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Abstract This paper presents an approach to simultane-
ously tracking the pose and recognizing human actions in a
video. This is achieved by combining a Dynamic Bayesian
Action Network (DBAN) with 2D body part models. Exist-
ing DBAN implementation relies on fairly weak observa-
tion features, which affects the recognition accuracy. In this
work, we use a 2D body part model for accurate pose align-
ment, which in turn improves both pose estimate and ac-
tion recognition accuracy. To compensate for the additional
time required for alignment, we use an action entropy-based
scheme to determine the minimum number of states to be
maintained in each frame while avoiding sample impover-
ishment. In addition, we also present an approach to au-
tomation of the keypose selection task for learning 3D ac-
tion models from a few annotations. We demonstrate our
approach on a hand gesture dataset with 500 action se-
quences, and we show that compared to DBAN our algo-
rithm achieves 6% improvement in accuracy.

Keywords Human action recognition · Dynamic Bayesian
network · Pictorial structure

1 Introduction

The objective of this work is to recognize single actor hu-
man actions in videos captured from a single camera. Au-
tomatic human action recognition has a wide range of ap-
plications including human-computer interaction (HCI), vi-
sual surveillance and automatic video retrieval and has been
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a topic of active research in computer vision. Existing ap-
proaches differ on how the actions are modeled and how
they are matched to the observations. In this work, we rep-
resent the actions as a sequence of simple action primitives
represented in a Dynamic Bayesian Network (DBN), re-
ferred to as a Dynamic Bayesian Action Network (DBAN).
Most likely activity sequences of actions, based on observa-
tions are computed from the DBAN. Observations are de-
rived from the shape of the extracted foreground blobs cor-
responding to human actors. Our work closely follows the
approach described in [13], but that work uses only the over-
all shape of the blobs as descriptors whereas we incorporate
a more elaborate part-based analysis and show resulting im-
provements in performance. To distinguish our method from
that of [13], we refer to the method used in [13] as DBAN-
FGM (FGM standing for foreground matching)

In [16], we proposed an extension to DBAN, DBAN-
Parts that use an intermediate 2D body part representation
of the human model to accurately match the human model
and image observations across shape variations and obser-
vation noise. Given a person scale and approximate view-
point, the 3D pose is orthographically projected to 2D to
determine the visible parts. A 2D part-based model [3] is
then used to accurately align the 2D pose. The likelihood of
the pose to recognize human actions is then computed over
the aligned parts. This allows for more accurate local search
for matching the 3D model to the image observation, result-
ing in more accurate action recognition. Furthermore, fewer
samples need to be maintained which partially compensate
for the time required to compute pose alignment. To further
speed up the inference, we automatically determine the min-
imal number of hypotheses to be maintained at each step by
defining an action class entropy. This paper extends our pre-
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vious conference publication [16].1 Here, we also present a
novel approach to automatically obtain primitive boundaries
instead of manually selecting the boundaries (by selecting
keyposes) as in [13, 16].

While [13] uses DBAN with foreground-based features
for matching poses and shows good results on datasets with
large pose variations such as Grocery Store and Weizmann
set [2, 13], the recognition accuracy on the Gesture dataset
with subtle pose variations is quite low, especially with
fewer training data; the Gesture dataset [13] has about 500
segmented action sequences with a variety of arm gestures
common in HCI applications. In this work, we show results
on the Gesture dataset and demonstrate that using the 2D
part model to compute the pose likelihood allows for a more
accurate action recognition and pose estimation.

In the rest of the paper, we first review the related work
in Sect. 2. We then discuss action model representation in
Sect. 3; we also briefly describe how the actions are mapped
to a Dynamic Bayesian Action Network. Next, we present a
modified inference algorithm for efficient pose tracking and
action recognition over DBAN in Sect. 4, followed by the
part model representation and alignment in Sect. 5, results
in Sect. 6 and conclusion in Sect. 7.

