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Abstract We present a genetic algorithm for approximating
densely sampled curves with uniform cubic B-Splines suit-
able for Combined B-reps. A feature of this representation is
altering the continuity property of the B-Spline at any knot,
allowing to combine freeform curves and polygonal parts
within one representation. Naturally there is a trade-off be-
tween different approximation properties like accuracy and
the number of control points needed. Our algorithm creates
very accurate B-Splines with few control points, as shown
in Fig. 1. Since the approximation problem is highly nonlin-
ear, we approach it with genetic methods, leading to better
results compared to classical gradient based methods. Paral-
lelization and adapted evolution strategies are used to create
results very fast.

Keywords Spline · Approximation · Genetic · Parallel ·
Combined B-reps · Subdivision

1 Introduction

B-Spline representations are commonly used in CAD. Ex-
ample application areas are freeform modeling, reverse en-
gineering, animation, simulation and visualization. Often,
only measurements are available at the beginning, for in-
stance, created by scanning or inserted by sketching meth-
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Fig. 1 Given a densely sampled input curve (left), our algorithm auto-
matically extracts a few characteristic B-Spline control points (middle)
instead of a large set of imprudent control points (right)

ods, like illustrated in Fig. 2. In this case a B-Spline has to
be fitted to the given input points by approximation.

The process of fitting a B-Spline to measurements is
a complicated nonlinear optimization problem. Generally,
several parameters have to be determined in order to exe-
cute a specific approximation: the degree of the base func-
tions, the parameterization of the input points, the number
of control points and the knot vector. The approximation it-
self is a optimization problem too, in which a predefined er-
ror function gets minimized. Even in our specialized case of
uniform cubic B-Splines with marked knots, there are many
unknowns to be determined, most importantly the parame-
terization of the input curve.

1.1 Related work

De Boor [3], Farin [6] and Cohen [5] provide considerable
detail about curve representations. An introduction to the
problem of interpolation and approximation with B-Splines
is given by Shene [16]. Optimal parameterization methods
have been investigated in Hoschek [11] and Speer [17], but
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Fig. 2 Example application of a sketch based system. A stroke, in-
dicating a rotational extrusion, is approximated with a B-Spline. Its
control polygon is used to calculate the control mesh for a subdivi-
sion surface. A characteristic control polygon is important for further
modeling operations

cannot find a global minimum over all possible approxima-
tions. The knot vector has been treated as a parameter in Sa-
pidis [15] and Juhasz [12]. A global optimization problem,
which treats the parameterization and knot vector at once,
is given by Gengoux [13]. However, these methods are not
applicable to our uniform representation.

An overview of genetic algorithms in CAD is given by
Renner [14]. Markus introduces genetic interpolation in [1]
and [2], limited to Bezier curves and Hermite splines. Ge-
netic B-Spline approximation is examined by Goldenthal in
[7], applied to non-uniform B-Splines. In summary, exist-
ing methods explicitly use a different representation, use the
knot vector as parameter, do not scan the solution space for
a global minimum or require a lot of time to generate re-
sults.

A main motivation for us to choose uniform cubic B-
Splines is its application with Combined B-Reps, presented
by Havemann [9, 10]. Combined B-Reps is a surface repre-
sentation using an extended Catmull/Clark [4] subdivision
scheme. The subdivision rules originate from bicubic uni-
form B-Splines and are enhanced with smooth and sharp
edges which determine the continuity property of the sur-
face, hence our B-Spline representation.

1.2 Outline

This work focuses on densely sampled input curves. In con-
trast to sparse input points there is hardly a doubt of where
the curve surface is. Our three main contributions are:

1. Great reduction of complexity by minimizing the num-
ber of control points needed to approximate the original
shape. This leads to control polygons with few, but char-
acteristic control points.

2. Accurate B-Splines with a small error to the input curve
and the possibility to control accuracy and complexity.

3. Calculation within short time, suitable for interactive ap-
plications. Parallelization, heuristics and adapted strate-
gies should be used in order to cope with the huge solu-
tion space of the approximation problem.

