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Abstract As depth cameras become more popular, pixel
depth information becomes easier to obtain. This informa-
tion can clearly enhance many image processing applica-
tions. However, combining depth and color information is
not straightforward as these two signals can have differ-
ent noise characteristics, differences in resolution, and their
boundaries do not generally agree. We present a technique
that combines depth and color image information from real
devices in synergy. In particular, we focus on combining
them to improve image segmentation. We use color infor-
mation to fill and clean depth and use depth to enhance color
image segmentation. We demonstrate the utility of the com-
bined segmentation for extracting layers and present a novel
image retargeting algorithm for layered images.

Keywords Image segmentation · Retargeting · Depth maps

1 Introduction

In recent years we have witnessed a rapid advance in the
development of cameras that capture depth. While this ad-
vance has been driven by video gaming, simultaneously ac-
quiring depth with photometric imaging has an immense po-
tential for a wide range of applications. In particular, having
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commodity level cameras with depth sensing will consid-
erably enhance the performance of image processing and
digital photography applications. However, using data from
such cameras may not be straightforward. First, the depth
data spatial resolution does not always match the photo-
metric resolution. Second, in many cases the depth image
is incomplete, imperfect, and contains noise. Under these
assumptions, we investigate the potential of combining the
two modalities to enhance image segmentation, which is the
basis of many image processing applications.

In image segmentation, boundaries between objects in
the scene must be determined. In many cases, the photo-
metric (color) image edges correspond to scene edges, i.e.,
to discontinuity in depth. However, there are many image
edges created by illumination (e.g., shadows) or textures that
do not signify object boundaries. Color segmentation usu-
ally finds coherent color regions in an image. Real objects
in a scene such as people or animals can contain a vari-
ety of colors, but usually not a wide range of depth values.
Hence, using depth information can assist the mapping of
color-distinct regions to the same object and distinguishing
between “false” image edges and real object boundaries.

Still, simply using the raw depth information is not suffi-
cient. Our key idea is to utilize the information contained in
one channel to enhance the other. Therefore, the RGB chan-
nel, being more accurate and having higher resolution, can,
in turn, assist in enhancing the depth channel by reconstruct-
ing missing depth regions and enhancing the correctness of
edges in the depth map.

Combining the two modalities together naively does not
necessarily amount to unambiguous data from which the
segmentation can be extracted. In this paper, we introduce
a technique that combines the two modalities while increas-
ing the agreement between them. We present an end-to-end
depth-color segmentation that provides better results than
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Fig. 1 Segmentation and retargeting using depth: (from left to right) color image, depth image and our automatic segmentation using color and
depth overlayed, color image retargeted by 20%, 30%, 40%, and 50%

a direct concatenation of the two (e.g., using mean shift
or clustering). Our technique is initialized by using joint-
billateral upsampling of both depth and color and then ap-
plying graph cut segmentation based both modalities. We
demonstrate the technique on depth data which is imperfect,
i.e., some regions are missing, there are outliers, and noise
is present. Furthermore, the depth spatial resolution is lower
than the photometric one, and thus also the registration be-
tween the two is imperfect.

In addition, to demonstrate the use of the combined seg-
mented image, we present a novel image retargeting algo-
rithm. We show how the augmented segmentation allows a
qualitatively better solution to the retargeting problem by
exploiting the depth information to partially overlap the lay-
ers when size is reduced (see Fig. 1). We demonstrate our
technique on both synthetic and real depth images.

2 Related work

Depth There are numerous ways for estimating depth in
images, for instance, by using stereo, or multiple views in
structure from motion [21]. Zhang et al. [29] introduced a
method of recovering depth from a video sequence and show
many applications; some of the images in this paper were
acquired in this manner. Other works reconstruct depth us-
ing video sequences based on the motion between frames
[8, 20]. Another possibility to acquire depth is simply to use
depth cameras. Such cameras are becoming a commodity
these days, and their use is widespread. Most examples in
this paper were acquired using a depth camera. However,
such depth sensors still have lower resolution than the RGB
sensor, and their quality in general is inferior to photometric
sensors.

