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Abstract In this paper, we explore a novel idea of using
high dynamic range (HDR) technology for uncertainty vi-
sualization. We focus on scalar volumetric data sets where
every data point is associated with scalar uncertainty. We de-
sign a transfer function that maps each data point to a color
in HDR space. The luminance component of the color is ex-
ploited to capture uncertainty. We modify existing tone map-
ping techniques and suitably integrate them with volume ray
casting to obtain a low dynamic range (LDR) image. The
resulting image is displayed on a conventional 8-bits-per-
channel display device. The usage of HDR mapping reveals
fine details in uncertainty distribution and enables the users
to interactively study the data in the context of correspond-
ing uncertainty information. We demonstrate the utility of
our method and evaluate the results using data sets from
ocean modeling.
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1 Introduction

Data sets in science and engineering often have ancillary
uncertainty information. The uncertainty may refer to var-
ious quantities associated with data including error, accu-
racy, variability, noise, or completeness of the data. These
uncertainties usually arise due to errors in data acquisition
and data processing. When visual analysis is used to inter-
pret the data, it is important to communicate the associated
uncertainty information, as it enables users to be conscious
of the confidence of interpretations of the data and decisions
made based on the visualization.

Various approaches may be used to quantify and repre-
sent uncertainty depending on its nature [1]. For example, it
can be represented by a scalar or a multidimensional vector.
In this paper, we focus on the use of a scalar value to rep-
resent uncertainty. The scalar value could be the confidence
level, variability, or error associated with the scalar data.

Simple methods such as error bars and box plots are ef-
fective for visualizing scalar uncertainty in 1D scalar fields.
Various uncertainty visualization methods have been studied
for scalar data over 2D surfaces [2–5]. In this work, we are
interested in 3D data where each point in the domain vol-
ume has an associated scalar data value and a corresponding
value for the uncertainty. The above mentioned 1D and 2D
methods are not directly applicable to the 3D cases. Existing
methods for uncertainty visualization in 3D often modify a
basic visualization method by introducing glyphs or textures
to convey uncertainty [6]. These methods can represent only
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coarse details in uncertainty, and lead to visual clutter when
detailed visualizations are attempted.

In this paper, we propose an uncertainty visualization
method based on direct volume rendering. Volume render-
ing [7] is a classical method used to visualize 3D scalar
fields, where the volume is projected onto the screen. An
important step in the volume rendering process is the defini-
tion of a transfer function that maps the data points to visual
attributes like color and opacity. Typically, a color is repre-
sented using three primary components namely red, green,
and blue. When data is combined with the associated uncer-
tainty, it increases the amount of information to be conveyed
visually. A standard scheme for encoding colors, with 8-bit
channels for each of the RGB components, forces consid-
erable approximations in both uncertainty and data values.
This causes the resulting visualization to suffer from loss
in details. We overcome this limitation by employing High
Dynamic Range (HDR) technology.

The ratio of maximum luminance to the minimum non-
zero luminance of colors in an image or a scene is referred
to as its dynamic range. There is a limit to the maximum dy-
namic range of any digital image inherently imposed by the
color representation that it uses. The conventional color rep-
resentation with one byte to encode each color component
does not capture the entire dynamic range of a typical natu-
ral scene, which is about 105 : 1. HDR imaging uses floating
point color components, and hence can be used to capture
all the perceivable information in most natural scenes. How-
ever, a HDR image cannot be directly displayed on a typ-
ical display device such as a CRT monitor whose dynamic
range is limited. To overcome this limitation, tone mapping
techniques are employed to generate Low Dynamic Range
(LDR) images that preserve most of the details present in
the HDR image.

We propose the use of colors in HDR space to design
transfer functions that capture detailed variation in both
data and uncertainty. To achieve this, we represent the un-
certainty in the luminance component of color. Luminance
of a color is an approximate measure of how bright it ap-
pears. We apply tone mapping techniques in our visualiza-
tion pipeline to preserve the details in uncertainty while cre-
ating a LDR representation of the data. This LDR image can
be displayed on conventional 8-bits-per-channel display de-
vices.

A good visualization method for uncertainty should not
only create detailed visuals but also allow the users to ex-
plore the data and enable answering queries like: What are
the regions of high or low uncertainty in the domain? and
What is the distribution of uncertainty within a given spa-
tial region of interest? We design a software tool for uncer-
tainty visualization that supports user interactions and pro-
vides the necessary framework to answer queries of the kind
mentioned above.