The remaining of the paper is structured as follows: In
Sect. 2, we describe the pipeline we use for approximating a
densely sampled input curve with a B-Spline. In Sect. 3, we
present the genetic framework with its evolution strategies.
Results of our work are presented and analyzed in Sect. 4.
Finally, in Sect. 5, we discuss limitations and possible im-
provements.

2 B-Splines

In this section, we describe the considered B-Spline and
present a pipeline for fitting a B-Spline to an input curve,
which is defined by a densely sampled set of points. Fur-
ther, we motivate the representation of our genes used in the
genetic algorithm.

2.1 B-Spline definition

A B-Spline C(t) is defined by n control points P =
{p0, . . . ,pn−1} and base functions Ni,k(t) of degree k:

C(t) =
n−1∑

i=0

Ni,k(t) · pi . (1)

The basis functions are defined recursively over the knot
vector U = {u0, u1, . . . , um−1}, a non-descending sequence
of m = n + k + 1 scalar values, with

Ni,0(t) =
{

1 for ui ≤ t ≤ ui+1,

0 otherwise,
and (2)

Ni,k(t) = t − ui

ui+k − ui

Ni,k−1(t)

+ ui+k+1 − t

ui+k+1 − ui+1
Ni+1,k−1(t). (3)

In this work, we focus on uniform cubic B-Splines, which
implies the conditions

k = 3 and (4)

ui+1 − ui = c for i = {0, . . . ,m − 1}. (5)

In particular, we use c = 1, which reduces the recursive def-
inition of the base functions to fixed polynomial functions.

As mentioned in the introduction, knots may be marked
sharp, which forces the B-Spline to interpolate the corre-
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Fig. 3 Example B-Spline: (left) B-Spline curve; (right) overlay with
its control polygon. Starting from the top left, the first three and the last
knots are marked sharp. The corresponding control points are interpo-
lated

Fig. 4 All five basis functions within the clamped interval [0,4]. The
knot vector U = {0,1,2,3,4} is uniform and does not contain multiple
knots

sponding control point with C0-continuity, as illustrated in
Fig. 3. This can be achieved by setting the multiplicity of the
knot to k, but that violates the condition of uniform knots.
Therefore, we use slightly different base functions which
can be clamped at any knot. The first three basis functions,
clamped at t = 0, are

N0(t) =
{

1
6 t3 − t + 1, t ∈ [0,1],
1
6 (2 − t)3, t ∈ [1,2], (6)

N1(t) =

⎧
⎪⎨

⎪⎩

− 1
3 t3 + t, t ∈ [0,1],

1
6 (3t3 − 15t2 + 21t − 5), t ∈ [1,2],
1
6 (3 − t)3, t ∈ [2,3],

(7)

N2(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
6 t3, t ∈ [0,1],
1
6 (−3t3 + 12t2 − 12t + 4), t ∈ [1,2],
1
6 (3t3 − 24t2 + 60t − 44), t ∈ [2,3],
1
6 (4 − t)3, t ∈ [3,4].

(8)

The other basis functions Ni(t) with i > 2 can be evalu-
ated with N2(t − i + 2). If the basis functions are clamped
at a parameter a instead of 0, they can be evaluated with
Ni−a(t − a). Symmetry allows us to evaluate a basis func-
tion which is clamped at a parameter b > t as shown in
Fig. 4. Note that with this representation the number of knots
in U is the number of control points in P , hence n = m.
These basis functions reflect the subdivision scheme used in
Combined B-Reps.

2.2 B-Spline approximation

Given the task to fit the above described B-Spline to an input
curve defined by l points D = {d0, . . . ,dl−1}, the following
system of equations can be build:

dj = C(tj ) =
n−1∑

i=0

Ni(tj ) · pi , (9)

⎛

⎜⎝
d0
...

dl−1

⎞

⎟⎠

︸ ︷︷ ︸
D

=
⎛

⎜⎝
N0(t0) . . . Nn−1(t0)

...
. . .

...