Upsampling Some previous work attempted to deal with
the lower spatial resolution of one modality versus the other
by upsampling one to match the resolution of the other. Kopf
et al. [10] introduced the joint bilateral filter for a pair of
corresponding images. They upsample a low-resolution im-
age while respecting the edges of the corresponding high-
resolution one. This technique was then improved by using

iterations [16, 27]. Schuon et al. [22] combined several low-
resolution depth images to produce a super-resolution im-
age.

Except for low spatial resolution, depth imaging is also
subject to noise, and, due to surface reflection properties,
some regions of the surface are completely missing. This
problem is often referred to as “depth shadow.” To address
this issue, Becker et al. [3] use the color channels taken from
a camera with a known location. They rely on the assump-
tion that similar geometries possess similar colors and in-
corporate a patch-based inpainting technique. In our work
we also complete missing color and depth values. We use
techniques such as [12] for layer completion and reconstruct
the depth with a multistep joint bilateral depth upsampling
filter [16].

Segmentation Segmentation is one of the fundamental
problems in image processing [9]. As we discussed in the in-
troduction, the performance of segmentation can be greatly
improved with the assistance of depth images. Recently,
Crabb et al. [6] employed depth imaging to extract fore-
ground objects in real time. Their segmentation requires a
user-defined threshold depth to separate the foreground from
the background. The color image is used only to support a
small fraction (1–2%) of the pixels which are not solved by
the depth threshold. Another interesting use of depth is to
assist background subtraction in video. In [13] several chan-
nels of the depth camera are used and combined with the
color channel.

Image retargeting To demonstrate the usefulness of our
method, we show how it can be utilized for image retar-
geting. Techniques such as seam-carving [1, 19], shiftmaps
[15], and non-homogeneous warping methods [11, 24, 26]
all rely on the ability to automatically detect important re-
gions in an image and preserve them under the resizing
operator. If the image is condensed and does not contain
smooth or textured areas, these techniques can cause seri-
ous artifacts. Using depth layers can assist in such cases by
overlaying parts of the image while resizing. In [7] repeti-
tion is used to segment, layer, and rearrange objects in an
image closer to our approach, but no depth input is used.
For video, Zhang et al. [28] present a video editing system
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for re-filming visually appealing effects based on the extrac-
tion of depth layers from the video. Recently Mansfield et
al. [14] exploited the seam carving technique to cause pre-
segmented image objects to occlude each other. However,
due to the nature of seam carving, distortions are still intro-
duced to the carved background image. We show how the
addition of depth information can assist specifically in such
cases, by allowing different parts of the image to overlap
in the resized image based on their depth. We compare our
results to various other techniques using the recent Retar-
getMe benchmark [17].

3 Color and depth imaging

Depth cameras provide an image where each pixel contains
a measurement of the distance from the camera to the ob-
ject visible in that pixel. There are several types of depth
devices such as time-of-flight cameras and projected coded
images. Most depth cameras use IR light for depth acquisi-
tion since IR is not visible to the human eye and does not
interfere with the color sensor. The device we use is based
on projected IR Light Coding image and provide a depth
resolution of 640 × 480. It is important to note that con-
temporary depth sensors are still rather noisy and there are
significant regions in the image where depth is not accurate
or even missing. Moreover, since the depth and color images
are created and captured with different sensors, the two im-
ages are not perfectly aligned and may have different reso-
lutions. Specifically, photometric images usually have much
higher resolution than depth image (see Fig. 1). In our work,
we exploit this to enhance the depth resolution.

As a first step, the capturing devices must be calibrated
respectively. We seek the set of camera parameters (loca-
tion, rotation, view plane) that best explain the perspec-
tive deformation observed from the devices. First, the user
marks several corresponding pairs of points (see Fig. 2).
Denote these points as Bdepth = {p1,p2, . . . , pm},BRGB =
{q1, q2, . . . , qm} in the color and depth image, respectively.
Next, we project every user marked pixel in Bdepth to its 3D
coordinates using the depth measurement. Denote as A the
set of the 3D locations of the points. Then, we retrieve the
perspective projection parameters θ by minimizing the L2

distance between the RGB points and the perspective trans-
formation Tθ of the corresponding projected depth points
(described below). Finally, we apply the transformation Tθ

to all the 3D points to generate a new depth image suiting the
view-point of the color image. A more detailed description
is provided in the next paragraph.