The main contributions of this paper are:

– Design of a suitable transfer function that maps data and
uncertainty into HDR colors, making it possible to cap-
ture details in both data and uncertainty in the visualiza-
tion.

– Modification of the HDR volume visualization pipeline
[8, 9] specifically to address the problem of uncertainty
visualization. Our modifications allow for faster user in-
teraction with the visualization.

– Definition of an interaction scheme with the rendered vi-
sualization to enable data and uncertainty exploration.
This serves as a powerful tool to make inferences under
circumstances where the knowledge of uncertainty con-
tributes to deeper insights into the data.

The outline of the rest of this paper is as follows. In
Sect. 2, we present previous work related to uncertainty vi-
sualization and also provide an overview of prior work in
HDR imaging. In Sect. 3, we explain our uncertainty visu-
alization method in detail and provide implementation de-
tails. In Sect. 4, we discuss applications of our approach and
demonstrate results on data sets from ocean modeling. In
Sect. 5, we summarize our technique and conclude with di-
rections for future work.

2 Related work

Literature pertinent to the techniques presented in this pa-
per fall into two main categories: uncertainty visualization
techniques, and HDR Imaging and HDR volume visualiza-
tion techniques. We briefly outline prior work done in each
of these areas below.

2.1 Uncertainty visualization

Uncertainty visualization research has gained momentum in
the visualization community since the work of Johnson and
Sanderson [10] that emphasized its significance.

Pang et al. [11] present how significant amounts of un-
certainty are often introduced in the process of simulation
and data acquisition due to usage of different approxima-
tion algorithms and interpolation methods in data processing
and visualization. Their work also presents a variety of tech-
niques suitable for visualizing the introduced uncertainty.
These techniques include addition and modification of ge-
ometry and attributes, animation, sonification, and psycho-
visual methods. However, these methods are not applicable
to 3D scalar data sets with uncertainty.

Lodha et al. [12] used glyphs to visualize uncertainty in
scalar fields. Wittenbrink et al. [13] studied vector fields on
surfaces and used glyphs for visualization of uncertainty in
magnitude as well as direction of vectors. A drawback of
these methods is that the glyphs can only be placed at dis-
crete grid points, and hence can not display detailed varia-
tions in uncertainty without visual clutter.
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There has been a considerable amount of research done
on uncertainty visualization of scalar fields over 2D sur-
faces. The work of Cedilnik and Rheingans [2] describes a
technique with minimal interference. They employed proce-
dural techniques to distort geometric primitives like grids
that annotate the data. Grigoryan and Rheingans [3] ad-
dressed the problem of visualizing surface uncertainty by
rendering the surface as a collection of points and displac-
ing each point from its original location along the surface
normal by an amount proportional to the uncertainty at that
point. Lee and Varshney [4] described the visualization of
molecular surfaces whose position is uncertain due to ther-
mal vibrations. They generated fuzzy surfaces by rendering
multiple layers of transparent surfaces at different configura-
tions formed by vibrating points. The transparency of a point
in a layer is decided by the confidence level of its position.

Haroz et al. [14] describe an interactive technique for
visualizing bounded (location) uncertainty and unbounded
(velocity) uncertainty associated with time-variant cosmo-
logical particles that occupy a volume. The technique ren-
ders a distribution of particles rather than a volume, and en-
codes uncertainty in the color of the particles. This primary
spatial visualization of the particle locations is augmented
with a parallel coordinates view of the data that enables user
interaction and selection of regions of interest.

Though these methods are effective for visualization of
surface uncertainty or discrete particle sets, they are not di-
rectly applicable to volume rendering of 3D scalar fields.
Djurcilov et al. [6] identified this drawback and presented
a direct volume rendering approach for visualizing scalar
volumetric data with uncertainty information. They dis-
cussed postprocessing of the rendered volume by introduc-
ing discontinuities such as speckles, depth shaded holes,
adding noise, and using textures to represent the uncer-
tainty. Studying detailed variations in uncertainty using this
method requires the introduction of noise textures during
post-processing, which often results in visual clutter. Lund-
ström et al. [15] explore detailed variations in uncertainty
using animation but uncontrolled movement and flickering
of the image causes visual fatigue.