2 Related work

A popular approach to recognizing human actions is to use
histograms of sparse spatio-temporal features [7] and use a
classifier (such as SVM) to determine the action label. Such
approaches are attractive in that because no explicit action
modeling is required but they require a large amount of train-
ing data to capture viewpoint and other variations; they are
also difficult to apply to the task of continuous action recog-
nition. An alternative approach is to use graphical models
to represent the evolution of the actor state in a video, for
e.g. using HMMs [14], DBNs [10, 13] and CRFs [11, 12,
17]. The actor state is generally represented using a human
model with 3D joint positions [10], 2D part templates [5]
or an implicit representation using latent variables [4, 19].
Learning these models requires Motion Capture (MoCAP)
data which can be difficult to collect.

Recently, [13] proposed a method to learn Dynamic
Bayesian Action Network (DBAN) models from a small
number of 2-D videos. This method computes the likelihood
of a sampled pose by matching the foreground feature vec-
tors computed over the projected human model with that ob-
tained from the observed image. Simple pose matching met-
rics, such as foreground overlap [17, 20], have been popular

1Compared to [16], this paper includes additional explanations of the
proposed framework with illustrative figures and an extended review
of the related work.

in human action recognition literature due to their efficiency
but are sensitive to foreground noise. Further, note that the
matching is not straightforward, since the person scale and
shape variations across different actors must also be taken
into account. While local descriptors such as Shape Context
[10] can be used for robust matching across shape variations,
they are sensitive to small variations in blob shape and com-
puting these descriptors is also computationally expensive.
Another commonly used feature is optical flow [2, 6, 12] but
obtained flows can be extremely noisy. Attempts have also
been made to fit the sampled human pose to observations us-
ing stochastic search methods such as gradient descent and
MCMC [8]. However, due to the non-convex nature of the
likelihood function, gradient-based methods often fail due to
local maxima and MCMC-based methods become computa-
tionally too expensive for efficient pose tracking. Recently,
part-based graphical models [3] have been shown to accu-
rately location 2D poses, but they do not model inter-part
occlusion.

3 Action representation

Our action representation is based on the concept that a com-
posite action can be decomposed into a sequence of sim-
ple primitive actions. Each primitive action pe modifies the
state s of the actor to give a new state s′. For example, we
consider walking as a composite action that involves four
primitives—left leg forward → right leg crosses left leg →
right leg forward → left leg crosses right leg. Each primitive
can be defined as a conjunction of rotation of body parts, for
e.g. during walking, rotation of upper leg about the hip and
rotation of lower leg about the knee. To allow robust infer-
ence, we map these action models to a Dynamic Bayesian
Network (DBAN).

3.1 Learning action models

We can learn the action models either from 2D pose and
action boundary annotations [13, 16, 18] or from 3D Mo-
tion Capture sequence of the action [10], if available. To
obtain the model for each composite action, [16] propose
to manually select the keyposes for each action; each key-
pose marks a discontinuity in the angular representation of
the human pose. The 3D model for each keypose is then
obtained by lifting 3D pose from 2D annotations [13, 18];
alternatively if the MoCAP is available one may obtain the
keyposes by computing pose energy [10]. These approaches
either require expert knowledge to manually determine the
keyposes or rely on the availability of MoCAP data for all
the actions.

We propose to automatically determine the keyposes
without the MoCAP data, by reconstructing approximate 3D
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Fig. 1 Action Model
Illustration for Crouch action
with three keyposes and two
primitives (figure obtained
from [13])

pose sequence from a few 2D annotations and then finding
keyposes as peaks in the pose energy profile [10]. Given a
video sequence of a composite action, we first uniformly an-
notate a few poses by marking the joints and the relative
depths. These poses are then lifted to 3D using the approach
described in [13, 16, 18]. We then transform the 3D joint po-
sition representation of the pose to the joint-angle represen-
tation, where the pose is represented by a length of each part
and the relative angle of each part in the coordinate frame of
the parent part. This transformation allows us to model the
feasible range of the human pose using linear constraints.
Let K denote the set of annotated poses, A denote the addi-
tional joint annotations (for smoothness). We formulate the
3D pose sequence recovery problem as the estimation of the
joints angles θ over all frames, given by (1):
∑