We use perspective projection transformation as specified
in [5]. Let a be a 3D point (a ∈ A) and θ = {cx,y,z, θx,y,z,

ex,y,z} the camera parameters. Transformation b = Tθ (a) is

Fig. 2 Camera calibration: The perspective projection parameters are
obtained by minimizing the distance between RGB points and the per-
spective transformation Tθ of the projected depth points. In the figure,
the depth gradients image is superimposed on the color image before
(top) and after (bottom) registration. The yellow marked points (qi ) are
matched to the green (pi ) by the user. After registration procedure the
new position of the yellow points is marked in red

defined as:

d = Rotθx Rotθy Rotθz [a − c],
bx = (dx − ex)(ez/dz),

by = (dy − ey)(ez/dz),

(1)

where, ax,y,z is the point in 3D space that is to be pro-
jected, cx,y,z is the location of the camera, θx,y,z is the ro-
tation of the camera, ex,y,z is the viewer’s position relative
to the display surface, and bx,y is the 2D projection of a.
We search for the depth camera parameters that minimizes
minc,θ,e{Σ(Tc,θ,e(ai) − qi)

2}, where qi is the ith element in
BRGB, and ai is the corresponding projected 3D location of
pi (in the depth image). Once the camera parameters are ob-
tained, we project all depth pixels to 3D space and apply the
perspective transformation on all the points.

This calibration process is done once, offline. Since the
two cameras are close to one another (about 3 cm apart), the
search domain is relatively small around the depth camera.
It requires less than a dozen pairs of points to find these
parameters. However a better estimation is reached as more
pairs are given. Even after calibration is done, there are still
discrepancies between the two images. In the following we
describe how we further align the images, enhance the depth
image based on the color image (Sect. 4), and then enhance
the segmentation of the color image based on the enhanced
depth image (Sect. 5).
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4 Depth enhancement using color

There are four issues that we address in enhancing the depth
image using color. First, due to various environmental rea-
sons, specular reflections, or simply the device range, there
are regions of missing data in the depth image. Second, the
accuracy of the pixels values in the depth image is low, and
the noise level is high. This is true mostly along depth edges
and object boundaries, which is exactly where such infor-
mation is most valuable. Third, despite the calibration, the
depth and color images are still not aligned well enough.
They are acquired by two close, but not similar, sensors and
may also have differences in their internal camera properties
(e.g., focal length). This misalignment leads to small pro-
jection differences, even, again, these small errors are more
noticeable especially along edges. Lastly, usually the depth

Fig. 3 Down-sampling the color and depth images and up-sampling
the depth image using multistep joint bilateral up-sampling

image has lower resolution than the color image, and we
would like to up-sample it in a consistent manner.

To account for the above four issues, we apply the follow-
ing technique (see Fig. 3). First, we down-sample the high-
resolution image to the same resolution as the depth image
and then down-sample both images to a lower resolution.
Next, we use joint bilateral up-sampling [16] in two consec-
utive steps. The first step is aimed at filling in the missing
depth regions based on the color information, and the sec-
ond step aligns the two images while up-sampling the depth
to the higher resolution. Together this fills in the missing
regions, aligns the depth edges with color image edges, re-
moves inaccuracies caused by disparity estimation, and in-
creases the accuracy and consistency at depth edges and in
areas with high frequencies.

Let I (p) be the RGB color value at pixel location p, and
D(p) the corresponding depth at p. To fill in a missing depth
region, we down-scale the depth image and color image by
2−4 fraction. In the regions of missing depth data, we cal-
culate the average depth value of the region boundary and
assign it to all pixels inside the region. Next, we use joint
bilateral up-sampling to bring the resolution of the depth
image back to its original resolution while using the color
image data to assist in filling the correct depth values. The
up-sample filter uses samples from both the high-resolution
and low-resolution images in the range term of the bilateral
filter. The up-sampling is done in multiple stages, refining
the resolution by a factor of 2 × 2 at each stage. Each up-
sampling step is carried according the to following equa-
tion:

Dh
p =

∑

q∈Ω

wp,qDl
q

/ ∑

q∈Ω

wp,q, (2)

Fig. 4 Depth enhancement using multijoint bilateral upsampling.
(a) Color image. (b) A close-up view. Note the existence of an
edge. (c) Initial depth image with missing depth and rough edges.
(d) A close-up view. (e) The missing depth is correctly filled by re-

specting the color edge. (f) Depth image after filling in of the missing
depth. (g) A close-up view. (h) A close-up view. (i) The close up of
(h) after the final depth alignment
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Fig. 5 (a) Calibrated depth image (top) and the enhanced depth im-
age (bottom). (b) The depth gradients before (top) and after (bottom)
superimposed on the color image. (c) A close up to the superimposed
image

where wp,q = r(Ih
p − I l

q), r is a Gaussian range filter kernel,
h stands for high-resolution, l is the low resolution, and Ω

is a neighborhood of position p.
Since the up-sampling works jointly on both color and

depth data, it changes the values inside the smoothed filled
regions to be consistent with their depth boundary val-
ues, while preserving existing color edges within the re-
gion (Fig. 4(b, e)). However, the up-sampling also changes
(smoothes) the values in other regions of the depth image,
possibly to superfluous values. Hence, we only use the up-
sampled pixel values inside the missing regions and main-
tain the original depth in all other regions.

The process described above results in a depth image
with the original resolution and all missing depth interpo-
lated. However, it is still noisy and inconsistent with the
original color image (Fig. 4(h)). Therefore, we run the multi-
step joint bilateral up-sampling algorithm once more on the
new depth image, but this time only for one or two itera-
tions until we reach the original color size. This aligns the
depth with the color image information all over the scene
(Fig. 4(i)). The final result (Fig. 5) is a registered depth map
which gives a good cue for the depth of pixels in the scene
with no missing data and where color and depth edges are
aligned.

5 Segmentation using depth and color

Now that we have two aligned images, a color image I and
a depth image D, we present an automatic segmentation
method using both the color and depth information. Note
that joint segmentation is similar to extracting consistent
layers from the image where each layer (e.g., segment) is
accordant in terms of both color and depth. It is common for
real scene object, such as a person, to contain several differ-
ent colors, but a rather small range of depths. Using depth
information allows one to detect real object boundaries in-
stead of just coherent color regions. We therefore initialize

our segmentation with layers based only on depth. Next, in-
stead of searching for a single color value for each layer, we
use a probabilistic model (Gaussian Mixture Model) for all
colors in the region. Using this model, we then create the fi-
nal segmentation by minimizing a common energy function,

E(X) =
∑

p

Ed(xp) + λ
∑

p,q

Es(xp, xq), (3)

where p and q are two adjacent pixels, and X : I → L is the
assignment of a label to each pixel. This function consists of
two terms: The data term Ed which assigns each pixel to a
specific label (segment) according to its color and depth and
the smoothness term Es that encourages similar neighboring
pixels to belong to the same segment, i.e., have the same
label.

In practice, we induce the energy over a graph con-
structed from the image pixels and solve it using graph-
cut [2]. The segmentation gives an assignment of L labels
where each label l ∈ L defines a unique segment. Since we
use both depth and color information in the energy, these
segments represent real objects in the scene. “False” color
image edges have less effect on the segmentation since the
depth information reduces their relative weight. On the other
hand, since color information is used as well, layers with
similar depths can be separated into objects based on color.

Initialization We initialize the process using mean-shift
segmentation [4] on the depth image alone. This step defines
|L| layers in the depth. These layers are built from objects,
parts of objects, and some objects joined together. In our
experiments, we used between five to seven depth regions.
Each region is considered to be the seed for a label l in the
segmentation. Hence, |L| is the number of labels used in the
graph-cut procedure.

For each of the |L| segments, a Gaussian Mixture Model,
similar to [18], is fit. We use two Gaussians for each modal-
ity: two for the color image pcl(·) and two for the depth
image pdl(·). These models are used to define the distance
between elements in the definition of the energy function of
the graph-cut segmentation (see below).