These limitations can be overcome by using color to en-
code uncertainty in data. This is explored by Hengl [5], who
used the HSI color space to visualize uncertain 2D geo-
graphic data sets. The hue was chosen based on the scalar
value and luminance was defined as a function of uncer-
tainty. However, the number of colors available in HSI space
are too few to capture the detailed variation in the scalar val-
ues and uncertainty while dealing with three dimensional
data. We overcome this limitation by using HDR image
techniques. In recent work, we explored the feasibility of
applying HDR image maps for uncertainty visualization and
presented some preliminary results [16] . In this paper, we
develop a complete uncertainty visualization method by de-
signing a HDR transfer function that maps the scalar data

values and uncertainty into the high dynamic range colors.
We then develop a renderer that is able to take this repre-
sentation and create visualizations that preserve the detailed
variation in data and uncertainty. We apply optimizations to
the visualization pipeline to make interaction with the visu-
alization feasible and create a tool that enables data explo-
ration and examination based on specific queries. The inter-
action enhances the understanding of the data.

Sanyal et al. [17] presented a user study to compare four
uncertainty visualization techniques that are applied to 1D
and 2D synthetic datasets. In conclusion, they acknowledge
that data from real sources has its merits because it can es-
tablish direct returns from results of a user-study. We eval-
uate our proposed technique using data studied by oceanog-
raphers and verify whether an expert in the field is able to
make meaningful inferences based on the visualizations that
we generate.

2.2 HDR imaging and HDR volume visualization

Debevec and Malik [18] introduced the concept of HDR
imaging by developing a mechanism to recover and rep-
resent HDR radiance maps from a sequence of LDR pho-
tographs of a scene captured at different exposures.

Typical display devices are not capable of displaying im-
ages with dynamic range more than 1000 : 1. Therefore,
tone mapping algorithms have been developed to enable the
viewing of HDR images on LDR (Low dynamic Range) dis-
play devices. The tone mapping algorithms are inspired by
concepts in image processing, photography and human vi-
sual system modeling. Apart from reducing dynamic range,
the tone mapping operators attempt to provoke same per-
ceptual responses as when viewing a HDR scene in the real
world. Tone mapping algorithms can be broadly classified
into two categories:

– Global tone operators: where the same transformation is
applied to color at every pixel in the image [19–21]. The
transformation is typically non-linear and depends on the
properties of the image as a whole.

– Local tone operators: where the dynamic range of the im-
age is reduced by a transformation which is not spatially
uniform. These operators exploit the fact that perception
of color at a pixel is mainly influenced by the surround-
ing colors. Variants of image processing techniques such
as adaptive histogram equalization [22] and bilateral fil-
tering are employed to perform the tone mapping. The
contrast reduction applied at a pixel is usually determined
by its local neighborhood [23–26].

The use of HDR technology in visualization is relatively
recent and the benefits of using HDRI are yet to be studied
extensively. Ghosh et al. [27] used HDR display technology
for volume rendering. Yuan et al. [8, 9] used volume ren-
dering with colors in extended dynamic range especially for
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Fig. 1 Schematic diagram of our visualization method using HDR
volume rendering

visualization of high precision scalar volumetric data sets
with high spatial resolution. They used floating point color
components in transfer function design to allow for HDR
luminance values. Tone mapping methods were used to dis-
play the volume rendered HDR image on conventional dis-
play devices. In this paper, we focus on using HDR volume
rendering to create and interact with visualizations of scalar
field with uncertainty. We present details of our approach in
the following section.

3 Our approach

We work with 3D scalar data sets in form of rectilinear grids
where a pair of scalars (μp,σp) is available at every grid
point p, representing the data value and uncertainty respec-
tively. The scalar and uncertainty values at intermediate lo-
cations of the grid points are obtained by trilinear interpo-
lation within the voxel. A schematic diagram of our visu-
alization method is shown in Fig. 1. It has two important
modules:

1. HDR Transfer Function designer
This involves mapping a data point to color and opacity.
A good transfer function captures all important details in
data and uncertainty.

2. HDR Volume Renderer
The application of transfer function on the data set yields
a 3D color volume possibly with a high dynamic range.
We use ray casting and tone mapping methods to pro-
duce a volume rendered image that can be displayed on a
conventional display device with limited dynamic range.

We now discuss each of these modules in detail.

3.1 HDR transfer function designer

The quality of a volume rendered image is mainly deter-
mined by the transfer function used. Hence, transfer func-

tion design plays an important role in any visualization
method that involves direct volume rendering.

