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Abstract This paper presents a volumetric stereo and sil-
houette fusion algorithm for acquiring high quality models
from multiple calibrated photographs. Our method is based
on computing and merging depth maps. Different from pre-
vious methods of this category, the silhouette information
is also applied in our algorithm to recover the shape infor-
mation on the textureless and occluded areas. The proposed
algorithm starts by computing visual hull using a volumet-
ric method in which a novel projection test method is pro-
posed for visual hull octree construction. Then, the depth
map of each image is estimated by an expansion-based ap-
proach that returns a 3D point cloud with outliers and redun-
dant information. After generating an oriented point cloud
from stereo by rejecting outlier, reducing scale, and esti-
mating surface normal for the depth maps, another oriented
point cloud from silhouette is added by carving the visual
hull octree structure using the point cloud from stereo to re-
store the textureless and occluded surfaces. Finally, Poisson
Surface Reconstruction approach is applied to convert the
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oriented point cloud both from stereo and silhouette into a
complete and accurate triangulated mesh model. The pro-
posed approach has been implemented and the performance
of the approach is demonstrated on several real data sets,
along with qualitative comparisons with the state-of-the-art
image-based modeling techniques according to the Middle-
bury benchmark.

Keywords Multi-view stereo · Depth map · Oriented point
cloud · Visual hull

1 Introduction

At present the art of computing complex and high quality 3D
models has large and wide applications in computer graph-
ics, medical imaging, 3D animation, electronic games, etc.
In practice, image-based modeling technique is an efficient
and convenient method to acquire models of real word ob-
ject. According to the information it uses, image-based mod-
eling can be categorized into three classes: shape from shad-
ing, shape from silhouette, and shape from stereo. Shape
from shading methods [1] are based on the diffusing prop-
erties of Lambertian surfaces. They require controlled en-
vironments where the illumination of the object space and
the object reflectance must be known. In the second one
[2, 3], 3D object shape is constructed by intersection of the
visual cones formed by back-projecting the silhouettes in the
corresponding images. The reconstructed 3D object shape is
not guaranteed to be the same as the original object since
concave surface regions can never be distinguished using
silhouette information alone. Methods of shape from stereo
seek to reconstruct a depth map for each input view using
information contained in the object texture. Evidently, if the
object has no texture or if its information is too weak, the
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method will fail. In this case, another type of information
such as silhouette, shading or radiance can be employed to
reconstruct accurate and complete models.

This paper proposes an algorithm to reconstruct 3D ob-
ject surface from multiple calibrated images by using both
stereo and silhouette information. Specifically, the proposed
reconstruction algorithm can be decomposed into four steps.
In the first step, visual hulls are computed by a volumet-
ric method in which a novel projection test method is pro-
posed for visual hull octree construction. Then, the depth
map of each image is estimated from multi-view stereo by an
expansion-based approach and an oriented point cloud de-
noted as point cloud from stereo (PCST) is computed from
the depth maps through outlier rejection, point cloud size
reduction and surface normal estimation. In the third step,
the visual hull octree structure is carved by the PCST to
generate another oriented point cloud on the visual hull de-
noted as point cloud from silhouette (PCSL) to recover the
shape information from silhouettes on those parts of the ob-
ject surface which cannot be captured by texture informa-
tion. At last, these two point clouds are merged to generate
a more complete point cloud on object surface denoted as
point cloud from stereo and silhouette (PCSTSL) and Pois-
son Surface Reconstruction (PSR) [4] approach is applied
to reconstruct an accurate and complete surface model from
the PCSTSL since this approach can robustly recover the
fine details from a set of noisy, non-uniform points.

Compared with traditional image-based modeling ap-
proaches, the most obvious uniqueness of our proposed al-
gorithm lies in the visual hull computation, expansion-based
depth map estimation, and volumetric stereo and silhouette
fusion. In particular, the benefits of our approach are as fol-
lows:

– A novel volumetric approach constructs high quality vi-
sual hull mesh from silhouettes.

– An expansion-based depth map estimation algorithm out-
puts dense and accurate depth map quickly.

– A volumetric stereo and silhouette fusion approach ap-
plies the silhouette information to amend the missing
shape information from multi-view stereo in our recon-
struction framework.

The paper is organized as follows. In Sect. 2, we present
a brief review of several related works. In Sect. 3, a novel
volumetric visual hull computation method is addressed in
detail. In Sect. 4, an expansion-based approach is applied
for depth map estimation and an oriented PCST is generated
by cleaning, downsampling and surface normal estimation
for the point cloud merged from the depth maps. In Sect. 5,
the visual hull octree structure is carved by the estimated
PCST to generate a PCSL and the PSR approach is applied
to reconstruct a complete model from the shape informa-
tion both from stereo and silhouette. In Sect. 6 we present

experimental results on several data sets, along with qualita-
tive comparisons with several state-of-the-art imaged-based
modeling algorithms. Finally, in Sect. 7, we draw some con-
clusions and give future directions about this work.

2 Related work

Although there are many approaches to reconstruct an accu-
rate model of a 3D object from a sequence of calibrated im-
ages, these approaches can be mainly categorized into four
classes according to the taxonomy of Seitz et al. [5]: 3D
volumetric approaches [6–8], surface evolution approaches
[9–11], feature extraction and expansion techniques [12–14]
and depth map based methods [15–18]. In practice, depth
map based methods are not only easy to implement but
also can reconstruct very accurate surface model. Generally,
these methods involve two separate stages. First, a depth
map is computed for each viewpoint using binocular stereo.
Second, the depth maps are merged to produce a 3D model.
In these methods, the estimation of the depth maps is cru-
cial to the quality of the final reconstructed 3D model. Our
method falls into the fourth category. However, the proposed
approach is different from the previous works of this cate-
gory in many aspects of which the most important one is
that the geometric constraint associated with the silhouettes
is incorporated into the reconstruction process. In what fol-
lows we discuss five papers that are most closely related to
this paper, with an emphasis on the differences compared to
our method.