f ∈K

∑

j∈J

(
θf,j − θa

f,j

) +
∑

j∈A

∥∥proj(θf,j ) − pa
j

∥∥2

+
∑

f

(θf +1 − θf )2 (1)

s.t. ∀f θL < θf < θU

where θf,j is the relative angle of joint j in frame k. The
first term is the mismatch error between the estimation pose
sequence and the annotated poses; the second term is the
mismatch error in matching the additional annotations; and
the final term guarantees that the pose change is slow and
the estimated solution is unique. The vectors θL and θU are
the lower and upper bounds on the human pose, to guarantee
a feasible pose in each frame. We use levmar library [9] to
solve (1).

At this stage, each composite action is essentially a se-
quence of 3D keyposes with time intervals. Now for every
consecutive keypose pair, we define the primitive as the per
time step transformation required to go from one keypose
to the next i.e. the primitive transforms one keypose to next
over a time duration. This duration model allows us to model

the speed variations across multiple actors. Now since dur-
ing a primitive, each part has rotated about a single axis,
each primitive can be simply defined as a conjunction of the
rotation of body parts. Note that, using this representation,
we can obtain a strong prior on the 3D pose of a person per-
forming a composite action, after time t has elapsed from
the start of the action.

Figure 1 shows an illustration of action model obtained
for the crouching action.

3.2 Dynamic Bayesian action network

Given the action models, [13] embeds them into a Dynamic
Bayesian Network (DBN) which is referred to as the Dy-
namic Bayesian Action Network (DBAN). DBAN used in
[13] correspond to the first three layers on the model shown
in Fig. 2, with foreground observation nodes (not drawn in
the figure for clarity). The nodes in the topmost layer corre-
spond to the composite actions like walk, flap, etc. The sec-
ond layer corresponds to the primitives and the third layer
corresponds to the human pose. A duration node is asso-
ciated with each primitive that captures the time elapsed
(in number of frames) since the primitive started. Thus, the
state st of the DBAN at time t is denoted by the tuple
(cet ,pet , dt ,pt ). In this work, instead of directly evaluating
the projection of 3D pose on the observations as in [13], we
represent the projected pose using a 2D part model, which
is represented as the fourth layer in Fig. 2.

The optimal state sequence s∗[1:T ] for an observation
sequence of length T is computed by maximizing the
weighted sum of potentials similar to [1, 13]

s∗[1:T ] = argmax
∀s[1:T ]

T∑

t=1

(∑

f

wf φf (st , It ) + ψ(st−1, st )

)

(2)

where φi(st−1, st , It ) are observation and transition poten-
tials and wi is the weight vector that models the relative im-
portance of the potential functions. Note that DBAN is a
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Fig. 2 Dynamic Bayesian
Action Network with 2D Part
Model (DBAN-Parts).
(a) Rolled version showing
Action network with two actions
sharing primitives. (b) Unrolled
version, DBAN is enclosed
within the dotted box.
Observation nodes are not
shown for clarity

multi-variable state representation of the HMM in [1]. Fur-
ther note that the objective function given by (2) has the
same form in both DBAN-FGM and DBAN-Parts, however,
the observation potentials are different since DBAN-Parts
uses part models.

3.2.1 Transition potential

The state transitions are modeled by primitive and pose tran-
sition potentials, given by (3). The primitive transition po-
tential captures speed variations across action instances by
using log of signum function over the duration length, such
that the probability of staying the same primitive pet de-
creases near the mean duration μ(pet ) and the probability
of transition to a new primitive increases.

The pose transition potential enforces smoothness over
poses and is modeled using normal distribution with the
mean and variance N (θmean, θvar) of displacement of body
joints learned during the training

ψ(st−1, st ) =
(

− ((pt − pt−1) − θmean)
2

2θ2
var

)

+ (− ln
(
1 + e

(−1+β
dt −μ(pet )

σ (pet )
))) (3)

where β = 1 if pet = pet−1, otherwise β = −1.

