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Abstract In recent years, the need for retrieving real 3D
objects has grown significantly. However, various important
considerations must be taken into account to solve the real
3D object retrieval problem. Three-dimensional models ob-
tained without the use of special equipment such as engi-
neered environments or multi-camera systems are often in-
complete. Therefore, the ability to perform partial match-
ing is essential. Moreover, the time required for the match-
ing process must be relatively short, since the operation
will need to be performed repeatedly to deal with the dy-
namic nature of day-to-day human environments. Further-
more, real models often include rich texture information,
which can compensate for the limited shape information.
Thus, the descriptors of the 3D models have to consider both
shape and texture patterns. In this paper, we present new 3D
shape features which take into account the object’s texture.
The additive property of these features enables efficient par-
tial matching between query data and 3D models in a data-
base. In the experiments, we compare these features with
conventional features, namely Spin-Image, Textured Spin-
Image, and CHLAC features using a dataset of real textured
objects. Furthermore, we demonstrate the retrieval perfor-
mance of these features on a real color 3D scene.
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1 Introduction

Recently, the state of the art of 3D scanning has advanced
dramatically, allowing us to obtain precise 3D models of
various objects with associated textures. It has also become
possible to obtain 3D descriptions of large scenes. The avail-
ability of such precise 3D models has motivated research
into the problem of real 3D object retrieval.

Various important considerations must be taken into ac-
count when addressing the problem of real 3D object re-
trieval. First, the ability to perform partial matching is es-
sential. Real 3D models are often incomplete since they are
measured from only a few directions. Also, when search-
ing for a query object in a 3D scene, partial matching is in-
evitable because objects are rarely segmented in the scene
obtained with a 3D scanner. Furthermore, the matching
method needs to be fast, for it to be applicable to large data-
bases or large 3D scenes. If the matching is to be performed
against a changeable dataset such as a 3D scene in a day-
to-day environment, the feature extraction process must also
be fast. Second, whereas artificial 3D models can be textured
according to the users’ preference, real 3D models have their
own unique color textures containing rich information about
the visual “feel” of the objects’ surfaces. This texture infor-
mation can supplement shape information and provide an
additional clue for retrieval. In particular where the amount
of occlusion is large, the texture of the target object can more
easily be observed than its shape characteristics. Thus, real
3D object retrieval techniques should take into account tex-
ture information as well as shape information.

In this paper, we propose “Color Cubic Higher-order Lo-
cal Auto-Correlation (Color-CHLAC) Features”, which ac-
cumulate local descriptors of both shape and texture patterns
of the objects’ surfaces, and which can then be used to match
the query object against models of real textured 3D objects.
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These features can be extracted from partial models of any
shape or size and their computation is fairly fast. Moreover,
the feature vector of any part of the target model can be cal-
culated simply by summing the feature vectors of its sub-
parts. This additive property allows high-speed matching of
partial models of various sizes.

The rest of this paper is organized as follows: Section 2
discusses related work on 3D features, while our 3D fea-
tures are presented in Sect. 3. Section 4 describes the match-
ing method. Experimental results are given in Sect. 5, while
Sect. 6 presents a search demonstration in a 3D scene. Fi-
nally, Sect. 7 summarizes our method and proposes future
work.

2 Related work

Expressiveness of descriptors is critically important for ob-
ject retrieval. Furthermore, descriptors and matching meth-
ods are so closely related that the question whether fast
matching can be applied depends on the property of the
descriptors. In this section we discuss 3D descriptors from
the point of view of expressiveness and the ability to ap-
ply a fast partial matching method. We first discuss conven-
tional descriptors which are useful for artificial 3D object
retrieval, and then refer to Spin-Image and Textured Spin-
Image, which can be applied to real 3D object retrieval.

2.1 Descriptors for artificial 3D object retrieval

In the field of artificial 3D object retrieval, various 3D shape
descriptors have been proposed [1, 2]. As discussed in [2],
these can be classified as histogram-based, transform-based,
graph-based, or 2D view-based. Histogram-based [3] and
transform-based descriptors [4, 5] rely on the center point
of 3D models, making it difficult to apply these techniques
to partial matching. Graph-based descriptors can be used to
perform partial matching [6-9], however, it is difficult to ap-
ply such a descriptor to real object retrieval since only those
parts with segments matching the predefined sub-parts of the
models in the database can be compared. Similarly, although
[10] enables fast object retrieval by priority-driven partial
matching, the matching is limited to salient segments, which
are not necessarily observed in a real environment. 2D view-
based descriptor [11] computed from multiple range images
can also be used for partial matching, however, the mem-
ory requirement and computation cost are both high since a
query part must be compared with all views of each database
model.