The inspiration for the approach presented in this paper
is the work of Hernandez et al. [10]. They recover a com-
plete model by deforming a mesh, initialized as the visual
hull, to find a minimum cost surface in a cost volume which
is merged from the depth maps for each viewpoint. In the
deformation process, they also incorporate an additional sil-
houette terms to fuse silhouettes with stereo for reconstruc-
tion. Since their approach is based on iterative local refine-
ment via snake deformation model, it is susceptible to local
minima and instability due to many parameters needed to
be tuned. In their algorithm, depth maps are computed by
back-projecting the ray for each pixel into the visual hull
and then reprojecting the depth interval onto neighboring
views where window-based correlation is performed. The
work presented here improves the depth map estimation ap-
proach by introducing an expansion-based approach. Fur-
thermore, our approach uses an oriented point cloud based
approach to combine the shape information both from tex-
ture and silhouette into a full 3D model.

Another related work has been reported by Goesele et
al. [16]. They use a two-step technique. They first use ro-
bust window-based matching to compute reliable depth es-
timates. Then a volumetric method is applied to merge them
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into a single surface representation. Although their method
is simple to implement, their models suffer from a large
number of holes and very long processing time. In contrast,
our algorithm is very efficient and can reconstruct complete
object surface estimates by using both texture and silhouette
information.

Recent work by Furukawa and Ponce [12] proposes a
novel algorithm for calibrated multi-view stereo. The algo-
rithm starts by computing a dense set of small rectangu-
lar patches covering the surfaces visible in the images and
then converts the resulting patch model into an initial mesh
model by PSR approach or iterative snapping. Finally, an
optional final refinement algorithm is applied to refine the
initial mesh to achieve even higher accuracy. In their work,
they compute a dense set of small rectangular patches by
a match, expand and filter procedure. In contrast, we com-
pute an oriented point cloud from multi-view stereo by a
depth map estimation, point cloud cleaning and downsam-
pling, and surface normal estimation procedure.

Our work is similar to that of Bradley et al. [17] who
propose to reconstruct an accurate model from multi-view
stereo in two steps: binocular stereo matching on image
pairs and surface reconstruction from depth maps. The
binocular stereo algorithm creates depth maps from pairs of
adjacent viewpoints and makes use of scaled window match-
ing to improve the density and precision of depth estimates.
And the surface reconstruction step creates a triangular mesh
from the depth maps by a downsampling, cleaning and
meshing procedure. Although we process the depth maps
by similar procedures, we use different methods to compute
depth maps from multi-view stereo. Our algorithm computes
depth maps by an expansion-based approach, while Bradley
et al. just use the basic binocular stereo matching method to
compute depth map for each image.

Space carving [9] is a technique that starts from a vol-
ume containing the scene and greedily carves out non-
photoconsistent voxels from that volume until all remaining
visible voxels are consistent. Since it uses a discrete repre-
sentation of the surface but does not enforce any smoothness
constraint on the surface, the reconstructed results are often
quite noisy. Our approach also carves the visual hull octree
structure, however, the goal is to generate point cloud from
silhouette to amend the missing shape information from
stereo which is different from the space carving approach.
Furthermore, our algorithm outputs complete and accurate
shape estimate represented by triangulated mesh, rather than
a voxel-based representation.

3 Shape from silhouette

The visual hull [19] is the maximal shape consistent with
an object’s silhouettes as seen from any viewpoint in a

Fig. 1 The intersection of silhouette cones defines an approximate
geometric representation of an object called the visual hull [10]

given region which can be constructed by intersecting the
cones generated by back-projecting the object silhouettes of
a given set of views, shown in Fig. 1. Different approaches
for the construction of the visual hull have been developed,
such as volumetric method [2], polyhedral method [20] and
marching intersection method [21]. The proposed visual hull
computation method belongs to volumetric method which
is based on the polygonization of octree structure by using
marching cubes algorithm [22].

The proposed visual hull computation method can be de-
composed into three steps. Firstly, a 3D bounding box of
an object is computed by an optimization method. Taking
the 3D bounding box as a root node, an octree of the ob-
ject is reconstructed from the silhouettes through recursive
subdivision and projection tests in which a novel projection
test method is proposed to determine whether a voxel is lo-
cated outside, on or inside the visual hull. Finally, the vi-
sual hull mesh is extracted from the octree structure by using
marching cubes algorithm. An isosurface function that cor-
responds to the visual hull surface is also defined in order to
extract smooth visual hull mesh.

3.1 3D bounding box estimation

To build visual hull octree structure, an initial bounding box
is needed as a root node. In practice, an accurate 3D bound-
ing box can improve the precision of the result mesh. Since
we do not dispose of any 3D information, we calculate the
3D bounding box only from a set of silhouettes and the pro-
jection matrices. This can be done by considering the 2D
bounding boxes of each silhouette and then back-projecting
these 2D bounding boxes. Then the bounding box of the ob-
ject can be computed by an optimization method for each
of the 6 variables defining the bounding box, which are the
maximum and minimum of x, y, z [23].

3.2 Visual hull octree construction

An octree of an object can be reconstructed from the silhou-
ettes through recursive subdivision and projection tests. The
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Fig. 2 Three types of a voxel in octree-based visual hull reconstruc-
tion: on, in, and out of the visual hull

process begins with a single voxel, which is the 3D bound-
ing box of the object. Each voxel is projected onto all the im-
ages and tested against the silhouettes. The test result classi-
fies the voxel as being inside, outside or on the boundary of
the visual hull (see Fig. 2). Among the three types of vox-
els, only voxels on the boundary of the visual hull contain
the potential visual hull boundary and are subject to further
subdivision until the maximum allowed number of subdi-
vision is reached. Therefore, the projection test method is
crucial for visual hull octree construction. In this section, a
novel projection test method is proposed for visual hull oc-
tree construction. Before explaining our method, we present
several projection test methods in previous work on visual
hull computation.