3.2.2 Observation potential

The observation potentials of a state φobs(st , ot ) are defined
using features we extract from the video. DBAN-FGM [13]
projects the 3D pose and computes the likelihood of the pro-
jected pose using multiple features, such as foreground over-
lap and difference image match. In this work, however, we
project 3D pose to obtain a 2D part model and which allows
an efficient local search and more accurate fit to the obser-
vation.

3.2.3 Relative weight vector

Reference [13] proposed a variant of Voted Perceptron algo-
rithm [1] to learn the feature weights in a DBAN. The learn-
ing algorithm initializes with a random weight vector and
iteratively update the weight vector to reduce the log likeli-
hood error on the training data. In this work, we employ the
same algorithm to the learn the weights.

4 Simultaneous pose tracking and action recognition

Here, we describe the algorithm to simultaneously track hu-
man pose and recognize the action in a video using DBAN-
Parts. DBAN-FGM [13] infers the action label by matching
all action models with observation sequence and finding the
best match. Matching is done by sampling poses from ac-
tion models and fitting the model to the observed image.
For efficiency, instead of matching each action model sep-
arately and then selecting the best match, all models are
matching simultaneously in one-pass by maintaining multi-
ple state sequences. Since the number of possible sequences
is combinatorial, all possible sequences cannot be consid-
ered. DBAN-FGM [13] uses a greedy strategy and main-
tains top N state sequences that have the highest score. This
greedy selection step is too aggressive. If the number of sam-
ples N is small it often results in impoverishment of state
samples from all actions thereby leaving samples only from
one action after just a few frames; once all the samples from
an action are pruned out, that action class is never recon-
sidered. If, however, the number of samples is too high, it
drastically slows down the inference; furthermore, if after a
few frames all state samples belong to the same action class,
maintaining large number of samples as no benefit on accu-
racy and only hurts due to high computational cost.

In this work, we estimate the appropriate number of sam-
ples that needs to be maintained at each frame such that state
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samples from all likely actions are well represented; this is
done by defining a measure of uncertainty over the currently
active action labels. Below, we present step-by-step descrip-
tion of the proposed inference algorithm; the pseudo-code is
shown in Algorithm 1.

Algorithm 1 Inference Algorithm
� Obtain initial states by sampling poses

from all composite action models
S1 = {〈s(i)

0 , α
(i)
0 〉 | i = 1 . . .Nmax}

for t = 0 to T do
� Obtain observation feature maps Ot+1

for all s
(i)
t do

� dt+1 = dt + 1
� Obtain 〈ce(i)

t+1,pe
(i)
t+1〉 ← allow(cet , pet , dt+1)

for all 〈ce(i)
t+1,pe

(i)
t+1〉 do

� Sample pose from the action model,
p

(i)
t+1 ∼ φp(pt ,pet+1,pt+1)

� Compute the state potential
α

(i)
t+1 = α

(i)
t + ∑

f wf φf (s
(i)
t , st+1, ot+1)

� Push 〈st+1, α〉 to St+1
end for

end for
� Obtain action class likelihood vector,

v = {vce}, where vce = max
s
(i)
t+1=〈ce,...〉 α

(i)
t+1

� Set target sample set size, Nt ∝ (∑
ce vce log(vce)

) × Nmax
� Prune St+1 such that |St+1| ← max(Nt ,Nmin)

end for
� actionlabel = arg max

s
(i)
T

α
(i)
T

4.1 Initialization

For initializing the state distribution, we sample poses from
all the composite actions in the action set. For viewpoint
invariance, all likely viewpoints are considered for each pose
sample from every composite action model.

4.2 Prediction: sample next state

For each state st , we increment the duration of the state
by unit time step. Given the current action (cet ,pet )

and new duration, we then sample the next action state
(cet+1,pet+1). Note that if primitive transition occurs, then
the duration is set to 0 to mark the start of a new prim-
itive. Next, we sample from the pose transition potential
φp(pt ,pet+1,pt+1) to choose the next pose pt+1.