N0(tl−1) . . . Nn−1(tl−1)

⎞

⎟⎠

︸ ︷︷ ︸
N

⎛

⎜⎝
p0
...

pn−1

⎞

⎟⎠

︸ ︷︷ ︸
P

. (10)

For l � n, this system is over-determined and has possibly
no solution. From linear algebra, we know that a unique least
squares solution exists and can be found by performing the
following conversion:

D = N · P, (11)

NT · D︸ ︷︷ ︸
Q

= NT · N︸ ︷︷ ︸
M

·P, (12)

Q = M · P. (13)

Solving Q = M ·P with the unknown control points P leads
to the solution of D = N · P in the least squares sense. By
construction, we know that M is a square matrix of size
n × n, symmetric and positive definite. Therefore, Cholesky
Decomposition [8] can be used. In the case of interpolating
the endpoints, the systems size can be reduced by 2 rows and
columns, leading to the final size of (n − 2) × (n − 2).

The error ε which gets minimized by this system is de-
fined by the summed squared distances between the input
points dj and points on the B-Spline C evaluated at param-
eter tj :

ε =
l−1∑

j=0

∥∥dj − C(tj )
∥∥2

. (14)

2.3 Assigning parameters

In summary, approximating the B-Spline to a discrete input
curve comes down to specifying parameters tj for each in-
put point dj . The process of determining parameters is not
an easy task. There are unlimited possible parameterizations
which greatly effect the shape of the approximated B-Spline.
Depending on the features of the input curve, the parameters
have to be chosen wisely in order to allow the approximated
B-Spline to capture the original shape of the curve.

Figure 5 illustrates the problem of parameterization. In
the left picture, the yellow input curve is parameterized by
chord length within the interval [0,5]. The knot points with
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Fig. 5 Influence of different parameterizations: (left) chord length;
(right) our algorithm; (yellow) sampled input sine curve; (yellow
spheres) knot points; (blue) B-Spline curve; (purple) its control poly-
gon

t ∈ {0,1,2,3,4,5} are visualized by yellow spheres. Exe-
cuting the approximation leads to the blue B-Spline curve
with its purple control polygon. It hardly captures the orig-
inal sine curve. While reparameterization methods may im-
prove the approximation, they may not lead to optimal re-
sults, especially in more complex cases. In the right picture,
a different placement of the knot points induces a different
parameterization of the data points, resulting in a different
approximation. This time the shape of the sine curve is well
captured with the same number of control points.

In order to assign parameters tj to the input points dj , we
construct a mapping function p

tj = p
(
cl(dj )

)
(15)

which maps the chord length parameterization cl(dj ) of a
point to its final parameter.

First of all, we calculate the chord length cl(dj ) of each
input point with

cl(d0) = 0, (16)

cl(dj ) = cl(dj−1) + ‖dj − dj−1‖. (17)

Then we define a subset S = {s0, . . . , sn−1} ⊂ D. These
points reflect the knot points. Therefore, their parameters
can be simply assigned by p(cl(si )) = i. Note that the first
and the last input points d0 and dl−1 are always part of S,
since we want the B-Spline to interpolate these points. The
number of points in S also defines the number of B-Spline
control points.

Since it is natural for a cubic B-Spline to have C1-
continuous parameterization, we estimate the derivative of
the parameterization at every knot point si ∈ S:

p′
i = 2

cl(si+1) − cl(si−1)
. (18)

Fig. 6 Mapping function example: (horizontal axis) chord length pa-
rameterization cl ∈ [0,6]; (vertical axis) final parameter p ∈ [0,3]. Es-
timated tangents p′ are shown with blue dashed lines

The first and last derivatives are calculated separately:

p′
0 = 2

cl(s1) − cl(s0)
− p′

1, (19)

p′
n−1 = 2

cl(sn−1) − cl(sn−2)
− p′

n−2. (20)

Now we can construct a cubic polynomial tj = p(cl(dj ))

for each segment [cl(si ), cl(si+1)] from the following four
conditions:

p
(
cl(si )

) = i, (21)

p
(
cl(si+1)