– R. Szeliski’s projection test method [2]: A cube projected
into an image plane will in general form a six-sided poly-
gon. Szeliski uses a coarser test based on the hexagon’s
bounding box, which may sometimes fail to detect a true
inclusion or exclusion. As the goal of his algorithm is to
obtain a quick and rough model of an object in close to
real time, this method is adaptable.

– Y. Yemez et al.’s projection test method [3]: Yemez et al.
solve this problem by oversampling the edges of an voxel
up to the maximum octree level such that the voxel type
decision is based on the state (in or out) of the intermedi-
ate sampled points along the edges and the corners. That
is: (1) If all these points of the voxel are out of the visual
hull, the voxel’s type is out; (2) If all these points of the
voxel are in the visual hull, the voxel’s type is in; (3) Else,
the voxel’s type is on.

– M. Potmesil’s projection test method [24]: This method
first computes the exact projection of a voxel and then
does intersection test between the projection of the voxel
and the silhouettes to determine the type of the voxel.

Algorithm 1: The proposed projection test algorithm.
Input: A given voxel and all the calibrated silhouette

images
Output: The type of the voxel
Calculate the isofunction value of 8 corners of the
voxel;
if the 8 corners of the voxel are out of the visual hull
then

Project the voxel to all the images;
if in one image the projection of the voxel is
completely out of the silhouette then

The voxel’s type is out;
else

Its type is on;
else if the 8 corners of the voxel are in the visual hull.
then

Project the voxel to all the images;
if in all the images the projection of the voxel is
completely in the silhouettes then

The voxel’s type is in;
else

Its type is on;
else

The voxel’s type is on;

In order to build visual hull octree structure and extract
smooth mesh from the octree, we define an isosurface func-
tion that corresponds to the visual hull surface. The visual
hull isosurface function for a given 3D point v is

fiso(v) = max
i

Di(Pi × v), i = 1,2, . . . ,N, (1)

where Di is the distance transform [25] to the contour of sil-
houette i, negative inside and positive outside the silhouette.
In fact, for each 3D point, its isosurface function value rep-
resents the 3D distance between the 3D point and the visual
hull surface, negative inside and positive outside the visual
hull.

To evaluate a given voxel, we project it into all the silhou-
ettes to assign it one of three available types. Our projection
test method (see Algorithm 1) is similar to Potmesil’s one
[24] which first computes the exact projection of a voxel
and then does intersection test between the projection of the
voxel and the silhouettes to determine the type of the voxel.
However, our methods are different in two aspects. Firstly,
the proposed projection test method takes advantage of the
isofunction value of a voxel’s 8 corners to decrease compu-
tation since when part of the 8 corners are out of visual hull,
there is no need to project the voxel to all the silhouette im-
ages to know its type. Secondly, we use a simpler method
to compute the exact projection of a voxel. Potmesil com-
putes the projection of a voxel by determining the relative
position between the voxel and the projection center of an
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Fig. 3 Four color images of the Soldier Terra Cotta Warrior sequence

Fig. 4 Visual hull octree structure of the Soldier object. From left to
right, the level of detail ranges from 6 to 9 depth levels

image and then getting the projection of the cube based on
a lookup table. While our method first computes the projec-
tions of 8 corners of a voxel, it then calculates the convex
hull of them which is the same as the projection of the voxel
according to the basic formulation of the convex hull of a
3D polygon projected on a 2D plane.

In practice, we use the gift wrapping algorithm [26] to
compute the convex hull of the projections of a voxel’s 8 cor-
ners. Once the exact projection of a voxel on each silhou-
ette image has been computed, our approach needs to deter-
mine the relative position of the projection of the voxel to all
the silhouettes. Since the projection of the voxel is a convex
polygon, our approach evaluates the relative position of the
projection to the silhouette by a scan processor that tracks
only the right and the left edges from the top to the bottom
of the projection. The evaluation criterion is: (1) If all the
pixels in the polygon are inside the object regions, the poly-
gon is in the silhouette; (2) If all the pixels in the polygon are
outside the object regions, the polygon is out of the silhou-
ette; (3) Else, the polygon intersects with the silhouette. The
octree models of a Soldier Terra Cotta Warrior (see Fig. 3)
with different resolutions constructed by our approach are
presented in Fig. 4.

Fig. 5 Two views of the visual hull mesh of the Soldier object ex-
tracted from 8-level octree structure

3.3 Visual hull mesh extraction by marching cubes
algorithm

Once the visual hull octree has been constructed, marching
cubes algorithm is applied to extract the visual hull mesh. To
do this, the voxel occupancy of a leaf node is encoded into 8
values using the isofunction value of its eight vertices. Since
these isofunction values can represent the 3D distance to the
visual hull surface, the mesh extracted from the octree struc-
ture is very smooth. In Fig. 5 we present two views of the
visual hull mesh of the Soldier object and we can appreciate
the quality of the visual hull model.

The visual hull will be used in our image-based modeling
algorithm in two aspects. On the one hand, in order to gen-
erate depth maps from multi-view stereo, the depth interval
by back-projecting the ray for each pixel into the visual hull
mesh defines the search range for each pixel, described in
Sect. 4. On the other hand, the visual hull octree structure is
carved by a PCST in order to generate a PCSL, described in
Sect. 5.