Graph cut We use the regular construction of the graph G:
every pixel in the image is a node v in the graph, and we use
4-connectivity for the edges e which are called n-links. Ev-
ery node v is also connected with edges, which are called t-
links, to the terminal nodes tl . Below we give the description
of the weights assignment for the n-link and the t-link. After
the calculation of a minimum cut on the graph, we are left
with a labeling assignment for pixels, which leads directly
to a minimization of the energy function defined above. The
two types of energy terms fit the two types of edges in the
graph: the smoothness term as the n-link and the data-term
as the t-link.
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Fig. 6 (a) Color image.
(b) Depth image. (c) Automatic
segmentation using depth only.
Note that the woman on the
right cannot be separated from
the grass. (d) Automatic
segmentation using color only.
No layers created. (e) Automatic
segmentation using color and
depth. As can be seen, the layers
in the image are segmented.
(f) Mean shift using XY and
depth. (g) Mean shift using XY
and RGB. (h) Mean shift using
XY, RGB, and depth.
(i) k-means using XY and
depth. (j) k-means using XY
and RGB. (k) k-means using
XY, RGB, and depth

Fig. 7 The effectiveness of scribbles when color and depth are con-
sidered. Color or depth information alone cannot segment the scene
using such a small number of scribbles. (a) Top: 2 scribbles; bottom: 11
scribbles. (b) Segmentation using depth only. (c) Segmentation using
color only. (d) Segmentation using depth and color. Using only color

segmentation, 11 (e, top includes 2 of (a) + 9 more) or 21 (e, bottom
includes 11 of (a) + 10 more) scribbles are required to match the seg-
mentation with 2 scribbles (a, top) or 11 scribbles (a, bottom) using
both color and depth

Data term The t-links, from each tl to each node v, are
assigned with weights according to the data term calculated
by both color and depth channels. Formally, we calculate:

Ed(xp) = max
(
xp · Lcl

p ,α · xp · Ldl
p

)
, (4)

where α is the weight between the color and depth en-
ergy. pcl(·) and pdl(·) are the GMM models for each l, for
color and depth, respectively, Lcl

p = − ln(pcl(Ip)), Ldl
p =

− ln(pdl(Dp)), and Ip and Dp are the color and depth im-
age values at pixel p, respectively.

We merge the color and depth channels by using the max-
imum of their distance to the respective model. This way fit-
ting each pixel gives lower energy for a good match. The
actual weights on the t-links are calculated using the nega-
tive data term.

Smoothness term The smoothness term is also constructed
using both the color and depth information. The energy
weights on the n-links are calculated from the similarity be-
tween the two connected nodes. This similarity is calculated
on the color and on the depth separately, and then the fi-
nal value assigned to the graph is again the higher value
between them, giving stronger weight to the larger simi-
larity. Formally, when p and q have the same label, then
Es(xp, xq) = 0, and for pixels p,q that have different la-
bels, we define:

Es(xp, xq) = (
max

(
μ‖Ip − Iq‖, β · ϕ‖Dp − Dq‖))−1

, (5)

where β is the weight between the color and depth energy,
and μ = (〈‖Ip − Iq‖〉)−1 and ϕ = (〈‖Dp −Dq‖〉)−1 are the
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Fig. 8 Manual segmentation comparison: (a, d) The original with scribbles. (b, e) GrowCut segmentation result [23]. (c, f) Our combined depth
and color segmentation

Fig. 9 Automatic segmentation using color and depth can also outperform manual segmentation using color alone. Here we compare our automatic
segmentation results (a and d) with GrowCut segmentation result [23] (b and e) using the scribbles shown in (c and f)

expectation operators over the whole color and depth map
image, respectively.

After running a minimum cut on the graph, each pixel is
assigned a label defining its segment. To create more coher-
ent layers in the segmentation, we use superpixels defined on
the color image using mean-shift segmentation and apply a
voting scheme. The label of each superpixel is determined as
the majority of its pixel assignments. Figure 6 demonstrates
the strength of using both color and depth information for
segmentation rather than using only one of them. Running
on a Pentium 4, 3 GHz with 2 GB memory, on average it
takes around one minute for the joint bilateral upsampling
and 5–10 minutes for the graph-cut depending on the num-
ber of layers.