) = i + 1, (22)

p′(cl(si )
) = p′

i , (23)

p′(cl(si+1)
) = p′

i+1. (24)

Figure 6 shows an example of the mapping function.
A curve with chord length parameterization within [0,6]
is mapped to [0,3]. The chord lengths of the knot points
cl(si ) = {0, 1, 5, 6} are mapped to p(cl(si )) = U = {0, 1,
2, 3}, reflecting the uniform knot vector. All points dj be-
tween two knot points si and si+1 are mapped to the interval
[i, i + 1] with C1-continuity to neighboring intervals. Over-
all this example shows a parameterization suitable for a uni-
form B-Spline with four control points and knot points si

with chord lengths 0, 1, 5 and 6.
Finally, we can calculate a parameter for every input

point, evaluate the basis functions, build and solve the sys-
tem of linear equations of the B-Spline approximation. The
whole approximation pipeline has been reduced to specify-
ing the subset S. Choosing a good subset is addressed by the
genetic algorithm described in the next section.

In order to include marked knots, each point si of S can
be flagged either smooth or sharp. If si is flagged sharp, the
basis functions are clamped at the corresponding parame-
ter i. By default, the first and last point is flagged sharp and
thus interpolated by the B-Spline. For efficiency, the approx-
imation is separated into parts where only the first and last
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point is flagged sharp. This leads to several small systems
of linear equations which can be solved faster than a single
large system due to the cubic complexity of Cholesky De-
composition.

3 Genetic algorithm

In Sect. 2, we concluded that only two parameters are
needed to approximate a B-Spline to an input curve in the
least squares sense. The following parameters define a gene
for our genetic algorithm:

1. The subset S ⊂ D.
2. The sharpness information bi ∈ B for each point si ∈ S.

In this section, we analyze the solution space and present our
genetic framework and the implemented evolution strate-
gies.

3.1 Solution space

Even with our approximation pipeline, which essentially re-
duces the degrees of freedom, the space of possible solutions
is huge. Every subset S ⊂ D with its sharpness information
leads to a different solution. Given the number l of input
points and given that the first and last input points are al-
ways part of the subset S, the number of different subsets
is 2l−2. For l = 100, which is a reasonable size for a densely
sampled input curve, there are 298 ≈ 317 × 1027 subsets.
Each subset can vary with different sharpness information
too, further increasing the number of possible solutions.

Table 1 illustrates the correlation between the number of
input points l, number of free control points n′ and the num-
ber of approximations (single threaded) per second on an
i7 920 CPU. There is a big variance in the number of ap-
proximations in dependency of the number of input points
and number of control points. Even though the approxima-
tion can be easily parallelized for almost linear speedups,
the solution space is much larger than the number of ap-
proximations possible within a short time. Therefore, com-
promises have to be done between coarse scanning of the
solution space and fast computation time. In this work, we
focus on deterministic evolution strategies to create good re-
sults within a few approximations.

3.2 Fitness function

In order to compare different solutions among each other,
a fitness function f has to be specified. The aim of the ge-
netic algorithm is to find a gene with optimized fitness. As
mentioned in the introduction, a small error ε is not the only
optimization criterion of this work. The number of control
points n needed to achieve the small error is important, too.

Table 1 Number of approximations on an i7 920 CPU (single
threaded) in dependency of the number of data points (l) and number
of free control points (n′)

l n′ = 2 n′ = 4 n′ = 6 n′ = 10 n′ = 20

50 98.5k 75.5k 55.7k 33.7k 17.1k

100 63.9k 45.6k 34.6k 20.6k 8.4k

150 47.4k 33.7k 24.6k 14.7k 6.0k

200 37.7k 26.7k 19.4k 11.6k 4.7k

400 20.3k 14.1k 10.3k 4.9k 2.3k

Fig. 7 Consequences of different fitness functions: (left) f = n · ε;
(right) our exponential function. The simple multiplication tends to
generate B-Splines with many control points

Hence the fitness function has to be a combination of both
attributes ε and n.