Furthermore, these descriptors do not take texture in-
formation into consideration. In [12], shape descriptors are
used based on the curvature of surface patches and color de-
scriptors represented by the average, maximum, and mini-
mum values of R, G, and B. However, in this approach, it is
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difficult to balance shape information and texture informa-
tion. Also, this method does not take into account shape and
texture co-occurrence patterns.

2.2 Spin-image and textured spin-image

Spin-Image (SI) [13] is a computational tool able to describe
local shape patterns and to perform partial matching, and as
such can be applied to object recognition in real environ-
ments containing clutter and occlusion. A SI is created for
an oriented point at a vertex in the surface mesh by project-
ing points onto cylindrical coordinates. It is computed using
the following equation:

(@ p) = </||x —pIP—(n-(x— p)n-(x — p))

where p is the position of the oriented point, » is its normal,
and x is the position of another point in the surface mesh.
Then the SI is calculated as a 2D accumulator indexed by «
and B. Finally, the set of SIs calculated for all points in the
surface mesh of an object is used as the description of the
object.

Textured Spin-Image (TSI) [14] is an extension of SI.
TSIs are computed from a surface mesh, the points of which
have luminance information. Therefore, they can take into
account shape and texture co-occurrence patterns. In prac-
tice, a TSI is simply a stack of standard spin-images SI(/),
where each layer / € [1, ..., L] corresponds to a given level
of luminance. The dimension of a TSI is L times larger than
that of a SI.

In the recognition process based on these descriptors,
SIs/TSIs of randomly selected points in the query mesh are
created, and then the nearest SIs/TSIs to these points are
found from all SIs/TSIs of each database model. Although
an efficient nearest neighbor search algorithm [15] is used in
this step, the large number of points in a surface mesh means
that the overall computation time is substantial.

3 Color-CHLAC features

The proposed Color-CHLAC features are an extension of
the CHLAC features [16]. CHLAC features are integrals
of the local autocorrelation of 3D voxel data. In our ap-
proach, Color-CHLAC features are computed by measuring
the autocorrelation function of color 3D voxel data at spe-
cific points, represented by local patterns. In this extension,
we innovated a new description of color voxel data. Each
voxel has a 6-dimensional status which represents both oc-
cupation and color information, so that local descriptors can
be represented by the co-occurrence of their shape and col-
ors. Because the feature vector consists of the sums of each
pattern, it is insensitive to minor changes, noise, and loss
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of data. Moreover, these features enable partial matching of
various sized models by choosing an appropriate integral in-
terval.

3.1 Outline

The concept of Color-CHLAC feature extraction is illus-
trated in Fig. 1. A given element of the feature vector is
calculated by summing the response of a particular local pat-
tern over all the color voxels. Local patterns are expressed by
the relative position of neighboring voxels, for example, two
voxels in a row. By summing the response of each pattern,
we obtain a rough measure of some property of an object’s
surface. The voxels of the local patterns are also differenti-
ated by color, so that information about texture patterns can
also be obtained. Because of this color sensitivity, the fea-
tures can be used to discriminate between objects with the
same shape, if their textures differ.

3.2 Method for creating color 3D voxel data

To extract Color-CHLAC features, color voxel data corre-
sponding to the 3D model must be found. The simplest way
of creating voxel data from a measured point cloud is to di-
vide the 3D space at regular intervals and judge whether or
not a given voxel includes a measured point. However, voxel
data created in this approach has many holes on view direc-
tion because measurement points tend to cluster on the ob-
ject plane perpendicular to the view direction. In this paper,
we first create a surface mesh from a point cloud and then
transform the mesh into dense voxel data.

Figure 2 illustrates the method for transforming the sur-
face mesh into voxel data. First, the 3D space is divided into
sufficiently small intervals, e.g. ]l mm x 1 mm x 1 mm. Let-
ting A, B, and C be the vertices of a mesh triangle, the col-
lision of each voxel and the line AB is detected, and a voxel
is marked as “occupied” if a collision occurs. Next, lines are
drawn from the voxel collision points on line AB to the line

. | Color-CHLAC
feature vector

Color Voxel Data

Fig. 1 Illustration of Color-CHLAC features. The resulting feature
vector consists of the sums of local patterns of color voxel data

B B B B
A A Al Al
C C C C
Fig. 2 Illustration of transformation from mesh data into voxel data.
See text for details

AC (these lines are parallel to BC). Then the collision of
these lines and each voxel is detected and voxels are marked
as occupied when appropriate. This process is repeated for
all triangles in the surface mesh.

Finally, voxel data are resized to a proper resolution. For
example, to transform voxel data of size | mm x 1 mm x
1 mm to voxel data of size 4 mm x 4 mm x 4 mm, 4 x
4 x 4 voxels are joined together in one voxel. In this work,
each voxel has R, G, and B color values. When resizing,
the color values of each voxel in the output, voxel data are
computed by averaging over the corresponding region of the
input voxel data.