We use CIELAB color space to encode a color. In this
space, a color is represented by a lightness component (L∗),
a pair of chromaticity components (a∗, b∗) and an opacity
component (α), each of which is a single precision float-
ing point number. The CIELAB color space is selected be-
cause it closely approximates a perceptually uniform color
space, where uniform changes in values of L∗, a∗, or b∗ re-
sult in uniform changes in color perceived [28]. Though it is
not used routinely for volume rendering, the CIELAB color
space has unique properties that have been leveraged in the
context of generating harmonic colormaps for volume visu-
alization [29]. In this color space, hue of a color depends on
its chromaticity components and the luminance depends on
its lightness component. Perceptual research indicates that
hue plays a major role in visual grouping. However, if we
use different hues to represent data and uncertainty, it re-
sults in insufficient number of colors to encode all the in-
formation. Therefore, we use hue property to represent only
the scalar value. We use luminance component to encode un-
certainty. The use of floating point color components gives
us a wide range of luminance values to encode uncertainty,
and thus allows the user to study fine details in uncertainty
distribution. Figure 2 illustrates this approach to define the
mapping between data values and color.

We allow the user to specify a map from scalar value μp

at point p to chromaticity (ap, bp) and opacity αp compo-
nents. A suitable method can be used to define this mapping
depending on the kind of data being visualized. For exam-
ple, if one is interested in identifying the structure of dif-
ferent materials in the volume, a multidimensional transfer
function to enhance material boundaries [30] can be used.

We determine lightness component L∗
p of the color based

on uncertainty σp at point p. For generic data sets, we ob-
serve that it is useful to define lightness at a point p as

L∗
p = C · L∗

R ·
(

σp − σmin

σmax − σmin

)
, (1)

where L∗
R is defined to be 100, the lightness of the reference

white. We use CIE standard illuminant D50 (with CIEXYZ
components being 0.96422, 1.00000, and 0.82521) as refer-
ence white in the equations for color space transformation.

σmax and σmin are the maximum and minimum values
of uncertainty in the volume, and C is the proportionality
constant interactively set by the user. As the value of C in-
creases, uncertain regions are mapped to brighter colors.

To assist users in exploring the data better, we allow a
uncertainty range of interest to be specified. The points that
do not have uncertainty in this range are made invisible by
making them transparent (αp = 0). Depending on the appli-
cation domain and kind of queries posed on the uncertainty
distribution, alternative mappings for lightness may be used.
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Fig. 2 Visualization of a synthetic data set consisting of three concen-
tric spheres having different scalar values. Different hues distinguish
these scalar values. Lightness is defined to be proportional to uncer-

tainty. We can see that the uncertainty of the green sphere is higher
compared to the other two

Fig. 3 Schematic of the HDR
volume visualization pipeline

3.2 HDR volume renderer

We use ray casting [7] to render the volume on the view
plane. Since we use colors in HDR space, it is necessary
to incorporate tone mapping in the visualization process to
generate images that can be displayed on conventional dis-
play devices.

A straightforward way to achieve this is to use the HDR
volume visualization pipeline [8, 9] introduced by Yuan et
al. It involves casting a ray through the volume for every
pixel in the view plane, and blending colors along the ray to
obtain the color at the pixel. The dynamic range of the result-
ing image is determined by the distribution of uncertainty in
the volume, and hence can be very high. An existing tone
mapping algorithm can be applied to reduce this dynamic
range and display the resulting image on screen. This model
is shown in Fig. 3.

It is possible to define an alternative approach to render-
ing, which is more effective in our case, by exploiting the
way in which the transfer function is designed. Since L∗

p

at an arbitrary point p in the domain is defined as a lin-
ear function of σp , it can be obtained by trilinear interpola-
tion of lightness values associated with corners of the voxel
containing p. This is not true in general for simple volume
rendering of a scalar field with a user-specified transfer func-
tion. In our case, we can pre-shade the lightness values with-
out losing details. In other words, we can initially obtain a
HDR lightness field by mapping every grid point into a light-
ness value. We can then apply tone mapping on this 3D field
instead of applying it on the final image. The result is a reg-
ular 3D grid of lightness values which constitutes a LDR
lightness field with most details preserved. While ray cast-
ing, we obtain the L∗

p value at a point p by interpolating the
tone mapped lightness values. This model is shown in Fig. 4,
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Fig. 4 Schematic of our
improved HDR ray
casting-based pipeline for
uncertainty visualization

and helps us improve upon the earlier model in following re-
spects.