4 Shape from multi-view stereo

The shape information represented by an oriented point
cloud is computed from multi-view stereo in this section.
Firstly, depth maps are estimated from multi-view stereo ef-
ficiently by an expansion-based method. Since the 3D point
cloud merged from the depth maps contains outliers and re-
dundant information, the second step is to reject the outliers
and downsample the point cloud. Finally, the surface nor-
mal of each point in the point cloud is estimated from the
positions of the neighbors and the viewing direction of each
3D point is employed to select the orientation of estimated
surface normal.
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4.1 Expansion-based depth map estimation

The proposed expansion-based depth map estimation ap-
proach is an improvement to the Hernandez et al.’s greedy
depth map generation approach [10]. Therefore, we first
give a short explanation to the greedy approach. The in-
puts of the approach are a sequence of calibrated images
I = {I0, I1, . . . , In−1} and the visual hull of an object. For
each image Ii , the approach selects k neighboring views
against which to correlate Ii using robust window match-
ing. For each pixel p in Ii , the approach computes the depth
interval from the visual hull of the object which is the back-
projected ray of p inside the visual hull. Then reproject the
depth interval into selected neighboring views and compute
the normalized cross-correlation (NCC) value between an
m × m window centered on p and the corresponding win-
dows centered on the projections in each of the image. For
a given depth interval, its projections into the different im-
ages are all related by the epipolar constraint by which all
the correlation curves generated by different views can be
related into a single coordinate system [27]. Once the corre-
lation curves are computed, the best candidate depth is cho-
sen from them if its NCC value is larger than some thresh-
old thres1 for at least two views in the k neighboring views.
Note that for each pixel p in Ii , the best candidate depth is
chosen to be the value of depth that maximizes NCC value,
or none if no valid depth is found. After the best candidate
depth is selected, the position of the 3D point correspond-
ing to the pixel p can be computed easily by triangulation
method. A detailed description of Hernandez et al.’s greedy
depth map estimation approach can be seen in [10].

A drawback of this greedy approach is the computation
time since searching the depth value for each pixel from the
depth interval defined by the visual hull has a large redun-
dancy of computation. Hernandez et al. speed up the greedy
approach by partitioning an image into 3 different resolution
layers, computing the depth interval from the visual hull for
the lowest resolution layer and from the precedent layer for
consecutive layers. In practice, the improvement is about 5
or 6 times faster for well-textured images.

The key insight of our approach is to expand from the al-
ready recovered shape information in order to obtain shape
from multi-view stereo quickly. Specifically, our approach
first partitions each image into lots of small windows with
fixed size M × M , then computes a depth value for the cen-
ter pixel of each window using greedy approach. If we find a
depth value and its confidence value is larger than a thresh-
old thres2, the depth value is taken as a reference depth
value for the window. In practice, if we compute the 3D
positions for all the reference depth values, we can obtain
a sparse point cloud with many outliers although only the
depth values with high confidence value are selected (see
Fig. 6(a) and (b)). Therefore, a median-rejection method is

Fig. 6 Expansion-based depth map estimation steps for one image of
the dinoRing sequence. (a) and (b): Two views of a sparse point cloud
merged from reference depth values. (c) and (d): Two views of the
sparse point cloud after median-rejection process. (e) The sparse point
cloud after expanding from neighboring windows. (f) The estimated
depth maps. From left to right, the number of 3D point in each point
cloud is 5868, 5691, 6021 and 128455

applied for all the reference depth values of an image to re-
ject the obvious outliers (see Fig. 6(c) and (d)). Since our
approach only selects the depth value with a high confidence
value, there will be many windows without reference depth
value, especially for the surface area with little or no tex-
ture. Therefore, we compute a reference value for the win-
dow without it from its 3×3 neighboring windows, i.e., for
a window without a reference depth value, if the number
of neighboring windows with it in the 3×3 neighborhood
is more than a fixed number a (in all our experimental re-
sults, a = 4), we compute a reference depth value for the
window as the median of the depth values of its neighboring
windows. This process iterates for 5 times for all the experi-
mental results. In Fig. 6(e), we can see that the point cloud is
more dense after this step. For all the windows of an image,
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our approach only computes depth value for the pixels of
a window with reference depth value. Since each image is a
picture of an object and we can expect it to be locally contin-
uous, if the surface is correctly seen and if there is no occlu-
sion, the depth value of the pixels in each window will not be
very different from its reference depth value. Therefore, we
search the depth values for all the pixels in the window from
a depth interval with fixed length d centered at the reference
depth along the optical ray. The depth map of an image of
the dinoRing sequence provided by the Middlebury bench-
mark [33] is demonstrated in Fig. 6(f) which shows that our
approach can compute a dense depth map. Our expansion-
based depth map estimation algorithm is also described in
Algorithm 2.

In implementation, the size of the expanding window
M × M depends on the resolution of input image sequence.
Typically, for input images with 2000×3000 pixels, the size
of the expanding window is 21×21. And the value of thres2
depends only on how well textured is the object. For a well-
textured object, thres2 = 3.0, while for an object with little
texture, thres2 = 2.5. The value of d depends on both the
size of the reconstruction object and the size of the expand-
ing window. Generally, the value of d is from 1 to 2% of the
size of the reconstruction object.

Since the depth interval defined by the reference depth is
much shorter than the depth interval defined by visual hull,
the computation time of the proposed approach is dominated
by the reference depth computation step. Typically, the im-
provement of computation time for an image partitioned into
5 × 5 windows is around 10 times faster than the greedy ap-
proach. The output of this algorithm is depth map for each

Algorithm 2: The proposed expansion-based depth
map estimation algorithm.

Input: Calibrated image sequence and the visual hull
Output: Depth map of each image
for each image in imageList do

for each expanding window do
Compute a reference depth value by greedy
approach;

end
Reject the outliers by median-rejection method;
for the window without reference depth value do

Compute a reference depth value from its 3×3
neighboring windows.

end
for each expanding window do

Search the depth value for each pixel in the
window from the depth interval defined by the
reference depth;

end
end

image. We just merge these depth maps into a point cloud
which contains outliers and redundant information. For each
3D point in the point cloud, its confidence value and viewing
direction are stored for post-processing.