3.3 Color-CHLAC feature extraction

Letting x = (x, y, z) T be the position of a voxel, we use the
notation p(x) = 1 if the voxel is occupied, and p(x) =0
otherwise. When p(x) = 1, the voxel has RGB color values.
We represent these, normalized between 0 and 1, as r(x),
g(x), and b(x), respectively. By defining r'(x) =1 — r(x),
g(x)=1-g(x) and b'(x) =1 — b(x), the voxel status
f(x) € R is defined as follows:

@ @) g@) g @) bx) b )T (px)=1)

F&I=1 0000007 (p(x) =0)

During pre-processing for feature extraction, r(x), g(x),
and b(x) can be binarized. If these are binarized, the result-
ing voxel status f(x) can be categorized into 9 patterns as
shown in Fig. 3. Since f(x) contains not only RGB values
but also their reverse values, the function is able to differen-
tiate between low RGB value voxels and empty voxels.

Color-CHLAC features are integral to f(x) or correla-
tions of f(x) between neighboring voxels and are calculated
according to the following equations:

z=) f@), ¢h)

@)=Y f@)fTx+a) )

The dimension of Color-CHLAC features calculated by
(1) is 6. 14 patterns are used for the displacement vectors a
in (2) (Fig. 4). Note that not only is the f(x) correlation be-
tween two neighboring voxels integrated, but also the corre-
lation between two elements of f(x) of one voxel. Exclud-
ing redundant elements, the dimension of the Color-CHLAC

(0000 00)|Empty L1 (10100 1) Yellow O
(01010 1)|Black M| o100 cyan O
(100101)| Red . (1001 1 0)"| Magenta .
(01100 1) | Green M| oo o0)| whie ]
(0101 10)|Blue . Others X forbidden

Fig. 3 Patterns of binarized color voxel status
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Fig. 4 Patterns of displacement vectors. Position of the center voxel
is x, while position of the other highlighted voxel is x 4+ a

features calculated by (2) is 480, if color values are bina-
rized, and 489 otherwise.

With color binarization, the patterns of neighboring vox-
els whose colors differ from one another are emphasized
and correctly detected. Also, robustness to small changes in
light intensity is achieved. On the other hand, if the colors
of the target object are near the thresholds, the features can
be sensitive to light variations. Moreover, continuous color
values include richer information than binary color values.
In this paper, we extract Color-CHLAC features from both
binarized color voxel data and the original color voxel data.
Then the dimension of the Color-CHLAC feature vector is
981 (= 6 + 480 + 6 + 489). We set the threshold of color
binarization to 0.5.

3.4 Color-CHLAC feature compression

The dimension of a Color-CHLAC feature vector is 981,
which is rather large. The greater the feature dimension
the longer is the computational requirements for calculating
similarity. In this paper, we compress Color-CHLAC feature
vectors by Principal Component Analysis (PCA), using fea-
ture vectors extracted from all subdivisions of all database
objects. This is the same idea used in SI [13] and TSI [14].

PCA is effective in this study because it is a linear trans-
formation. Our method requires that the feature vectors have
the additive property. Since PCA is a linear transformation,
so the additive property is retained in the compressed feature
vectors.

4 Matching method
4.1 Color-CHLAC features cache
It is important for 3D features to enable matching of par-

tial models of any size in real 3D object retrieval. It is also
essential that the time required for the matching process
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Fig. 5 Illustration of matching method using the Color-CHLAC fea-
tures cache. See text for details

be short. By choosing an appropriate integration interval,
Color-CHLAC features can be calculated from any region in
each 3D model. Furthermore, the full feature vector of a par-
tial model can be calculated simply by summing the feature
vectors of its sub-parts. Another merit of Color-CHLAC fea-
tures for partial matching is that they are translation invari-
ant. Consequently, the feature vector is insensitive to small
linear position changes, and thus fast rough scanning should
not degrade the results too much.

The illustration of the proposed matching method is
shown in Fig. 5. As a pre-processing step for object retrieval,
we calculate and store the Color-CHLAC features of subdi-
vided parts of models in a database. For example, suppose
that the color voxel data of every object is a 300 x 300 x 300
grid and Color-CHLAC features are computed from subdi-
visions consisting of 30 x 30 x 30 voxels. Then at most,
10 x 10 x 10 Color-CHLAC feature vectors are obtained. In
the retrieval process, given a query part of a certain size, e.g.
40 x 20 x 80 voxels, we first choose an appropriate matching
area size. This corresponds to the integral interval of Color-
CHLAC feature computation in one operation of matching.
The size of the matching area is chosen to be larger than
that of the query part and an integral multiple of the size
of the subdivisions of the database models. In this case, it
is a 60 x 30 x 90 grid. The similarity measure is simply
the dot product of the query’s Color-CHLAC feature vec-
tor and the corresponding feature vector of the given model
with the same area. The matching process is fast because the
Color-CHLAC features of each matching model area can be
calculated by simply adding some of the pre-computed and
cached feature vectors (in this case, 6 (=2 x 1 x 3) vectors).