1. Typically, a tone operator applies a parametric function
on color at every pixel in the 2D image to reduce its dy-
namic range. Most of the existing algorithms configure
themselves and choose optimal parameters adaptively de-
pending on the input image to preserve most details in the
resulting LDR image. Though we have a 2D image as a
result of ray casting, it is essentially a visualization of
the volumetric data. Different images are produced when
user interacts with the visualization by rotating or scaling
the volume. It is important to use same tone mapping pa-
rameters for all these images to avoid any inconsistency
in visualization.

2. Local tone operators typically rely on the properties of
local neighborhood of a pixel and apply suitable transfor-
mation on the pixel. When the points are in 3D domain,
it is better to study their neighborhood properties in 3D.

3. In our model, tone mapping is applied only once dur-
ing initialization. While the user is interacting with the
visualization, any existing methods like ray casting or
splatting can be directly used to render the volume. This
allows for efficient user interaction with the visualiza-
tion without any additional overhead of tone mapping. In
fact, we can think of the pre-shading of lightness values
followed by tone mapping, and the user-specified trans-
fer function for hues as collectively constituting a simple
transfer function.

Our tone mapping method for 3D is based on the algo-
rithm described by Durand and Dorsey for images [24]. Ini-
tially, we obtain L∗ values at grid points using equation (1)
with constant C set to one. We use C to scale the light-
ness values after tone mapping. Therefore, lightness at a grid
point p is given by

L∗
p = L∗

R

(
σp − σmin

σmax − σmin

)
(2)

We perform tone mapping on the logarithm of L∗ values as
differences in logarithmic scale correspond to contrast ra-
tios, Lp = logL∗

p . An edge preserving bilateral filter is ap-
plied on L values to obtain a base field, B:

Bp = 1

k(p)

∑
y∈Ω

f (‖y − p‖)g(Ly − Lp)Ly (3)

where Ω is the set of all grid points in the 3D domain and
k(p) is the normalization factor,

k(p) =
∑
y∈Ω

f (‖y − p‖)g(Ly − Lp) (4)

Bilateral filter effectively blurs the input while preserving
sharp edges (or surfaces). We use Gaussian functions for f

and g in spatial domain and lightness domain respectively.
We restrict Ω to be the set of grid points in the local neigh-
borhood of p as the remaining points do not contribute sig-
nificantly to the summation.

The difference between Lp and Bp is referred to as detail
at point p. The detail field contains most of the fine details in
the distribution and its dynamic range is typically low. Dy-
namic range reduction is applied on base field using an ap-
propriate scaling factor s. The tone mapped lightness values
L′

p are obtained by exponentiating the sum of detail values
and the scaled base values.

L′
p = e(Lp−Bp(1−s)) (5)

The resulting LDR lightness field is stored in memory and
is used whenever the volume needs to the rendered.

We use ray casting to render the volume on screen.

1. Points are sampled at regular intervals in the volume
along rays that pass through every pixel x on the image.

2. Lightness at a sampled point q is obtained by trilinear
interpolation of tone mapped lightness values. The light-
ness value is scaled by a user specified constant C and
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a small bias (20% of the lightness of reference white) is
added to avoid dark colors:

L̃∗
q = 0.2 L∗

R + 0.8 C L′
q (6)

3. The chromaticity (a∗
q , b∗

q) and opacity αq at q is obtained
from the transfer function based on scalar value at q .

4. The color (L̃∗
q, a∗

q , b∗
q) is transformed to RGB color space

to obtain (Rq,Gq,Bq). The components Rq,Gq and Bq

are scaled by αq . The RGB colors along a ray, thus ob-
tained are accumulated using the volume rendering inte-
gral to obtain the final pixel color (Rx,Gx,Bx).

Rx ← Rx + (1 − αray) αqRq

Gx ← Gx + (1 − αray) αqGq

Bx ← Bx + (1 − αray) αqBq

αray ← αray + (1 − αray) αq (7)

When C is less than one, the RGB components at every pixel
lie within the range zero to one. As the value of C is in-
creased, the uncertain regions tend to saturate and become
more visible.