4.2 Point cloud cleaning and downsampling

The previous subsection outputs a point cloud on the ob-
ject surface which contains many outliers and redundant in-
formation. On the one hand, there are many outliers in the
point cloud generated for miscorrelation. On the other hand,
the point cloud also contains large amounts of redundant in-
formation due to duplicate reconstructions of parts of the
geometry from multiple views. Therefore, we should reject
the outliers and downsample the point cloud before surface
reconstruction.

The outliers of the point cloud are rejected by a two-step
approach. Firstly, the visual hull of a reconstruction object
is incorporated as a constraint to reject 3D points out of the
visual hull. Then, we build a voting octree from the esti-
mated point cloud and select a threshold to eliminate mis-
correlations. Given a set of point samples S and a maximum
tree depth VTd , the voting octree is the minimal octree with
the property that every point sample falls into a leaf node at
depth VTd . And we build a voting octree for the point cloud
which contains, for each voxel, the sum of the individual
correlation scores contained in that voxel. This volume can
be seen as a volume of surface probability where a voxel
with a high score is very probable to contain the real object
surface. Therefore, we threshold the voting octree by elimi-
nating the voxels that have relatively lower score values than
a threshold value thres3, to add robustness to the correlation
approach. For input images with 2000×3000 pixels, typical
resolutions of the voting octree are between 10 and 11 levels.
The different views of voting octree for the Soldier sequence
after binarization with different thresholds are presented in
Fig. 7.

To downsample the 3D point cloud, for each node at the
maximum depth of the voting octree, we extract the point

Fig. 7 Voting octree for the Soldier sequence with 10 levels of depth
and different thresholds. From left to right, the threshold value is 0, 5,
10, 20
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with largest confidence value in the corresponding voxel.
Due to the loss of image space when taking photographs
(the object image being smaller than the image size), loss
of resolution caused by the size of the correlation window
and by the maximum camera baseline, the resolution of a
10-level voting octree is already very high for input images
with 2000 × 3000 pixels. Therefore, for a 10-level voting
octree using the point with largest confidence value instead
of all the points in a voxel will not reduce the accuracy of
the estimated depth maps but decrease the size of the point
cloud significantly. These extracted 3D points construct a
new point cloud on the object surface with few outliers and
smaller scale.

4.3 Surface normal estimation

After the outliers are rejected and the size of the point cloud
is reduced, we need to estimate exact surface normal for
every point. The Principal Component Analysis (PCA) ap-
proach [28] is applied to do this work. In this approach, for
a 3D point pi in the point cloud the normal is given as ui ,
the eigenvector associated with the smallest eigenvalue of
the covariance matrix of the k-nearest-neighborhood of pi .
In practice, we choose two parameters to define the neigh-
borhood of a given point, which are a fixed radius R and a
point number N , and use a KD-Tree to efficiently compute
the k-neighborhood queries. To compute a neighborhood for
pi , firstly, we compute the number of points in a ball with
the radius R centering at pi . If the number is larger than or
equal to N , the neighborhood is the ball with radius R. Oth-
erwise, we enlarge the radius until the number of points in
the enlarged ball is more than N . And the enlarged ball is
taken as neighborhood to compute normal alternatively.

In most cases, the determination of surface normal ori-
entations is not an easy task. However, in our case, we can
select the orientation of the surface normal according to the
dot product result, ζ , between the viewing direction ci of the
point and the surface normal ui [17]. If ζ is larger than zero,
the direction of surface normal is the same as ci . Otherwise,
the direction is as opposed to ci .

ni =
{

ui if ui · ci > 0,

−ui otherwise.
(2)

The output of this section is an oriented point cloud on the
object surface with few outliers and relatively small scale
denoted as PCST. In Fig. 8(a), an oriented PCST for the
Soldier sequence is demonstrated, from which we can see
most shape information including some minute details such
as whether the face has been correctly recovered. However,
there are still a few surface areas of the Soldier object with-
out estimated points since these areas are with no texture or
little texture or cannot be seen from any view. On the other

Fig. 8 Reconstruct the Soldier surface model from the PCST by using
PSR method. (a) An oriented PCST. (b) A model reconstructed from
the PCST using PSR method. (c) Two zoomed portions of the recon-
structed model which are not correctly recovered

hand, one limitation of the PSR method is that it will connect
two disconnect regions when there are no samples between
these two regions. If we use the PSR approach to triangu-
late the PCST directly, the surface area with no or little esti-
mated 3D points cannot be correctly recovered, as illustrated
in Fig. 8(b) and (c). We can see that this method cannot re-
construct correct structures at the left hand or the support
platform of the Soldier object (illustrated by red squares). In
the next section, we will apply the silhouette information to
solve this problem.

5 Volumetric stereo and silhouette fusion

In practice, shape information of well-textured objects with
simple topology can be effectively captured from multi-view
stereo. However, it is hard to recover complete surface mod-
els for textureless objects or objects with complex topology
using texture information only. In this case, silhouette in-
formation can be applied to amend the missing shape in-
formation from multi-view stereo. A volumetric stereo and
silhouette fusion approach is proposed in this section to re-
cover accurate and complete surface estimates. Firstly, an-
other oriented point cloud on the visual hull, denoted as
PCSL, is generated in order to recover the shape informa-
tion from silhouettes for the surface areas which cannot be
captured by texture information. Secondly, the shape infor-
mation from stereo and silhouette are combined by merging
two point clouds (PCST and PCSL) and PSR approach is
applied to convert the oriented point cloud both from stereo
and silhouette into a triangulated mesh model.