The naive approach, a multiplication f = n · ε, is not
leading to B-Splines with few control points, as illustrated
in Fig. 7. This is because the number of control points n

has a vanishing influence on the fitness function f , if the
error ε gets small. With many control points, the approxi-
mated B-Spline has a small error automatically. For exam-
ple, in the case n = l with as many control points as input
points, the approximation converts to an interpolation. The
error of the interpolation is 0, thus the fitness function is
0, and therefore the best possible solution. Of course, an
interpolation with many control points is contrary to our
goals.

A main property of the fitness function, whose minimiza-
tion leads to the desired results, has to have the following
behavior: with decreasing error the influence of the number
of control points has to rise relatively. We experimented with
a simple exponential function

f = n · bε.

With an error close to 0, the exponential part gets close to 1,
which leaves the number of control points as the only fit-
ness criterion. With higher error the exponential part grows
quickly which relatively reduces the influence of the number
of control points.

The base b steers the influence of the error and the num-
ber of control points on the fitness function.

A smaller base shifts the influence towards the number
of control points n, while a higher base shifts the influence
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Fig. 8 Flow graph of our
algorithm. The Thread
Controller keeps as many
threads running as possible

towards the error ε. If the base is 1, the error has no influ-
ence on the fitness function. A base between 0 and 1 leads
to the effect of favoring a large error, which is naturally not
recommended.

The approximation detailed in Sect. 2, which minimizes
the sum of squared distances, works well together with the
above described fitness function. Given a fixed number n

of control points, the minimization of the error ε within the
approximation leads to a minimized fitness function f .

3.3 Pipeline

In previous work, we experimented with iterative approxi-
mation methods. The results have been good but not optimal
and motivated us to create a framework for genetic B-Spline
approximation. It is important to note that every heuristic or
iterative algorithm can be integrated in the genetic frame-
work. Therefore, the genetic framework always finds better
results but requires more computation time. The mentioned
iterative approximation is part of our seeding as well as one
evolution strategy.

Figure 8 illustrates the pipeline of our genetic algorithm.
It starts with a seeding which generates the first genes. We
implemented two different seeding functions:

Uniform: Points si ∈ S ⊂ D are picked uniformly among
all points D for different numbers of control points. The
generation of the subset and calculation of the B-Spline
can be done in parallel.

Iterative: The iterative approximation method we used in
the previous work has been integrated as a seeding func-
tion. It starts with two control points only, hence a straight
line from the first to the last point of the input curve. In
every iteration, the point dj with the largest deviation from
the B-Spline is added to the subset S. If the point dj is
close to an existing point si ∈ S, si is flagged sharp instead
of adding dj to S. The gene of every iteration is added to
the seed population.

After generating the seeds, the evolution begins. A thread
controller keeps a certain amount of parallel threads run-
ning, usually the number of threads offered by the CPU.
Each thread generates and evaluates new genes indepen-
dently from other threads with the following pipeline:

1. Get a certain number of genes G and remove them from
the database.

2. Generate new genes by mutating all genes in G and by
recombining the first gene of G, which is the fittest one,
with all other genes in G.

3. Approximate and evaluate all B-Splines defined by the
new genes.

4. Sort and filter the new B-Splines.
5. Update the data base by merging the remaining B-Splines

back into it. Optionally reduce the database size, if
there are too many B-Splines, by removing the least fit
B-Splines until the desired size is reached.

The next subsections will explain the evolution strategies
and filtering in detail.

3.4 Evolution strategies

Evolution strategies can be divided into mutation and com-
bination. The first simply alters a gene on its own. The latter
creates a new gene by combining different genes. It is impor-
tant for the strategies to allow exploration of the whole solu-
tion space. Since we focus on real time computation, we also
added strategies which deterministically reduce the error of
the B-Spline. Keep in mind that every thread executes all
evolution strategies independently from other threads. All
genes generated this way are collected in a list and filtered
subsequently before merging them back into the database. In
summary, we implemented five mutation strategies and one
combination strategy:

Jiggle: Pick an inner point si ∈ S and replace it by a neigh-
boring point. This is done for every point si ∈ S, except
for the first and last one, in positive and negative direc-
tion. Given m, the number of points in S, a thread creates
2(m − 2) new genes. For example,

S = {d0,d30,d70,d90} jiggle+ d70→ {d0,d30,d71,d90} = S′.