4.3 Fit the sampled state to the observation

We first apply a pedestrian detector [21] to find the per-
son in the video, thus our algorithm initializes only when a
standing pose is observed. We then apply a combined shape
and foreground blob tracker to track and localize the person
in each frame, even through changing poses. The position

and scale information available from the person tracker is
then used to adjust the 3D pose sampled from the action
model in the previous step. Given the adjusted 3D pose, we
then orthographically project the pose to construct a 2D part
model which is then used for accurate localization. Note that
during the projection step, we automatically determine the
non-observable/occluded parts and do not use those parts
for localization. Figure 3 show some sample 3D poses and
corresponding 2D part models. Using the 2D part model,
we then perform a local search to accurately fit the pose to
the observation. The details on obtaining the 2D part model
from 3D pose and the local search is described in detail in
Sect. 4. The likelihood of the pose/state is then computed
by matching the localized 2D pose with low-level image
features. This includes computing the observation potential
φobs(st+1, ot+1) using foreground match, difference image
and part templates (described later in Sect. 4.2).

4.4 Selecting the state samples

Since maintaining all possible state sequences is not possi-
ble, only a small number of states are retained in each frame.
As discussed earlier, a greedy sample selection step can lead
to sample impoverishment and may significantly affect both
accuracy and efficiency of the algorithm. To avoid action
sample impoverishment, we set the minimum number sam-
ples Nmin to be maintained in each frame; we also set Na

max
as the maximum number of samples allowed for any action
class. Note that this may address the sample impoverishment
from different action classes but still has poor efficiency.

We define a measure of action label uncertainty in the
current frame by computing the entropy over the distribution
of currently active actions/states; an action is considered ac-
tive, if there is a state sample corresponding to that action. To
compute the entropy of the currently active actions, we com-
pute the action class likelihood vector v = {vce}, where vce

is the highest likelihood score over all states in the current
frame that belong to the action class ce. Given the action
class likelihood vector v, we then define the target sample
set size Nt in the current frame t as

Nt ∝
(∑

ce

vce log(vce)

)
× Nmax. (4)

Note that when action label uncertainty is high (i.e. state
samples corresponding to different action classes have sim-
ilar scores), large number of samples (Nt is high) are main-
tained thereby allowing presence of samples from different
action classes and avoiding impoverishment. When uncer-
tainty is low i.e. the samples are likely to the belong to
the same/few action class, and thus only a few samples are
enough for accurate inference; note that maintaining fewer
samples also speeds up the inference.
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5 3D Pose observation using 2D body part model

In this section, we describe the localization of a 3D pose
projected from a given viewpoint. This is achieved using a
graphical model of the 2D body parts. The body part model
used in the work is similar to the Pictorial Structures [3]
which is widely used for estimating human pose in an im-
age. The model has 10 nodes, each corresponding to a body
part—head, torso, upper arms (l, r), lower arms (l, r), up-
per legs (l, r) and lower legs (l, r). These nodes are con-
nected with edges that capture the kinematic relationship be-
tween the parts. Figures 3 and 4 show the part model. For
localization using Pictorial structure, the individual parts
are searched by applying part detectors at all locations and
orientations followed by belief propagation to enforce kine-
matic constraints. Note, however, that in this work, our ob-
jective is to accurately localize a 3D pose projected from
a given viewpoint. This imposes a strong constraint on the
orientation of the body parts and their kinematic relation-
ship. Furthermore, approximate position and scale informa-
tion is also available from the person detection step. Hence,
localization in our case does not require a dense part search.
However, during localization, we need to tackle the problem
that some of the body parts may not be observable, either
due to inter-part occlusion (see Fig. 4) or 3D–2D projection
(see Fig. 3(b)).

Now we first describe the process to generate the 2D part
model appropriate for localization, and then we briefly de-
scribe the localization using local search.