Our method has a minor drawback. Each hue has a
threshold lightness beyond which it is not well defined. In
other words, as the lightness L∗ of a color is increased keep-
ing its chromaticity (a∗, b∗) constant, beyond a certain point
the colors do not have valid equivalents in RGB space. For
example, in Fig. 5, we see that the red hue is defined for val-
ues of lightness only up to about 54% of reference white.

Fig. 5 As the value of lightness is increased (from left to right), red
hue tends to shift toward orange

In such cases, when we clamp the RGB values to be within
zero to one, a slight hue shift is introduced. This effect is
apparent in Fig. 16 where we observe hue shift from red to
orange and blue to purple in regions of high uncertainty.

3.3 Implementation details

We have developed a visualization tool to demonstrate the
usability of our method. The scalar field and corresponding
uncertainty field are loaded in the form of 3D grids from
separate files having the same dimensions. Histogram of the
scalar values is presented to the user. We obtain mappings
for chromaticity and opacity from the user as a function of
scalar values. Figures 6 and 7 show the user interface pro-
vided for color selection and hue transfer function design
respectively.

The uncertainty values at grid points are mapped to light-
ness values and tone mapping is performed. The resulting
lightness field serves as input to the ray casting module. Ray
casting is implemented in hardware using OpenGL fragment
shaders to render the volume at interactive speeds. A user
perceives depth information by rotating and zooming in/out
of the volume using a virtual trackball interface. The visual
effect of uncertainty is controlled by interactively modifying
the constant C. Users can explore the data set in uncertainty
space by specifying uncertainty range of interest. Further,
we enable users to study data or uncertainty patterns inde-
pendently by rendering with a constant function for light-
ness, or by disabling hues respectively.

4 Results and discussion

We use geo-spatial data sets from ocean modeling to evalu-
ate our visualization method. In the following subsections,
we study ocean temperature and salinity fields measured in

Fig. 6 User interface for color
selection
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Fig. 7 Transfer function
designer

the Middle Atlantic Bight (MAB) region and in the Bay of
Bengal region. The interpretations are based on discussions
with an oceanographer at Indian Institute of Science, Ban-
galore.

The preprocessing of lightness values to generate the
LDR volume is implemented by applying bilateral filtering
to 125 grid points in the neighborhood of each point. Our
current implementation is in the CPU and it is found to take
about 2.2 seconds for preprocessing the Bay of Bengal data
set and about 8 seconds for the Mid-Atlantic Bight data set.
No optimizations were applied to the implementation, there
is scope to achieve better performance by implementing the
algorithm in hardware. After the preprocessing, we achieve
a frame rate of 20 fps for a resolution of 650 × 650 on a
NVIDIA 8800 GTX graphics card with a ray casting sam-
pling step size of 0.1% of volume dimensions. A simple vol-
ume of scalar values can be rendered without uncertainty
based lightness processing at a rate of 50 fps. We observed
frame rates of about 40 fps with a step size of 1% of volume
dimensions.

4.1 Results on Middle Atlantic Bight data

The data [31] consists of physical variables including tem-
perature and salinity measured on the Middle Atlantic Bight
(MAB) south of New England, off the east coast of the
United States. Measurements are taken at hourly intervals
and at different depth levels. Figure 8 shows the extent of the
data set in the MAB region. We visualize first 15 depth levels
which consists of data up to 200 m deep from the surface.
Data within each level is sampled on a regular 149 × 175
sized grid with each measurement being a floating point
value accurate up to three decimal places. We compute the
mean and standard deviation of the hourly measurements

Fig. 8 MAB region with land and sea shown in different colors. High-
lighted rectangle shows the region where temperature and salinity mea-
surements are available

over a day and consider the resulting values as scalar field
and its uncertainty, respectively. The range of scalar values
and uncertainty in the resulting dataset is given in Table 1. In
this application, uncertainty refers to variability of the scalar
values over a day.