Toggle: Pick an inner point si ∈ S and toggle its sharpness
information bi . m − 2 new genes are generated this way.
For example,

B = {1,0,0,0,1} toggle i=2→ {1,0,1,0,1} = B ′.

Delete: Delete a point si ∈ S. Executing this operation for
all inner points in S leads to m−2 new genes. For example,

S = {d0,d30,d70,d90} delete d70→ {d0,d30,d90} = S′.

Insert: Pick an interval [si , si+1] and insert a new point. In
our implementation, the inserted point has the largest devi-
ation from the B-Spline among all points of the interval, in



Genetic B-Spline approximation on combined B-reps 491

Fig. 9 Recombination: (left) father B-Spline; (middle) mother
B-Spline; (right) recombination with the best parts of both B-Splines

order to reduce the error systematically. When done with
all intervals, this adds m − 1 new genes. For example,

S = {d0,d30,d90} insert d70→ {d0,d30,d70,d90} = S′.

Merge: Two knot points are merged by averaging them.
m − 3 inner intervals can be merged to create new genes.
For example,

S = {d0,d30,d32,d70,d90} merge→ {d0,d31,d70,d90} = S′.

Combination: We do not only calculate the error of the
whole B-Spline, but also for every interval [si , si+1]. When
combining two different genes into a new one, we use the
following algorithm:

• Iterate over all points dj and find the intervals [si , si+1]
in both genes that belong to that point.

• Calculate the average error of both intervals.
• Add si+1 of the interval with a smaller average error to

S of the new gene.
• Continue with iterating over all remaining points after

the previously added point si+1.

This way, points are added to the new gene which probably
had a positive effect on the error of their origin B-Spline.
Since the fittest B-Spline in G is combined with all others
in G, |G| − 1 new genes are generated. Figure 9 shows an
example of recombination.

Note that all presented seeding methods and evolution
strategies are deterministic. Our tests showed that random-
ized methods do not compete well against our deterministic
strategies and have no impact on the final result.

3.5 Filtering

All new genes created by mutation and combination are col-
lected in a list. After the approximations are calculated and
the fitness of each B-Spline is evaluated, the list is sorted by
fitness.

Some strategies generate similar genes by definition and
often have similar fitness, too. This is true especially for
all B-Splines generated by jiggling. When simply merging
all new B-Splines back into the database, it probably gets
spammed by similar B-Splines. Future threads may then

pick similar genes for further mutation and recombination,
producing even more similar results. Overall this can lock
the system in a local minimum quite fast.

In order to counter locking in local minima, we remove
similar B-Splines from the list and keep a single repre-
sentative with the best fitness among all similar B-Splines.
As similarity function we experimented with the Manhattan
Distance of two different B-Splines S and S′ which is fast to
calculate and leads to desired results. If two B-Splines have
a different number of points in S, they are considered differ-
ent and the similarity function returns the maximum value.

A threshold has to be chosen which determines if a
B-Spline is too similar to a different B-Spline with better fit-
ness and thus has to be removed. Choosing 1 as threshold al-
ready eliminates all different B-Splines created by jiggling.
However, we noticed that a threshold of l

20 to l
10 produces

the best results. After the new B-Splines have been merged
into the data base, another filtering iteration is applied to
all B-Splines in the database in order to remove similar B-
Splines generated by different threads.

4 Results

Our tests have been executed on different kinds of CPUs,
which include a single core, a dual core and a quad core
CPU with hyper threading. While all settings lead to similar
results, the fastest results naturally are achieved by the latter
one due to the parallelized framework. All results presented
in this section are calculated within one second on an i7 920
CPU running at 2.66 GHz. Depending on the complexity of
the curve, about 300 to 1500 threads are created and about
40k to 120k approximations are calculated for each result.