The segmentation can be also applied interactively. In
this case, instead of the voting scheme, the user marks
scribbles to initialize the segmentation. As can be seen in
Fig. 7, the use of both color and depth can help not only
for a better and precise capturing of the object, but also
for a more convenient scribble processing. When using the
scribbles in Fig. 7(a) on the segmentation with both color
and depth, the result, Fig. 7(d), describes the objects in the
scene naturally. While the segmentation using only depth
(Fig. 7(b)) or only color (Fig. 7(c)) is not sufficient to
capture the objects in a natural way. We have also com-
pared our method to the state-of-the-art algorithm such as
GrowCut [23]. The combination of depth and color can
enhance manual segmentation as demonstrated in Fig. 8.
We also illustrate that combining depth and color with no
manual intervention can outperform manual segmentation
in Fig. 9.

6 Retargeting using depth

Image retargeting deals mostly with changing the aspect ra-
tio of images. This process involves inserting or removing
parts from the image either directly (e.g., seam carving or
shift-map) or indirectly (i.e., warping the image to a dif-
ferent domain). The main difficulty in this process is how
to choose the right image parts so as to create a realistic
result with little artifacts. All image retargeting techniques
have difficulty especially when images contain many details,
many foreground objects, and, most specifically, people. In
this section we show how using the additional information
provided by image layers can assist to create better retarget-
ing results even in such situations.

The key point in a layered image is that it provides an
ordering on the image parts. This ordering can be utilized to
assist image retargeting simply by concealing farthest parts
of the image behind closer ones in a realistic manner and
without distorting these parts. For instance, the basic op-
eration for reducing the size of an image would be to re-
duce each layer separately (i.e., shift it toward the center
of the image) and then reconstruct the image from the lay-
ers. Indeed, by reducing each layer, some farther pixels will
be concealed by closer ones in the resized image (Fig. 10).
However, because of shifting, there will be pixels in the re-
constructed image with no value at all. These pixels need to
be filled with correct colors from the correct layer.

Assume that after segmentation we have k layers {L1,L2,

. . . ,Lk}. Each layer is assigned an ordinal depth value
τ(Li). This value is usually found by sorting the mean depth
value of each layer Li . That is, for a layer i closer than layer
j , it holds that τ(Li) < τ(Lj ). For simplicity, we will con-
sider τ(Li) = i. One exception to this rule is the ground
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layer. A layer is considered a ground layer if it touches the
bottom of the image and the differences between its mini-
mum depth dmin and maximum depth dmax is larger than a
given threshold. The ground layer is always considered at
the back of any layer whose depth is smaller than dmax.

Assume that we need to reduce the width of the image
from W to W ′ (height changes are done similarly). This
means that we need to reduce the width by a factor of
r = W ′

W
. Let ci = (cix, ciy) denote the center of mass of layer

Li . Our first step is to shift each layer by r
2 (cix − W

2 ) + W ′
2 .

Hence, all layers move uniformly toward the center of the
image. After the shift, pixels that are outside the width W ′
are cropped. Inside the new image, several layers may over-
lap, meaning that some pixels may contain more than one
layer. The color value of these pixels is defined as the color
of the closest layer. On the other hand, because of the shifts,
some pixels will not be covered by any layer (Fig. 11(b)).

Fig. 10 Retargeting using layers: each layer is rearranged in the new
size. This causes holes and missing areas which are inpainted by asso-
ciating them to the most likely layer

We call these pixels null pixels as they do not have any color
associated to them.

Our first attempt at reducing the number of null pixels is
to perturb the layers position by up to ±Δ where Δ = 5 pix-
els. We use a greedy algorithm (see Algorithm 1) that checks
all shifts of each layer individually from back to front, each
time checking if the number of null pixels are reduced by the
shift. If they are reduced, we keep the new layer position and
continue to the next layer, looping back to the last layer af-
ter we reach the front one. We continue in this manner until
there is no more change (Fig. 11(c)).