5.1 Building 2D part models

We project the 3D pose from the given viewpoint to estimate
the 2D position of the body joints. From the body joints,
we build a rectangular cardboard model by fitting a rectan-
gle between every pair of joints connected by a body part
(shown in Fig. 4(c)). During projection, we also estimate

the relative depth order of the 2D parts. Next, we deter-
mine which parts are visible based on the depth order and
pairwise overlap between the part rectangles. In our experi-
ments, we considered parts with percentage visibility below
50% to be occluded. Furthermore, when projecting 3D pose
to 2D, some of the body parts are too small to be observed
(see Fig. 3(b)) and thus are not useful for localization. Fig-
ure 4 shows the flowchart of building the 2D part model for
a 3D pose from a given viewpoint.

5.2 Part detectors

We use template-based matching for detecting body parts
in the image. We model the head with an ellipse tem-
plate, torso with an oriented rectangle and each arm with
a foreshortened pair of lines. We compute the log likelihood
score φ(I |x) of a part hypothesis x by accumulating the
edge strength and orientation match scores on the boundary
points.

φ(I |x) =
∑

xi∈x

dmag
(
I (xi)

) × dori
(
xi, I (xi)

)
(5)

where dmag(I (p)) is the approximate Euclidean distance to
the nearest edge pixel from the image point p, weighted by
the edge strength. This can be calculated very efficiently us-
ing generalized distance transform over the edge likelihood
map [3]; dori(p, I (p)) is the orientation likelihood, which is
the dot product between the normals at the model point p

and corresponding point in the image I (p). Since the orien-
tation information is often very noisy, we approximate the
normals by quantizing into eight bin orientations.

5.3 Localization using 2D part models

Given the scale adjusted 3D pose X and position informa-
tion, we first apply the detector for each part xi over the
expected position and orientation of the part and a small
neighborhood around it. Pose estimate is then obtained by

Fig. 3 Sample 3D poses and
their corresponding 2D part
models used for alignment;
non-observable nodes in (b) are
marked with dotted boundary

Fig. 4 Illustration of estimating
2D Body part models from the
3D Pose; Note that the node
corresponding to right upper
arm is non-observable (due to
occlusion) and is marked with
dotted boundary in (d)
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Fig. 5 Results on the Gesture
dataset: the bounding box shows
the person position and the
estimated pose is overlaid on top
of the image, illustrated by limb
axes and joints

maximizing the average log likelihood of the visible parts,
given by

φps(p, I ) =
∑

i∈V

φi(I |xi) +
∑

ij∈E

ψij (xi, xj ) (6)

where V is the set of all visible body parts, E is the set of
part pairs that are kinematically connected; and φi() is the
likelihood map of part i obtained by applying the detector.
We normalize the total potential by number of visible parts
to remove bias toward poses with fewer visible parts. Note
that occlusion sensitive pose localization proposed here is
different from that used proposed in [15]. Compared to [15]
which consider pixel level occlusion constraints for each
part, we only consider parts which are almost completely
visible (with visibility more than 80%). This allows our in-
ference to be much more efficient and as we show in our re-
sults, the localization is accurate enough for reliable action
recognition.

6 Experiments

We tested our approach on the Hand Gesture Dataset [13];
the dataset includes about 500 instances of hand gestures
used in HCI applications.

[Dataset Description]
The Gesture dataset has 12 actions performed by eight dif-
ferent actors, captured from a static camera in an indoor lab
setting. The action set include—Column Left (bend left arm
from side to overhead), Column Right, Open Up (move both
arms from overhead to side), Close Up (move both arms up-
ward from side), Turn Right (extend arm to right side), Turn
Left, Line (extend arms parallel to ground), Close Distance
(clap), Stop Right (raise right arm upward to the full extent
of arm), Stop Left, Action Left (extend both arms, then raise
left arm overhead), Action Right. Figure 5 shows sample
frames from the dataset.

Each action sequence in the dataset has exactly one per-
son performing the action, facing the camera. Each actor

performs every action about five times, thus the dataset con-
tains a total of about 500 action sequences. The videos are
852 × 480 resolution, and the height of person varies be-
tween 200–250 pixels across different actors. This set is
similar to that used in [14] but has a bigger variety. As the
background is not highly cluttered, extracted foreground is
quite accurate but the large number of actions with subtle
differences makes recognition still a challenging task.