4.2 Summed-area tables

Since Color-CHLAC features are integral features, they can
be computed in constant time regardless of the matching
area size, using the Summed-Area Table (SAT) [17]. To deal
with 3D voxel data, we extend the SAT from 2D to 3D.
The original definition of the SAT is the sum of the im-
age pixels of the upright rectangle stretching from the top
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Fig. 6 Summed-Area Tables z
(SAT) in our implementation
X
4 S
T (x y|2)
extract
Color-CHJ/AC features
=SAT(x,y,2)
Fig.7 Color-CHLAC features z
computation using the SAT /( R
X
Yy x
(x| 3. )
extract
Color-CHKAC features

=T (X, 0,2,%,0,2)

left corner to the bottom right corner. In our implementa-
tion, SAT (x, y, z) is defined as the Color-CHLAC feature
vector extracted from the voxel area ranging from (0, 0, 0)
to (x,y,z) (see Fig. 6). As shown in Fig. 7, let the Color-
CHLAC feature vector of the voxel area with x ranging from
X1 to xp, y ranging from y; to y, and z ranging from z;
to z2, be T(x1, y1, 21, X2, 2, 22). This is computed by the
following equation:

T (x1, y1,21, X2, ¥2, 22)
= SAT (x2, y2,22) — SAT (x1, y2, 22)
— SAT (x2, y1,22) — SAT (x2, y2, 21)
+ SAT (x1, y1, 22) + SAT (x1, ¥2, 21)
+ SAT (x2, y1,z1) — SAT (x1, y1, 21)

Using the SAT, T(x1, y1,21,X2, y2,22) can always be
computed by adding the 8 cached feature vectors, regardless
of the size of the query part. Note that this is not effective
when the number of subdivisions included in the matching
area is smaller than 8.

4.3 Achieving robustness to rotation

In principle, any feature based matching scheme can fail if
the feature vector produced by an object changes signifi-
cantly when the object is rotated. There are two basic ap-
proaches to solving this problem. One is to use a rotation-
invariant descriptor, and the other is to rotate objects be-
fore the matching process. We opt for the latter approach,
repeating the matching process with various orientations of
the query model. The feature vector of an object rotated 90
degrees can be obtained rapidly through a simple exchange
of the elements of the feature vector in the initial orientation.
This is possible because each displacement vector in Fig. 4
is equivalent to another, rotated 90 degrees. This method is
used together with smaller rotations of the object (e.g. 30
and 60 degrees) to obtain a set of poses which are tested

Fig. 8 67 objects in the database

against the model database. To obtain tight matching, the
step size of the rotation should be small, but this increases
computation time. A good matching can be obtained with
reasonable step sizes. In this work, we set the step size to
30 degrees, resulting in 504 different orientations.

5 Retrieval with real color 3D models

We evaluated the performance of the proposed approach for
the part-in-a-whole matching task using real color 3D mod-
els. First, we analyzed how the recognition accuracy and the
computation time decreased when the subdivision-size pa-
rameter decreased. Second, we compared our method with
conventional approaches using Spin-Image (SI) [13], Tex-
tured Spin-Image (TSI) [14] and CHLAC features [16]. Fi-
nally, we tested the retrieval performance of our method on
a large database of 3D models.

5.1 Retrieval performance versus subdivision size
5.1.1 Setup

We used the “Telecom Paris Image-based Digitized 3D
Models Archive” [18], a dataset of real textured 3D objects.
The database consists of 67 complete 3D models shown in
Fig. 8. Ten query parts (Fig. 9) were manually obtained from
the models, randomly rotated in the range O to 359 degrees,
and used as input to the matching procedure. We trans-
formed each model into 1 mm x 1 mm x 1 mm color voxel
data using the method described in Sect. 3.2. In this exper-
iment, we used compressed Color-CHLAC feature vectors
whose dimension was 25.

5.1.2 Results

In our method, the subdivision size should be small to obtain
tight matching, but this increases computation time. Results
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Fig. 9 10 query parts
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Average number of correct answers

0 L) T L) T T 1
5 10 15 20 25 30
Number of voxels in each side of the subdivision &

=¢— FT == ST TT

Fig. 10 Average correct rate versus subdivision size

of the average correct rate in 100 trials versus subdivision
size are shown in Fig. 10. In each trial, the query part was
randomly rotated before being input to the matching pro-
cedure. FT, ST, and TT represent first-tier, second-tier, and
third-tier, respectively. First-tier is the percentage of trials in
which the correct object is ranked first among the 11 data-
base objects, whereas second-tier is the percentage where
the correct object is ranked first or second, and third-tier is
the percentage where the correct object is ranked first, sec-
ond, or third. Let the number of voxels in each side of the
subdivision be k. As shown in Fig. 10, an increase in the sub-
division size did not bring about a corresponding decrease in
the number of correct answers in this experiment.