To fill in the missing regions that still remain, one could
use simple inpainting. First, this does not always give sat-
isfactory results as the pixels must be filled from the cor-
rect layer (see Fig. 12). Second, there are cases where layers
have regions that should be filled even if they are not null

Algorithm 1 Layer jittering
1: function J = JITTERLAYERS(I = (L1,L2, . . . ,Ln))
2: count ← ‖null(I )‖ 	 the number of null pixels
3: repeat
4: prev_count ← count
5: for i = n → 1 do
6: for j = −Δ : Δ do
7: I ′ = (L1 . . .Li + j . . .Ln)

8: Nj ← ‖null(I ′)‖
9: end for

10: Ji = argminj {Nj }
11: Li ← Li + Ji

12: end for
13: count ← ‖null(I )‖
14: until prev_count = count
15: return J = (J1, J2, . . . , Jn)

16: end function

Fig. 11 (a) Original and layer image; (b) after shifting the layers; (c) after jittering; and (d) final result after inpainting
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(see Fig. 14). For instance, some pixels may have a color
obtained by a back layer while they are part of a front ob-
ject that was concealed in the original image (see Fig. 13).
Yet again, better results are obtained by utilizing the depth
information. We use the layers from our segmentation al-
gorithm to associate the most probable depth layer for each
pixel and use the color information from that layer to inpaint
that pixel. Note that this procedure is done not only for null
pixels, but also for pixels that may contain a wrong color
from a background layer.

In the original image, each layer L could be adjacent to
several different layers. We define B = B(L) as the bound-
ary pixels of a layer L that connect to layers in front of
L. B can be segmented into piecewise connect parts Bi =
(b1, b2, . . . , bt ) where each bi is the pixel on the boundary
that is adjacent to a single layer (but cannot be expanded).
Next, we examine the shape of the underlined borders. As-
sume that pixels bi are adjacent to layer L′ that is in front
of layer L. If layer L′ penetrates into layer L (see Fig. 13),
then after layer L′ is moved due to retargeting, the pixels
in the penetrated part must be filled by layer L and not by

Fig. 12 (a) Retargeted image before image completion with missing
parts (red). (b) Filling the missing parts using [25] completion method.
(c) Filling these parts using our layer-coherent image completion. Note
specifically the area between the legs of the girl on the right

any background layer that could be revealed behind it (see
Fig. 14). To account for these situations, we calculate the
convex hull for every boundary part bi (see Algorithm 2).
Later, in the retargeted image, if the pixels in the convex
part are not covered by any layer in front of L, we fill them
by inpainting using layer L itself. This is performed even if
these pixels are not null pixels.

Lastly, if a region still remains null (unassigned) after
filling all convex parts of all layers (meaning that it is not
inside a convex part of any layer), then we assign it to the
layer with largest boundary adjacent to the region. In prac-
tice, we check the designated location, only if it is concealed
by frontal layer (Fig. 13(left)) at that relative location. Oth-
erwise, it is discarded, and we move on to the next layer in
boundary length. In cases where there are no suitable adja-
cent layer (see Fig. 12 between the legs of the girl on the
right), we assign it to the closest layer behind all the layers

Algorithm 2 Boundary analysis and convexification
1: function B = BOUNDARYANALYSIS(I =

(L1,L2, . . . ,Ln))
2: for all neighbors (p, q) in I do
3: if p ∈ Li, q ∈ Lj , (j > i) then
4: Borderi ← Borderi ∪ p

5: end if
6: end for
7: for i = 1 → n do
8: Bi = ∅
9: 	 loop and convexify connected sets of pixels

10: for j = 1 → ‖conSet(Borderi )‖ do
11: bj = getConSet(Borderi , j )

12: Bi ← Bi ∪ Convex(bj )

13: end for
14: end for
15: return B = (B1,B2, . . . ,Bn)

16: end function

Fig. 13 Convex filling layers. Left: the red region indicates potential
concealment by front layers. The blue and yellow regions are common
boundary of the tree layer and frontal layers. Middle: the blue and
yellow regions are the intersection of the convex borders with the front

layers designated to be completed. Right: an illustration of layer com-
pletion. Note that the image completion is carried out only for missing
parts of image and not for each layer
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Fig. 14 Filling missing regions by utilizing the color from the correct
layer (left). Nonmissing regions are also filled, such as the dancer hand
silhouette on the sign (right)