The point cloud from multi-view stereo does not have or
has little points in the area of the object surface with no tex-
ture or little texture or the area that cannot be seen from any



Volumetric stereo and silhouette fusion for image-based modeling 1443

Fig. 9 Description of the algorithm to compute PCSL. (a) Classify the
voxels of visual hull octree structure into three types (the red points
represent a PCST). (b) Extract the vertices and normals of visual hull
mesh in the remaining voxels (the black points represent the visual hull
mesh vertices)

view. In most cases, the shape information of these areas
can be captured by the silhouette information. To generate
an oriented point cloud from silhouette, the key new idea is
that we classify the voxels of visual hull octree structure into
three types according to their relative position to the points
of PCST: (1) Type 1: the voxel contains a 3D point or 3D
points of PCST; (2) Type 2: the voxel intervenes the line
between a 3D point of PCST and the optical center of the
point’s reference image; (3) Type 3: all the remaining voxels.
In fact, most of these remaining voxels locate at textureless
and occluded surface areas (see Fig. 9(a)). As an oriented
point cloud needs to be computed at these areas, we extract
the vertices and normals of the visual hull mesh in these
remaining voxels to construct a PCSL (see Fig. 9(b)). Our
PCSL computation approach is described in Algorithm 3.

Since the voxel carving scheme is prone to errors [29],
although most points of PCSL locate at the textureless and
occluded surface areas, there are still a few points on the
well-textured surface area which will be taken as outliers if
they are far away from the real object surface. However, as
the PSR approach can create very smooth surfaces that ro-
bustly approximate noisy data, this is not a serious problem.
In practice, we can control the number of these outliers by
setting an appropriate level of visual hull octree structure to
be carved by a PCST denoted as VHd . For a PCST computed
from a 10-level voting octree, VHd is between 7 to 9, which
is a trade-off between computation time and the quality of
reconstructed results.

Once the PCSL is computed, it is added to the PCST
computed in the previous section to generate a more com-
plete point cloud on the object surface denoted as PCSTSL.
And we use freely available package [30] of the PSR method
to convert the oriented PCSTSL into a triangulated mesh
model. For the Soldier object, a PCSL and a PCSTSL are
demonstrated in Fig. 10(a) and (b), from which we can see
that the PCSL can effectively capture the missing shape in-
formation from stereo such as the left hand and the sup-
port platform of the object although it is not as dense as the

Algorithm 3: The proposed PCSL computation algo-
rithm.

Input: Visual hull octree structure, visual hull mesh,
and point cloud from stereo

Output: Point cloud from silhouette
for each voxel of the visual hull octree structure do

for each point in the point cloud from stereo do
if the point is in the voxel then

The voxel’s type is 1;
Break;

else if the voxel intervenes the line between the
point and the optical center of the point’s
reference image.
then

The voxel’s type is 2;
Break;

else
The voxel’s type is 3;

end
end
for each voxel whose type is 3 do

Extract the vertices and normals of the visual hull
mesh in this voxel;

end

PCST. Two views of the reconstructed model of the Soldier
object are demonstrated in Fig. 10(c) and (d). In Fig. 10(f),
two zoomed portions of the reconstructed model which are
the left hand and the support platform of the object are pre-
sented. And we can appreciate that the previous mentioned
problem is solved by adding a PCSL and these two struc-
tures are correctly recovered.

6 Experimental results

To evaluate the contributions of our approach, we demon-
strate the reconstructions of several real world objects.
Firstly, we apply our approach to reconstruct the Captain
Terra Cotta Warrior data set acquired in our lab with an
electronic turntable and a fixed camera. Secondly, the Big-
Head sequence which is courtesy of [31] and the Skull se-
quence which is provided by [32] are also recovered, along
with comparisons with several state-of-the-art image-based
modeling techniques. Finally, we quantitatively evaluate our
approach using the Middlebury benchmark [33] which con-
sists of two objects, a temple and a dinosaur.

Table 1 lists the number of input images (Ima), their ap-
proximate size (Resolution), the number of points of an ori-
ented point cloud as input of PSR approach (PSize), the
number of vertices of a final model (Vertices), and running
time in minutes (Time) for each data set. Computation times
are dominated by depth maps generation from multi-view
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stereo step. A typical computation time to compute depth
maps from 36 images of 6 Mpixels is about one hour on a
Duo E7400 2.80 GHz computer, while visual hull compu-
tation and Poisson surface reconstruction from mixed point
cloud only cost a few minutes.

Table 2 lists running parameters of the proposed algo-
rithm for each data set, including the number of selected
correlation images k, the threshold to select a best candidate

Fig. 10 Volumetric fusion steps for the Soldier sequence. (a) PCSL.
(b) PCSTSL. (c) and (d): Two views of the reconstructed model.
(e) Textured surface model. (f) Two zoomed portions of the recon-
structed model

depth thres1, the size of NCC matching window m × m, the
size of expanding window M × M , the threshold to select a
reference depth value thres2, the depth interval length d , the
voting octree level VTd and its threshold thres3, the neigh-
borhood to compute surface normal R, N , and the level of
visual hull octree structure to be carved VHd . See the corre-
sponding sections for details about the meaning and setting
method for these parameters.

6.1 Captain sequence

The Captain object (see Fig. 11) is a 228 mm tall, gray,
strongly diffuse Terra Cotta Warrior with lots of details and
complex topology. The object is placed on a turntable and a
sequence of images is taken with a fixed angle step which is
10 degrees. Therefore, the Captain sequence contains 36 im-
ages which all have a resolution of 3088×2056 pixels. Our
approach requires accurate segmentation of each image into
silhouette. To facilitate silhouette segmentation, we use a
monochrome background in the setup of image acquisition
(see Fig. 3 and Fig. 11). So it is easy to find the object sil-
houette using standard background subtraction method. Fur-
thermore, our approach also requires that each input image
is accurately calibrated and we use an approach similar to
[10] to calibrate our system.