Since there is no other publication known to us which
uses the same specific B-Spline representation in approx-
imations, we used our uniform and iterative seeding, de-
scribed in Sect. 3.3, as a substitute for a simple approxi-
mation algorithm. These are common B-Spline approxima-
tion schemes, presented in various publications with differ-
ent representations.

For all figures we use the following color scheme: The
input curve dj is drawn yellow. Knot points si are yellow
spheres. The B-Spline control polygon pi is drawn in purple
with spheres for its control points. The B-Spline curve C(t)

is drawn in blue. The distances between input and B-Spline
curve are illustrated with red lines.

Table 2 illustrates example results of our genetic algo-
rithm. The first column shows the following input curves:
A densely sampled sine curve, a densely sampled spiral, a
five-shaped hand drawn curve, a heart-shaped hand drawn
curve and a serpentine-shaped sampled B-Spline curve. The
second column presents the results of the uniform and iter-
ative seeding method. A base of 10 is used in order to get
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Table 2 Results for comparison. Columns from left to right: input curve, seeding with a base of 10, our genetic algorithm with a base
of 2, our genetic algorithm with a base of 10. Note the great reduction in the number of control points with a base of 2 and the great
reduction in the error with a base of 10
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Fig. 10 (left) Sampled B-Spline curve (yellow) with its control poly-
gon (red); (middle) resulting B-Spline (blue curve and purple control
polygon) of our algorithm applied to the sampled curve; (right) overlay
of both curves and control polygons, demonstrating a small difference

accurate results with a small error. The third column shows
results with all evolution strategies enabled and a base of 2.
This relatively low base leads to B-Splines with focus on
few control points. The fourth column presents results with
a base of 10, featuring a small error. Note that with a base
of 10 our algorithm provides very accurate results with a
much smaller error, while using fewer or equally many con-
trol points, compared to B-Splines generated by an usual
uniform or iterative method.

As shown in Fig. 10, we also used sampled B-Spline
curves as input in order to inspect if our algorithm finds
the original B-Spline without any information but its sample
points. While our algorithm finds the original knot points
of the B-Spline in most cases, the positions of the approxi-
mated control points vary slightly. This problem originates
from the parameterization in the approximation pipeline.
Recall that it is only an estimation of the original parame-
terization.

An interesting question on genetic algorithms is whether
they converge to the same result when repeatedly applied to
the same problem. Generally, this is not possible to guaran-
tee and is often not the case. However, our algorithm pro-
duced the same B-Splines over and over again. Results nat-
urally start varying if the computation time is reduced, es-
pecially on complex input curves. If the filter is loosened
or removed, the system may lock in a random local min-
ima. Figure 11 illustrates two slightly different results for
the same spiral input curve. In this case, just a few more iter-
ations with the jiggling strategy are needed until the genetic
approximation converges to the same B-Spline.

5 Conclusion and future work

In this work, we presented a genetic algorithm which fits
a uniform cubic B-Spline to a given densely sampled input
curve. The resulting B-Spline has very few control points.

Fig. 11 Two different B-Splines on two runs: (left) fitness
f = 11.732; (right) fitness f = 11.401

Parallelization and adapted evolution strategies have been
used to generate results in a short time, suitable for interac-
tive applications.

Examine the filter strategy Our current filter strategy im-
mediately exterminates a gene that is close to an existing
gene, if its fitness function is worse. This may prevent some
genes from evolving and thus not appearing as a solution.
Loosening the filter criteria may lead to local locking of the
system. Finding a flexible filter which uses more informa-
tion than the gene and its fitness may improve the system
overall. We experimented with Pareto optimal genes. This
means that for a given number of control points n, only one
gene is kept within the database. However, we came to the
conclusion that this restriction is too harsh.

Dynamic selection of evolution strategies Different stages
of exploring the solution space require different strategies.
For example, at the beginning coarse scanning may be the
most important task. Therefore, small variations like jig-
gling are not appropriate. A challenge on this topic is creat-
ing algorithms that examine the database and decide which
strategies to use next.
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