[Experiment Settings]
To compare our inference algorithm with that in [13], we use
the same experiment settings wherever possible. The mod-
els for each action were obtained by video annotation. For
learning the feature weights for each action model, the same
training data as on which the action model is trained. The
feature weights were randomly initialized and the one that
achieves the highest accuracy on the training set was used
during testing.

During inference, we set the minimum samples for each
action Nmin to three and maximum number of samples in
any frame Nmax to 15. In our experiments, the actual num-
ber of samples in a frame varied between three and 15 due
to the entropy-based sample set selection, and on an average
about seven samples were maintained in each frame.

[Quantitative Evaluation]
To evaluate the performance of our approach, we computed
both the action classification accuracy and the error in pose
estimates. We split the action sequences into train and test
sets based on the actors i.e. the action models trained on a
subset of actors and test on the rest. Since each video se-
quence contains only one action; it is said to be recognized
correctly if its label is the same as in the ground truth. Since
the primary contribution of DBAN-FGM [13] is on learn-
ing action models with low training requirements, we ran
our experiments with train:test ratio of 1:7. The second col-
umn of Table 1 provides the recognition results, averaged
two training sets. The accuracy numbers for 1:7 train:test
for DBAN-FGM were obtained from Fig. 6(b) in [13].
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Table 1 Performance on Gesture Store dataset

Approach Train:Test Recognition 2D Tracking

ratio (% accuracy) (% accuracy)

DBAN-FGM [13] 1:7 78.6 75.67 (89.94)

DBAN-Parts 1 : 7 84.52 81.76 (92.66)

Fig. 6 Confusion matrix for the Hand Gesture dataset

To evaluate the effect of our 2D Part model, we evalu-
ate the errors in the pose estimate obtained using our infer-
ence with DBAN-FGM (that does not use 2D part model).
To measure the error in pose estimates, we manually anno-
tated 48 2D poses four randomly selected frames from an
instance of each action class, and compute the accuracy of
the estimated 2D parts. A 2D part estimate is considered
correct if it lies within the length of the ground truth seg-
ment. Since our experiments are on hand gestures, a more
meaningful evaluation is to compute the pose accuracy only
over the arms, since arms are the only parts involved in the
action. The third column of Table 1 provides the pose accu-
racy computed over the arms (192 annotations); the numbers
within parentheses show the accuracy over all the body parts
(480 annotations). Even though the improvement in pose ac-
curacy averaged over all parts is not quite significant (only
2.5%), notice that the accuracy over the parts relevant to the
action (arms) is about 6%.

We also report the confusion matrix for the recognizing
actions using DBAN-Parts over the entire dataset. Figure 6
shows the confusion matrix for train:test ratio of 1:7. No-
tice that the recognition accuracy is around 85–90% for each
action, except for Line and OpenUp actions which got mis-
classified as TurnRight and ColumnRight, respectively. Ob-
serve that in both cases, action model of one arm is same and
hence the confusion is expected due to similarity in poses.
We believe more accurate part detectors would be able to
localize better and deal with such ambiguities. Further note
that the actions (CloseDistance, StopRight and StopLeft) that
contain poses where arms are non-observable/occluded, get

correctly recognized; Fig. 5(e) shows an example of such a
pose in StopRight action, where the right arm is occluded.

7 Conclusion

In this work, we have presented a general framework for si-
multaneous tracking and action recognition using 2D part
models with Dynamic Bayesian Action Network [13]. The
2D part model allows more accurate pose alignment with
the observations, thereby improving the recognition accu-
racy. To compensate for the additional time required for
2D part alignment, we proposed an action entropy-based
scheme to determine the minimum number of samples to
be maintained in each frame while avoiding sample impov-
erishment.

In future, we plan to apply this algorithm in more com-
plex domains with cluttered environments by employing
more accurate part detectors. In existing implementations,
action models are defined by dynamics over all the body
parts; however, by defining action models only over the parts
that are involved in the action, our framework can be ex-
tended to recognize larger number of actions [5]. Note that
the proposed framework can be easily extended to deal with
multiple actors by incorporating actor-id in the state defini-
tion.
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