On the other hand, matching time increased greatly with
a decrease in subdivision size. Table 1 gives the time re-
quired for (I) computing the Color-CHLAC features of 504
different orientations of the query part and (II) matching the
query part against all sub-parts of the 67 database models.
The reported computation time was obtained using a C++
implementation executing on a Pentium D 3.2 GHz with 6.0
GB of main memory.
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Table 1 Time taken for (I) feature extraction and (II) retrieval (sec). k
is the number of voxels in each side of the subdivision

k 5 10 15 20 25 30
@ 0.91 0.91 0.91 0.91 0.91 0.91
an 510 45 10.4 3.6 1.7 0.85
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Fig. 11 Examples of first retrieved parts. Query parts are in the top
rectangles, correct answers in the middle rectangles, and wrong an-
swers in the bottom rectangles

Examples of the first retrieved model for a given query
object are shown in Fig 11. Query parts are shown in the
top rectangles, correct answers in the middle rectangles, and
wrong answers in the bottom rectangles. In this case, the
subdivision size was set to 30 x 30 x 30 voxels. As shown
in Fig. 11, the correct model was retrieved even if the ex-
act same area was not matched against the query part. We
observed that a query part with a strong color characteris-
tic is correctly retrieved even if it was fairly small. On the
other hand, mistakes sometimes occurred if there was an-
other model in the database with a similar shape (see (h) in
Fig. 11) or texture (see (i) in Fig. 11).

5.2 Comparison with other methods

In this section, we compared our Color-CHLAC features
with Spin-Image (SI) [13], Textured Spin-Image (TSI) [14],
and CHLAC features [16] from the viewpoint of noise re-
sistance and computation time. We used the same database
as that used in Sect. 5.1. Note that we tested CHLAC fea-
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tures with the same partial-matching method as that used
with Color-CHLAC features. For SI and TSI extraction, the
resolution of each surface mesh was changed by mesh re-
sampling [19] so that the average length of edges in the
surface mesh was around 1 mm. For Color-CHLAC fea-
tures and CHLAC features extraction on the other hand, we
transformed each model into 1 mm x 1 mm x 1 mm voxel
data (with or without colors) using the method described in
Sect. 3.2.

5.2.1 SI and TSI parameters

Important parameters in SI generation are the bin size, image
width, and support angle. Details of these are given in [13].

According to [13], choosing a bin size parameter equal to
the mesh resolution creates a descriptive SI. We set the bin
size to 0.9 mm, which was the average length of the edges
in all the surface meshes of objects in the database. Image
width was set to 15 and the support angle to 60 degrees,
similar to the values used in [13]. The height of the SI was
also set to 15 as in [13].

In the recognition step, a fraction of the oriented points
are selected at random from each query part. Let the number
of selected points be K and the number of points in the query
part be N, we set K = N,;/100. Then K SIs are generated
and matched against all SIs for each object in the database.
To find the closest points, we used the efficient closest point
search structure [15], in the same way as in [20]. In this ap-
proach, a reference point is a potential closest point only if it
is less than a predetermined distance € from the query point.
Choosing a small € allows faster lookup of closest points,
but decreases the likelihood of finding the correct closest
point. In this paper, we searched experimentally for a suit-
ably small value for e that does not substantially reduce the
recognition rate, resulting in the value 10.

After the closest point search, the similarity between each
point in the query part and the closest point in the ith object
in the database is computed. The definition of the similarity
measure between two SIs follows that given in [20]. In [20],
the query part in a 3D scene and each object in a database
are tightly matched by geometric matching using groups of
point correspondences. However, unlike [20], the objective
of our work is not to compute a transformation from model
to scene, but to recognize objects in the scene fast enough
for application in an online system. In this paper, we define
the similarity between a query part and the ith object in the
database, that is y;, as the summation of the similarity mea-
sures between each point in the query part and the closest
point in the i-th object. Let the number of SIs for the ith ob-
ject be N;, these SIs be p,, and the SIs generated from the
query part be q,, then y; is given by

K
1
i = I;n:rf?fm ((atanh(R(pn, 40’ — k<cnk—_3))

Table 2 SI and TSI parameters

Parameter SI TSI
Bin size 0.9 0.9
Image width 15 15
Support angle [degree] 60 60
Number of points (K) N,4/100 N,4/100
Search distance (¢) 10 10
Luminance level (L) - 4
Compressed dimension (d) 25 25
(%) 100
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70 \
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50 \\ \
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\, ~=
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0 . N,

0.2 0.4 0.6 0.8 1.0

Average number of correct answers

®

Standard Deviation G, (mm)
—o— S -8 TSI CHLAC =& Color-
CHLA

Fig. 12 Comparison of average correct rate (First-Tier) versus noise
in coordinates of point clouds

where ¢, is the number of overlapping pixels used in the
computation of correlation coefficient R. We set A to 3, as is
the case in [20].

