry,
computational topology, and their
applications in graphics and geo-
metric modeling. He finished his
Ph.D. from Purdue University in
1991 and has held academic po-
sitions at various institutions. He
authored a book “Curve and sur-
face reconstruction: Algorithms
with mathematical analysis” pub-
lished by Cambridge University

Press and led the development of well- known software called Cocone
and DelPSC for surface reconstruction and mesh generation. Details
can be found at http://www.cse.ohio-state.edu/~tamaldey.

http://www.cse.ohio-state.edu/~tamaldey

	Eigen deformation of 3D models
	Abstract
	Introduction
	Our work
	Comparison with previous work on spectral deformation

	Eigen-framework
	Laplace-Beltrami operator
	Eigenskeleton

	Algorithm
	Step 1: Coarse guess-target conﬁguration
	Step 2: Eigenskeleton deformation
	An alternative interpretation
	Minimizing the Energy function E

	Step 3: Shape recovery

	Implementation
	Recovery details
	Choice of number of eigenvectors
	Additional modiﬁcations
	Interactivity

	Results
	Acknowledgements
	References