Figure 9 shows visualization results on the MAB salin-
ity field. It demonstrates how we can study the scalar field
and corresponding uncertainty by representing them as hues
and lightness, respectively. The constant C allows users to
control the effect of uncertainty field on the visualization as
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demonstrated in Fig. 11 and the accompanying video. The
scalar field distribution can be studied by setting C to a suit-
able low value where most hue patterns are clear. With the
increase in C, the uncertain regions appear brighter and al-
low us to perceive uncertainty information. We also allow

Table 1 Range of values in Mid-Atlantic Bight data set

Minimum Maximum

Temperature field 5.891◦C 27.417◦C

Temperature Uncertainty 0.004◦C 3.532◦C

Salinity field 29.255 g/L 36.461 g/L

Salinity Uncertainty 0.001 g/L 0.692 g/L

the users to study specific regions in the volume having un-
certainty values within a range of interest as demonstrated
in Fig. 10. Since the scalar field and uncertainty each has a
dynamic range of the order of 103, HDR volume rendering
enhances the quality of visualization considerably. This is
demonstrated in Figs. 13 and 14. The left image shows the
rendering of temperature and salinity fields respectively with
a lightness at each point determined by (1) with C ≈ 1.5. No
preprocessing is applied on the lightness during ray casting
and color composition is performed with 8-bit color compo-
nents. The resulting color components at pixels are clamped
to be within the displayable range. Lack of details in dark re-
gions and presence of some bright regions illustrate that the
data is of high dynamic range and calls for HDR methods to

Fig. 9 (Left) A simple volume rendering of the ocean salinity field,
with all points mapped to a constant lightness of 0.35. (Middle) The
patterns in lightness correspond to the uncertainty distribution. Higher

the lightness, more uncertain the region is. (Right) Hue and lightness
values together convey details in data as well as uncertainty

Fig. 10 Regions of interest in the MAB salinity field having uncertainty values less than 0.025 gram per liter, in between 0.025 and 0.08 gram
per liter, and greater than 0.08 gram per liter respectively from left to right
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Fig. 11 Effect of proportionality constant C on the visualization of the MAB salinity field. The uncertain regions saturate with increasing values
of C (left to right). Deeper regions of the ocean remain dark indicating low uncertainty

Fig. 12 (Left) Uncertainty visualization of MAB temperature field. (Middle) Regions having uncertainty less than 0.2°C. (Right) Regions having
uncertainty greater than 0.5°C. The temperature is high on the surface. Further, the uncertainty is also high near the ocean surface

process the visualization. The middle image is rendered us-
ing our visualization pipeline. We can observe that the use
of HDR tone mapping on the lightness field enhances de-
tails in dark regions as well as bright regions. The image
in the right is generated by applying image based bilateral
tone mapping on the final HDR image instead of initial pre-
processing of lightness values in 3D. We observe that this
image is not very different from the one rendered using our
pipeline.

The following are some of the inferences that can be
made from the visualizations, which were validated by the
oceanographer:

– We observe the low salinity waters near the shore mixing
with the ocean waters having high salinity from Figs. 9
and 10.

– The salinity field exhibits high uncertainty at the MAB

shelf/drop off where the mixing is prominent. This is evi-

dent from Fig. 10.

– We also infer that the regions of low uncertainty of salin-

ity are found deep in the ocean from Fig. 11.

– From Fig. 12, we infer that the temperature near the ocean

surface is higher compared to deeper regions. We see that

the lightness channel effectively captures distribution of

uncertainty. We note that regions of high uncertainty lie

close to the surface especially near the MAB shelf, and

correctly reflect the fact that interaction of water with the

atmosphere and also the presence of currents on the sur-

face lead to greater uncertainty in the temperature val-

ues.
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Fig. 13 (Left) LDR rendering of the MAB temperature field. Light-
ness is determined using (1). (Middle) HDR rendering of MAB tem-
perature field with lightness preprocessing as per our visualization

pipeline. (Right) HDR rendering of MAB temperature field. Tone map-
ping is applied on the final image instead of preprocessing lightness
values in 3D

Fig. 14 LDR rendering of the MAB salinity field. Lightness is deter-
mined using (1). (Middle) HDR rendering of MAB salinity field with
lightness preprocessing as per our visualization pipeline. (Right) HDR

rendering of MAB salinity field. Tone mapping is applied on the final
image instead of preprocessing the lightness values in 3D

– By choosing suitable uncertainty ranges of interest, we
observe that the deeper regions in the ocean exhibit neg-
ligible deviation in temperature.

4.2 Results on Bay of Bengal data

The data consists of daily measurements of salinity and tem-
perature at different depth levels in the Bay of Bengal region
(10◦N to 25◦N and 80◦E to 100◦E). This region is shown
in Fig. 15. We visualize the top 25 depth levels which consti-
tute data up to 200 m deep. Data within each level is sampled

on a regular 81 × 61 sized grid. We compute the mean and
standard deviation of measurements over a year and con-
sider the resulting values as scalar field and its uncertainty
respectively. As in the previous case study, uncertainty here
refers to variability of the temperature and salinity measure-
ments over the year. The range of scalar values and uncer-
tainty in the dataset is given in Table 2.