According to [14], the value of the luminance level L in
TSI should be small, ranging between 3 and 8. We set L to 4.
The SI and TSI feature vectors are compressed using PCA.
We set the dimension of the compressed feature vector d to
25. Note that d is set to 25, both in [13] and [14].

Table 2 gives the SI and TSI parameters decided above.

5.2.2 Results

A comparison of the average correct rate in 100 trials is
shown in Figs. 12, 13, 14, 15, 16 and 17. FT, ST, and
TT represent first-tier, second-tier, and third-tier, respec-
tively. Where SI or TSI was used, matching was tested us-
ing a different choice for the K selected points as the query
part. When using CHLAC features or our Color-CHLAC
features, the query part was randomly rotated each time.
Note that the subdivision size was set to 30 x 30 x 30
voxels for both CHLAC features and Color-CHLAC fea-
tures.
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Fig. 13 Comparison of average correct rate (Second-Tier) versus
noise in coordinates of point clouds
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Fig. 14 Comparison of average correct rate (Third-Tier) versus noise
in coordinates of point clouds

Figures 12, 13 and 14 show a comparison of the num-
ber of average correct answers versus the Gaussian noise
in the coordinates of the query point clouds. Note that no
noise was added to color values. The horizontal axis repre-
sents the standard deviation o7 (mm). As seen in Figs. 12,
13 and 14, ST and TSI were superior to the proposed method
when no noise was added to the test data. This was be-
cause the changes in voxel data brought by the rotation of
models affected the retrieval performance of our method.
However, SI and TSI seem to be sensitive to noise, So
that their retrieval performances were surpassed by that
of the Color-CHLAC features when oy was more than
0.2 mm.

Color-CHLAC features are robust to noise not only in the
points’ positions but also in their RGB values. Figures 15,
16 and 17 give a comparison of the average correct rate ver-
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Fig. 15 Comparison of average correct rate (First-Tier) versus noise
in the color of point clouds
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Fig. 16 Comparison of average correct rate (Second-Tier) versus
noise in the color of point clouds

sus the Gaussian noise in the RGB color values for query
point clouds. The horizontal axis represents standard devi-
ation o2, and RGB values range between 0 and 256. Note
that Gaussian noise with o; = 0.2 mm is added to the co-
ordinates. The retrieval performance of Color-CHLAC fea-
tures were superior to that of TSI when o, was greater
than 12.

Table 3 gives the time required for (I) extracting features
of a query part and (II) calculating all the similarities be-
tween the query part and the 67 objects in the database.
CHLAC and Color-CHLAC features exhibited substantially
faster performance than SI and TSI in the time required for
(II). Since the time for (II) increases linearly as the num-
ber of objects in the database increases, the shortness of this
computation time is important in dealing with a large data-
base.
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Fig. 17 Comparison of average correct rate (Third-Tier) versus noise
in the color of point clouds

Table 3 Computation time (sec)

Feature ST TSI CHLAC  Proposed
(I) Feature extraction 0.14 0.51 0.21 0.99
(IT) Similarity computation 27 46 1.6 0.85

Let the number of subdivisions in the ith object in the
database be M;. The computation complexity of calculat-
ing the similarity between the query part and the ith ob-
ject in the database is O (dM;) with the proposed method,
and O(dK log, N;) with the others. As shown in Sect. 5.1,
when using our features, M; can be reduced by increasing
the subdivision size with almost no decrease in the correct
rate. For SI or TSI on the other hand, the computation time
of the similarity computation can be decreased by decreas-
ing K, but this will adversely affect the average correct rate.
In the case of using SI or TSI, the search distance parameter
€ also affects the time required for the similarity computa-
tion. In short, the proposed method also has the advantage
that choosing parameters is easier.

Regarding the pre-processing feature extraction of the
database, our method was considerably faster than the oth-
ers. The ith object in the database has N; feature vectors
when using SI or TSI, while it has M; feature vectors in our
approach. Since N; is the number of points in the ith ob-
ject’s surface mesh, N; can only be reduced by reducing the
resolution of the surface mesh. In this experiment, the pre-
processing feature extraction of the database took more than
11 hours when using SI, more than 16 hours when using TSI,
and less than 2 minutes in our approach. Consequently, our
method can be used when the database changes frequently,
such as when it represents a 3D scene in an everyday envi-
ronment.