A complete reconstruction process for the Captain ob-
ject is presented in Fig. 12. To generate depth map from
multi-view stereo, the correlation for a given pixel is com-
puted with 4 neighboring views for a typical sequence of

Table 1 Characteristics of the data sets used in our experiments

Data set Ima Resolution PSize Vertices Time

Soldier 36 3088 × 2056 1253749 150000 74.8

Captain 36 3088 × 2056 1412236 150000 72.0

BigHead 36 2008 × 3040 1331808 150000 84.5

Skull 16 1900 × 1700 578854 180000 67.7

templeRing 47 640 × 480 732824 316228 20.8

dinoRing 48 640 × 480 924281 644625 25.2

dinoSparseRing 16 640 × 480 309504 281146 7.9

Table 2 Running parameters for the data sets used in our experiments. See text for more details

Data set k thres1 m × m M × M thres2 d (mm) VTd thres3 R (mm) N VHd

Soldier 4 0.6 11 × 11 21 × 21 3.0 3.0 10 6.0 2.0 200 9

Captain 4 0.6 11 × 11 21 × 21 3.0 3.0 10 4.0 2.0 200 8

BigHead 4 0.6 11 × 11 21 × 21 3.0 3.0 10 8.0 1.6 200 8

Skull 2 0.6 7 × 7 21 × 21 3.0 3.0 10 3.0 1.0 100 7

templeRing 4 0.6 5 × 5 5 × 5 3.0 3.0 9 3.9 1.0 100

dinoRing 4 0.5 5 × 5 5 × 5 2.5 4.0 9 4.0 1.8 180

dinoSparseRing 2 0.5 5 × 5 5 × 5 2.5 4.0 9 3.8 1.8 180
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Fig. 11 Four color images of the Captain Terra Cotta Warrior se-
quence

36 images. Then a 10-level voting octree is built from the
depth maps and many outliers generated for miscorrelation
are eliminated by using the visual hull constraint and thresh-
olding the voting octree (thres3 = 4.0). The neighborhood
that is used for estimating surface normal for each 3D point
is defined by R = 2 mm, N = 200. In order to compute a
PCSL, an 8-level visual hull octree structure is carved by a
PCST. See Table 2 for more details on the reconstruction pa-
rameters for the Captain sequence. The reconstructed model
(see Fig. 12(e) and (f)) shows that the proposed approach
can not only recover minute details such as the details on
the face and the armor, but also capture correct topology of
a real object using both stereo and silhouette information.

6.2 BigHead sequence

The BigHead object (see Fig. 13) is a very well textured ob-
ject which is quite suitable for stereo reconstruction. How-
ever, since the object support table is in lack of texture which
cannot be reconstructed from multi-view stereo, this part can
only be recovered using silhouette information.

Complete reconstruction steps are demonstrated in Fig. 14.
Since the body of the BigHead object is well-textured, a
quite uniform PCST can be computed in this area, which can
be seen in Fig. 14(b). Figure 14(c) shows that most points
in the PCSL are at the support table of the object, which is
the only textureless part of the object. And the reconstructed
model of the BigHead object by PSR method from the PC-
STSL (see Fig. 14(d)) is demonstrated in Fig. 14(e).

In Fig. 15 we present the comparison between the sur-
face model reconstructed by the proposed algorithm and the
model reconstructed by Hernandez and Schmitt [10]. Since
Hernandez et al. always use a regularization term in their
snake-based approach, some fine details might get lost for
this reason. In Fig. 15(c) we can see that our approach can
recover more accurate details than their method at the face
of the object (illustrated in red square).

6.3 Skull sequence

The Skull object (see Fig. 16) is a plaster cast of a human
skull. The Skull data set contains 16 images captured on a

Fig. 12 The reconstruction steps for the Captain sequence. From (a)
to (f): visual hull, PCST, PCSL, PCSTSL, reconstructed model before
and after texturing mapping

Fig. 13 Four color images of the BigHead sequence

ring around the object plus an additional 8 images captured
on a sparser ring at higher elevation angles. A more detailed
description of the Skull data set can be found in [32]. In
our case, although the visual hull is computed from all the
24 silhouettes, we just use the 16 images captured on a ring
to compute depth maps from multi-view stereo. The recon-
struction parameters for the Skull sequence can be seen in
Table 2.

In Fig. 17 we present complete reconstruction steps of
the Skull model. Starting from the visual hull (Fig. 17(a)),
an oriented PCST is generated from multi-view stereo and
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Fig. 14 The reconstruction steps for the BigHead sequence. From (a)
to (f): visual hull, PCST, PCSL, PCSTSL, reconstructed model before
and after texturing mapping

an oriented PCSL is computed by carving the visual hull oc-
tree structure using the PCST. We can see in Fig. 17(b) and
(c) that the PCSL can effectively capture the missing shape
information from stereo such as the inside border of the sup-
port and the bottom of the Skull object. After the PCST and
the PCSL are mixed to generate a PCSTSL (Fig. 17(d)), the
PSR method is applied to convert the oriented point cloud
into a triangulated mesh model (Fig. 17(e) and (f)) from
which we can appreciate the high quality of the recovered
surface such as the face and sutures of the object.

In Fig. 18 (a) and (b) we present the comparison be-
tween the surface model reconstructed by the proposed algo-
rithm and the model reconstructed by Furukawa and Ponce
[34]. One limitation of their multi-view stereo method is that
some concavities may be too deep to be carved away by the
graph cuts. We can see in Fig. 18(c) that the nose of the Skull
object is not correctly recovered for its limitations. And we
can see in Fig. 18(a) that our method not only recovers the
deep concavities such as the nose of the Skull object, but
also outperforms Furukawa et al.’s method in reconstructing
a small concave structure near the nose of the object.