Algorithm 3 The layer retargeting algorithm
1: procedure LAYERRETARGETING(I =

(L1,L2, . . . ,Ln), r)
2: for i = 1 → n do
3: mi ← avg(Li)

4: si ← (
Iwidth

2 − mi)
r
2

5: Li ← Li + si
6: end for
7: B ← BoundaryAnalysis(I )
8: J ← JitterLayers(I )
9: B ← B + J

10: LayerCompletion(I ,B)
11: end procedure

12: function LAYERCOMPLETION(I =
(L1,L2, . . . ,Ln),B)

13: for i = n → 1 do
14: place convex Bi (with value −i) onto Image I ′
15: place RGB value layer Li onto image I ′
16: end for
17: for i = 1 → n do
18: Complete regions R ∈ I ′
19: with value −i from layer Li

20: end for
21: Complete region R ∈ I ′ with no assignment
22: Using layer Li with the largest boundary
23: end function

surrounding the null region. This layer, again, must be con-
cealed at that location (the grass layer in Fig. 12). The full
algorithm is outlined in Algorithm 3.

Once every pixel has been associated with a layer as
demonstrated in Fig. 11(d), we preform a patch-base image
completion technique of [12] to fill in the designated parts.
We use the patch base image completion. More results of
our methods for retargeting are shown in Figs. 16 and 17.

Fig. 15 Layer operations. Cloning (left): a user drags and drops a layer
to a new location in the image. The layer is scaled and inserted auto-
matically utilizing the depth information. Layer transfer (right): a new
layer from a different image replaces a previous one

We also compared our results to some examples from Retar-
getMe benchmark [17]. Note that as no depth information
was available for these images, the layers were separated
manually. As illustrated in Fig. 18, for images where there
are many condensed details, our retargeting scheme creates
better results by using overlaps.

7 Limitations and conclusions

We have presented a method that combines two image
modalities, depth and color, to achieve an enhanced segmen-
tation. The two channels differ in resolution, and both con-
tain noise and missing pieces. We showed how to carry in-
formation from one modality to the other to enhance the seg-
mentation of the image into layers. We also demonstrated a
novel image retargeting algorithm that utilizes such layered
segmentation for resizing complex images that are difficult
for previous retargeting algorithms.

Not all images could be separated into discrete layers.
Some objects such as trees or hair as well as transparent
objects call for more sophisticated methods of combining
layers. Shadows also create difficulties for good segmen-
tation and retargeting. It is possible to use alpha-matting
while trying to separate and combine such layers. In this
case each pixel will have soft assignments to several lay-
ers instead of a single one. These situations could be dis-
tinguished by utilizing depth information as well: pixels
where the depth value is not consistent over time can lie
on the edges of objects or on fuzzy or transparent objects.
Using several images or video may assist in recognizing
these pixels. Our work only begins to explore the oppor-
tunities of combining the two modalities. There are also
many other applications that could benefit from segmen-
tation with depth data such as restructuring of recomposi-
tion and cloning. As an example, we illustrate restructuring
based on layers in Fig. 15. In the future we would like to ex-
plore these extensions both for better classification of multi-
ple layers, for extension to video, and for utilizing depth in
more applications.
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Fig. 16 Retargeting using
depth information: (a) image,
(b) depth image, (c) layers
extracted, (d) retargeted image

Fig. 17 Comparison of retargeting by 30%: (a) original image, (b) seam carving, (c) shift map, (d) optimized scale-and-stretch, (e) our method.
Using layers (in this case artificially created) can alleviate artifacts in complex images
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Fig. 18 Comparing our results (bottom right) to various retargeting
algorithm from RetargetMe benchmark: the original image and lay-
ers are shown on the top. The results shown are from top left (see de-
tails in [17]): cropping, streaming video, multioperator, seam carving,

nonuniform scaling with bi-cubic interpolation, shift-maps, scale-and-
stretch, nonhomogeneous warping, and finally at the bottom right, our
method. As can be seen, these images contain many details that are
either lost or deformed in previous approaches
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