Fig. 18 Some examples of voxel data in the large database

5.3 Retrieval performance on a large database
5.3.1 Setup

In this experiment, we evaluated the retrieval performance
of our method on a larger database. We added 497 color 3D
models downloaded from Archive3D.net! to the database
used in Sects. 5.1 and 5.2. The models downloaded from
Archive3D.net consist of 71 objects in “Home Appliances”
category, 165 in “Kitchen Ware” category, 63 in “Toys and
ChildRoom” category, 156 in “Decoration” category, and 42
in “House Plants” category. To align the size of objects in
the database, we transformed each object into color voxel
data so that the longest side of the bounding box might be
200 voxels. Some examples of voxel data in the database are
shown in Fig. 18.

We created 564 query parts by clipping a rectangular
solid from each database object. Let the ratio of the number
of voxels in each query part to the number of voxels in the
corresponding database model be «. We set « to 0.2, 0.4,
0.6, 0.8, and 1. Note that no noise was added to the color
values or the coordinates of query parts.

Query parts were rotated by B degrees before being cut
from database models. We tested 5 choices for 8: (a) O,
(b) 10, (¢) 30, (d) 45, and (e) a random number in the range
0 to 359. Also in this experiment the subdivision size was
set to 30 x 30 x 30 voxels.

5.3.2 Results

Average correct rate (FT, ST, and TT) versus « is shown in
Figs. 19, 20 and 21. The performance in the case (a) was
so high that FT was nearly 80% when o« = 0.2. On the other
hand, the average correct rate decreased as the degrees of ro-
tation of query parts increased, and the performance on (e)
was from 20% to 30% lower than that on (a). This was be-
cause the topological changes in voxel data brought by the
rotation of models affected the retrieval performance. In ad-
dition, since there were a lot of models with a single color

Uhttp://archive3d.net.
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Fig. 19 Average correct rate (FT) versus «. The value of 8 is (a) 0,
(b) 10, (¢) 30, (d) 45, and (e) a random number in the range 0 to 359
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Fig. 20 Average correct rate (ST) versus «. The value of 8 is (a) 0,
(b) 10, (¢) 30, (d) 45, and (e) a random number in the range O to 359

(e.g. black or white) in the database, the topological changes
in voxel data could make it difficult to distinguish such mod-
els.

Average computation time required for (I) extracting fea-
tures of a query part, (II) calculating all the similarities be-
tween the query part and the 564 objects in the database,
and the sum of the time for (I) and (II) versus « is shown in
Fig. 22. When « increases, the time for (I) increases, while
the time for (II) decreases because the total number of times
of the matching between a query and a database model de-
creases. The sum of the time for (I) and (II) was shortest
when o = 0.6, which was 4.42 sec.

6 Search demonstration in 3D scene

In this section, we demonstrate the results of using the sys-
tem to find a target object in our lab room. This system

@ Springer

(%) 100
90 7

80 1
70 7!(—'4“—&‘——*
60
50
40
30
20
10

0 T T T T 1
0.2 0.4 0.6 0.8 1.0
Ratio of the number of voxels in a query part o

=0— (a) =M= (b) =i (c) =¥=(d) =¥=(c)

Average number of correct answers

Fig. 21 Average correct rate (TT) versus «. The value of B is (a) 0,
(b) 10, (¢) 30, (d) 45, and (e) a random number in the range 0 to 359
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Fig. 22 Average computation time versus «. (I) Feature extraction of
a query part and (II) similarity calculation between the query part and
all the 564 objects in the database

aims at automatically searching for objects (e.g. those lost
by someone) in a normal indoor environment.

6.1 Setup

In this experiment, we used an IEEE1394 camera and a in-
frared ranger (SwissRanger, SR3000)? to obtain color 3D
voxel data (Fig. 23). We fixed the optical camera on the
laser ranger, and used the overlapping area of the images ac-
quired from both camera and laser ranger. The resolution of
a range image obtained by the SR3000 is 144 x 176, which
is rather low. Consequently, we set the size of a voxel to
10 mm x 10 mm x 10 mm in this experiment.

2MESA Imaging AG, http://www.mesa-imaging.ch/index.php.
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IEEE1394 Camera

Infrared Ranger SR3000

Fig. 23 Sensors on the cart used to measure the 3D scene

7950mm

11800mm
[ 1

Fig. 24 The layout of the target 3D scene. The highlighted rectangles
represent the areas where the target objects (Fig. 26 (a)—(h)) are

The target environment is our laboratory room whose size
is 7950 mm (height) x 11800 mm (width) x 2700 mm
(depth) (Fig. 24). We moved a cart (Fig. 23) manually
around the room looking outward and obtained 45 color
images (Fig. 25) and range images together. The obtained
3D data was aligned manually an d transformed into 867 x
1281 x 230 voxel data. We set the subdivision size of the
voxel data to 10 x 10 x 10 grid, resulting in obtaining
87 x 128 x 23 subdivisions. There were 9345 subdivisions
in the 3D scene which included one or more voxels, which
was 3.6% of the total number of the subdivisions.