Fig. 15 Comparison with a snake-based method by Hernandez and
Schmitt [10] for the BigHead sequence. (a) The reconstructed model
using our method (150000 vertices). (b) The reconstructed model using
Hernandez et al.’s method (118344 vertices). (c) Two zoomed images,
the top one is ours and the bottom one is theirs

Fig. 16 Two color images of the Skull sequence

In Fig. 18(a) and (d) we present the comparison between
the surface model reconstructed by the proposed algorithm
and the model reconstructed by Goesele et al. [16]. We can
see in Fig. 18(d) that there are many holes in textureless ar-
eas of the Skull model reconstructed by Goesele et al. How-
ever, our method recovers a complete and accurate model
since we use shape information both from stereo and silhou-
ette.

6.4 TempleRing sequence

The temple and dino data sets (see Fig. 19) are provided
by the Middlebury benchmark [33]. The images of the data
sets were captured by using the Stanford spherical gantry
and a CCD camera with a resolution of 640×480 pixels,
attached to the tip of the gantry arm. From the resulting
images, three data sets were created for each object, cor-
responding to a full hemisphere, a single ring around the
object, and a sparsely sampled ring.

Our method is well-suited for viewpoints arranged in
a ring setup since selecting correlation views is straight-
forward. Thus we perform our evaluation on the templeR-
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Fig. 17 The reconstruction steps for the Skull sequence. From (a) to
(f): visual hull, PCST, PCSL, PCSTSL, two views of the reconstructed
model

ing, dinoRing, and dinoSparseRing data sets. The recon-
struction parameters for three data sets are presented in Ta-
ble 2. And the evaluation results of our algorithm for the
three data sets shown in Table 3 are evaluated on the ac-
curacy (Acc) and completeness (Comp) of the final result
with respect to a ground truth model, as well as process-
ing time (Time). We highlight the best performing algo-
rithm for each metric. Please note that the computation time
of our approach presented in Table 3 is a standard time
which is a little different from the time presented in Ta-
ble 1. And the format of computation time in Table 3 is
as hour:minute:second. According to Table 3, we can see
that our approach is comparable to current state-of-the-art
techniques, especially for the dinoRing data set. Addition-
ally, our approach is also one of the most efficient meth-
ods among non-GPU methods for the three data sets and
our computation time is very close to that of Bradley et al.’s
method [17].

Fig. 18 Comparisons with other image-based modeling techniques for
the Skull sequence. (a) The reconstructed model using our method.
(b) The reconstructed model using a method by Furukawa and Ponce
[34]. (c) Two zoomed portions of the Skull models recovered by our
and Furukawa et al.’s methods. (d) The reconstructed model using a
method by Goesele et al. [16]

Fig. 19 Two objects of the Middlebury benchmark, temple and dino

The temple object is a plaster reproduction of an ancient
temple which contains lots of geometric structure and tex-
ture. As it is very well textured, a quite uniform and dense
point cloud can be computed using our shape from stereo ap-
proach (see Fig. 20(b)). Since most of the shape information
can be captured from multi-view stereo, there is no need to
generate a PCSL. Figure 20(c) and (d) presents two views
of the reconstructed temple model, which shows that our
method allows to reconstruct objects of non-trivial topology
and with fine details.
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Table 3 Evaluation results for the Middlebury benchmark data sets

Fig. 20 The reconstruction steps for the templeRing sequence. From
(a) to (d): visual hull, oriented PCST, and two views of the recon-
structed model

6.5 DinoRing sequence

The dino object is a white, strong diffuse plaster dinosaur
model without obvious texture. However, our shape from
multi-view stereo algorithm still reconstructs geometry of
most portion of the surface (see Fig. 21(b)). Figure 21(c)
and (d) shows our final reconstruction result of the dinoRing
data set and we can see that details such as the foot of the
dinosaur have been ideally reconstructed. As our expansion-
based depth map estimation algorithm outputs dense and

Fig. 21 The reconstruction steps for the dinoRing sequence. From (a)
to (d): visual hull, oriented PCST, and two views of the reconstructed
model

accurate depth map efficiently which is crucial to the final
model, at the moment these results are submitted, the accu-
racy measurement of the dinoRing data set ranks top 3 and
the completeness measurement ranks top 6. Furthermore,
the computation time of our approach is also very competi-
tive among non-GPU methods. See Table 3 for more details.

6.6 DinoSparseRing sequence

Figure 22 shows reconstruction process for the dinoSparseR-
ing sequence. As this data set just contains 16 images while
our algorithm requires that each surface point is seen in at
least three views (a reference view and at least two neighbor-
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Fig. 22 The reconstruction steps for the dinoSparseRing sequence.
From (a) to (d): visual hull, oriented PCST, and two views of the re-
constructed model

ing views), the recovered point cloud is much sparser than
that of the dinoRing sequence which is shown in Fig. 22(b).
Figure 22(c) and (d) shows the final model.

7 Conclusions

We have developed a novel algorithm for 3D real object sur-
face model reconstruction from a sequence of calibrated im-
ages by fusing the shape information obtained from multi-
view stereo and silhouette. The algorithm first computes
an oriented point cloud on the object surface from cali-
brated images using texture information. Then, the silhou-
ette information is applied to recover the textureless and oc-
cluded surface areas. After the merging of the shape infor-
mation obtained from texture and silhouette, the PSR ap-
proach is applied to recover a complete and accurate tri-
angulated mesh model. The experimental results with sev-
eral real data sets demonstrate that the proposed approach
can produce complete and accurate surface models. Accord-
ing to the evaluation results of the Middlebury benchmark,
the proposed approach is comparable to the state-of-the-art
image-based modeling techniques.

Future work should mainly focus on improving the ac-
curacy of the proposed approach, which can be realized by
depth map subpixel optimization and depth map cleaning.
On the one hand, a subpixel optimization step can be ap-
plied to improve the accuracy of the estimated depth maps.

On the other hand, more effective approaches can be applied
to clean the depth maps without rejecting the correct shape
information such as using the visibility constraint [12], dis-
parity gradient limit constraint [36] and so on.
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