Figure 16 shows the distribution of salinity and its vari-
ation over a period of one year. We observe regions of low
salinity in the North due to the inflow of fresh water from
the river Ganga. We also observe that salinity increases with
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Fig. 15 Highlighted rectangle shows the extent of the temperature
and salinity data sets in the Bay of Bengal region (Image source:
Wikipedia)

Table 2 Range of values in Bay of Bengal data set

Minimum Maximum

Temperature field 14.145◦C 29.135◦C

Temperature Uncertainty 0.263◦C 3.409◦C

Salinity field 22.121 g/L 35.092 g/L

Salinity Uncertainty 0.002 g/L 3.949 g/L

depth and in the south-west direction. In addition, from the
same visualization, we are also able to observe that salin-
ity varies more near the coast, again due to mixing with the
river water and ocean currents that flow in the south west
direction. Figure 17 shows the region with high variation in
salinity. Figure 18 shows the temperature distribution and its
variation during the year. We observe that the temperature
decreases with depth is independent of latitude and longi-
tude. The wedge shaped transparent region corresponds to
Andaman and Nicobar islands. Temperature variation in the
year is high toward the east and at a depth range of 50 m–
150 m. This observation is validated by the oceanographer’s
knowledge of the region, and is due to the presence of waves
with a large wavelength that cause a vertical shift of water.
The temperature decreases rapidly in this depth range. So,
the vertical shift causes the large variation during the year.

The oceanographer working with us on the study of both
data sets found the visualizations helpful because they pre-
sented the scalar field distribution and the uncertainty in a
unified view. The volume rendered images and the interac-

Fig. 16 Uncertainty Visualization of Bay of Bengal salinity field.
Salinity increases with depth and in the south-west direction. The un-
certainty is high near the coast

tive tool provided a more intuitive visualization of the data
compared to their existing scatter plot based visualization.
It was clear that the ability to examine and explore the un-
certainty in a scalar field was useful to make meaningful
inferences from the data.

5 Conclusions and future work

We have developed a method to visualize scalar volumetric
fields that allows users to explore the data in both uncer-
tainty space and the scalar data space. The key contributions
of our work are listed below:

1. A novel application of HDR technology for uncertainty
visualization by encoding data as well as uncertainty us-
ing colors in HDR space. Our volume rendering-based
method is able to display detailed variations in data as
well as uncertainty. It overcomes the limitation of using
uncertainty glyphs or noise textures that can lead to vi-
sual clutter. Our method is applicable to slices, isosur-
faces, and scalar fields in lower dimensions.

2. Design of HDR transfer function that separates mappings
for lightness and hue channels of color. The lightness is
used to represent uncertainty, while hue is used to repre-
sent the scalar value. This design enabled us to modify
the existing HDR volume visualization pipeline by using
preshading and tone mapping of lightness values in 3D,
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Fig. 17 Regions in the Bay of Bengal salinity field having deviation
greater than 0.5 gram per liter. The uncertainty is high along the coastal
regions

Fig. 18 Uncertainty visualization of Bay of Bengal temperature field.
Temperature decreases with depth. The uncertainty is high at depth
ranges of 50 m–150 m and toward the east. The black wedge-like region
toward the east is due to the Andaman and Nicobar Islands

making the rendering process more efficient and making
it possible to achieve real-time rendering speeds.

3. Development of an interface that supports user interac-
tion with the uncertainty visualization and allows explo-
ration of detailed variations in both data and uncertainty
values. The process of interaction enabled highlighting
the uncertainty by increasing the absolute values of light-
ness. The proposed technique enabled visualization of
data based on uncertainty ranges by manipulating trans-
parency values of interactively selected regions.

We demonstrated the applicability of our approach using
data sets from ocean modeling, and our interpretations of
the visualizations were validated by an oceanographer.

As future work, we plan to explore alternate transfer
function designs tailored to specific applications. It is possi-
ble to apply our method to analyze uncertainty in the context
of specific measurement devices and define their character-
istics. We believe that using HDR technology to enable per-
ception of details in visualization can be extended to other
attributes besides uncertainty.
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