We put eight target objects (Fig. 26) on various locations
in the room (Fig. 24). The matching area size of the doll
(Fig. 26(h)) was the minimum of that of all the target ob-
jects, which was 20 x 10 x 10 grid, while that of the dolphin
(Fig. 26(b)) was the maximum, which was 50 x 50 x 50 grid.
Each object was measured from C directions, and then the
scanned data was transformed into color voxel data, respec-
tively. For each object the value of C was different, which
was small for a monotonous-looking object (e.g. Fig. 26(g)),
ranging from 1 to 8.

Fig. 25 Color images of the target 3D scene

— i —_—
o] f ]
=) =
wh 0
o =

lof1 B| 10f3

e 10f3

Fig. 26 Color images of the target objects

Object detection process consists of the following steps.
First, the system performs partial matching between C query
parts of a target object and the 3D scene of the room in 504
different orientations. Then it stores the maximum value of
the similarities between the feature vector of each local area
of the scene and 504 x C feature vectors of the target object.
Finally, the system outputs three local areas, which have the
largest similarity to the target object, the second largest simi-
larity, and the third largest similarity, respectively. We tested
10 different values: 20, 40, ..., 200 as the dimension of the
compressed Color-CHLAC feature vectors.

@ Springer
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Table 4 Object detection

results. The trial with dim 20 40 60 80 100 120 140 160 180 200

120-dimensional features

reported the best performance (a) 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd 3rd
(b) I Lt Lt X Lt Lt Lt Lt Lt Lt
(©) Lgt Lt Lt Ly Lt Lt Lt Lt Lt Lt
(d 3rd 31 31 3rd 31 31 31 31 31 31
(e) 2nd Lt Lst Lst Lt Lt Lst Lt Lt Lst
® 2ng 2nd 2nd 2ng 2nd 2na 3rd 3rd 3rd 3rd
(& X Lt Lst Lst Lst Lst Lst Lt Lyt Lyt
(h) X X X X X 3 31 3 31 X

Table 5§ Average computation time required for object detection (sec). (I) Feature extraction of 504 different orientations of a query part and (II)

matching the query part against all local areas of the 3D scene

dim 20 40 60 80 100 120 140 160 180 200
(I) 0.06 0.07 0.09 0.10 0.11 0.13 0.15 0.16 0.20 0.22
(I) 5.2 5.6 5.9 6.5 6.8 7.2 7.5 7.9 8.2 8.6
6.2 Results

The object detection results are shown in Table 4. 1 rep-
resents the case when the correct area was detected as the
first-ranked area, 2,4 as the second-ranked area, 3,4 as the
third-ranked area, and x represents the case when the ob-
ject detection trial failed. The results vary depending on the
dimension of feature vectors. The best results were reported
when the dimension was 120. This indicates that setting the
dimension to a proper value is important.

A search result example is shown in Fig. 27. The object-
detected box area in the 3D scene is shown in the left up-
per rectangle, while a color image captured near the area is
shown in the bottom. The matching reported the exact posi-
tion where the query object (Fig. 26(e)) could be found.

Table 5 shows the average time required for (I) comput-
ing the Color-CHLAC features of 504 different orientations
of a query part and (II) matching the query part against all
local areas of the 3D scene. Note that the total time required
for the detection of one object is approximately C times
longer than (I)+(II). Since the average number of C was 4,
the average computation time required for the detection of
one object was 30 seconds when the dimension of feature
vectors was 120.

7 Conclusion

In this paper, we proposed new features which describe the
co-occurrence of shape and colors of an object’s surface.
These features enable efficient partial matching of real tex-
tured 3D objects.

@ Springer
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3D Scene

Color image including
the detected area

P

Fig. 27 A result example of the detection of (e) in Fig. 26. The de-
tected area is shown in the left upper rectangle

The retrieval performance was evaluated with a database
of real textured 3D models. Color-CHLAC features reported
much higher accuracy than CHLAC features. Furthermore,
considerably faster matching is possible using our method
than using either Spin-Image or Textured Spin-Image. Our
features are also robust to Gaussian noise both in the posi-
tion of measured points and in their color values. However,
smoothing of the query part’s surface was not applied in our
experiment, so there is the possibility that the retrieval per-
formances of SI and TSI may be improved by smoothing.
On the other hand, the results of the experiment in Sect. 5.3
indicate that the topological changes in voxel data brought
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by the rotation of models affect the retrieval performance. It
is our future work to achieve the robustness to the topologi-
cal changes in voxel data.

Finally, we demonstrated the possibility of using the sys-
tem to search for objects in the real world. It is expected that
our proposed approach may contribute to real 3D object re-
trieval. In future work, we apply our system to searching for
more varied objects in a large environment.
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