
Vis Comput (2010) 26: 339–352
DOI 10.1007/s00371-010-0423-4

O R I G I NA L A RT I C L E

Generating animation from natural language texts and semantic
analysis for motion search and scheduling

Masaki Oshita

Published online: 16 February 2010
© Springer-Verlag 2010

Abstract This paper presents an animation system that gen-
erates an animation from natural language texts such as
movie scripts or stories. It also proposes a framework for a
motion database that stores numerous motion clips for vari-
ous characters. We have developed semantic analysis meth-
ods to extract information for motion search and scheduling
from script-like input texts. Given an input text, the system
searches for an appropriate motion clip in the database for
each verb in the input text. Temporal constraints between
verbs are also extracted from the input text and are used to
schedule the motion clips found. In addition, when neces-
sary, certain automatic motions such as locomotion, taking
an instrument, changing posture, and cooperative motions
are searched for in the database. An animation is then gen-
erated using an external motion synthesis system. With our
system, users can make use of existing motion clips. More-
over, because it takes natural language text as input, even
novice users can use our system.

Keywords Computer animation · Motion database ·
Natural language processing

1 Introduction

Recently, computer animation has been widely used in
movies, video games, TV programs, web graphics, etc. Be-
cause computer animation is a very powerful tool to present
a story, drama, or instruction, there are demands from non-
professional people to create computer animation. However,

M. Oshita (�)
Kyushu Institute of Technology, 680-4 Kawazu, Iizuka,
Fukuoka 820-8502, Japan
e-mail: oshita@ces.kyutech.ac.jp

it is a difficult task because of two main issues. The first
issue is the difficulty of making and reusing motion data.
Currently, motion data are mainly created using motion cap-
ture or keyframe techniques. Either way, they are very time
consuming and require professional skills. Although there
is demand for reusing existing motion data, this is difficult
because of the lack of a system for storing and searching
large amounts of motion data. Because there can be vari-
ous motions of various characters, it is difficult to manage
them in a standard file system or database. Currently, most
motion data are created from scratch for individual scenes
and are thrown away without reuse. The second issue is the
limitation of current animation systems. A computer anima-
tion can be created by combining a number of existing mo-
tion clips using animation software such as MotionBuilder,
Maya, 3ds Max, etc. However, it is difficult for novice users
to utilize such software, because handling motion data is
tricky and these systems require training.

To address these issues, we developed an animation sys-
tem that generates an animation from natural language texts
such as movie scripts or stories (Fig. 1). We also developed a
motion database that stores many motion clips for different
characters. When an input text is given, the system searches
for an appropriate motion clip from the database for each
verb. Temporal constraints between verbs are also extracted
from the input text. The searched motion clips are scheduled
based on the temporal constraints. In addition, when neces-
sary, some automatic motions such as locomotion, taking an
instrument, changing posture, and cooperative motions are
searched from the database. The system outputs a motion
timetable which consists of motion clips and their execu-
tion timings. An animation is then generated using an exter-
nal motion synthesis system. Using our system, even novice
users can create animation by making use of existing motion
clips.

mailto:oshita@ces.kyutech.ac.jp

340 M. Oshita

Fig. 1 Example of our system. a Input text. b Searched motion clips and their execution timings. c Generated animation

There are many possible applications of our system. Re-
cently, in movie production, simple animations are created
before production to check camerawork, screenplay, neces-
sary visual effects, etc. These animations are called “previ-
sualization” or “animatics”. They are also often created for
the scenes in which no computer graphics are involved. Us-
ing our system, even directors or writers who are not pro-
fessional animators can create an animation very quickly.
Moreover, our system can be used by non-professional peo-
ple who want to make an animation but do not have profes-
sional skills. It can also be used for children to visualize a
story to make it interesting and easy to understand. Our sys-
tem can be used for movie production. Even though anima-
tors want to add more details to the output of our system, our
method is much easier than making animations from scratch.

In this paper, we propose a motion frame that contains
meta-information about a motion clip, an object-oriented
database framework for storing a number of motions of a
number of characters in a hierarchical structure, natural lan-
guage analysis methods that are specialized for extracting
motion related descriptions from an input text, and schedul-
ing of multiple motions based on the temporal constraints
in an input text. In addition, we have done preliminary ex-
periments which showed that our system generates expected
results from various input texts.

This paper is an extended version of our previous
work [1]. As explained in Sect. 5, we have mainly extended
our natural language analysis methods to enable our system
to handle various expressions in input texts. Based on the ex-
periments presented in Sect. 8, 87% of the verbs in a sample
movie script can be dealt with using our methods and repre-
sented as motions, although 78% of these were handled by
the system before the extension [1].

The rest of this paper is organized as follows. Section 2
reviews related work in the literature. Section 3 gives an
overview of our system. Sections 4, 5, 6, and 7 describe our
methods used in the framework of the motion database, nat-
ural language analysis, motion search and motion schedul-
ing, respectively. In Sect. 8, some experimental results are

presented together with a discussion thereof. Finally, Sect. 9
concludes the paper.

2 Related work

Generating animation from natural language texts has been
a challenge. Many research groups have tackled this prob-
lem. The SHRDLU system, which was developed by Wino-
grad [2], is known as the pioneer. Using SHRDLU, a user
can give commands to a robot using English in an interactive
manner, and make it arrange objects in a scene. However, the
types of commands were very limited.

Badler et al. [3, 4] developed virtual agents that follow
natural language interactions. They proposed Parameterized
Action Representation (PAR), which has a similar purpose
to the motion frame in our research. The PAR has more com-
plex information such as pre-condition and achievement.
The motion generator of each PAR is programmed using a
state machine. It can use motion data or any motion genera-
tion methods. However, specifying detailed information and
constructing motion generators are very time consuming.

Tokunaga et al. [5] developed the K2 system, which has
similar goals to Badler et al. In their system, agents are con-
trolled via spoken language. Their research is rather focused
on solving the vagueness of natural language instructions.
They use case frames [6] to search for motions. Unlike our
work, they use all cases that are used in linguistic analysis.
The interpretation of each case is left to the user who adds
the case frame handler. The motion generator for each case
frame must be manually programmed by the user.

These previous works aim at developing intelligent
agents that understand natural language instructions and
make plans to execute them. However, the systems are very
complex, and many rules are required. On the other hand,
our system aims to reuse existing motion data easily and ef-
ficiently. The motion frame in our work contains just enough
information to search for appropriate motions that match
natural language texts and it is easy to describe. We believe
that our system is more practical.

Generating animation from natural language texts and semantic analysis for motion search and scheduling 341

Lu and Zhan [7] developed an animation production sys-
tem that includes story understanding, plot planning, act
planning, camera planning, etc. Although their system takes
simple Chinese as input, it requires a great deal of additional
knowledge, including not only case frames but also many
dictionaries, templates and rules.

Sumi et al. [8] developed a system for visualizing short
stories for children. The system extracts keywords from an
input text, and chooses an appropriate scene, characters,
and motions from a database. It simply plays a motion that
matches the keywords. Although a user can add motion data
to the system, the system cannot select motions appropriate
for the objects or characters and cannot generate interactions
between characters and the scene.

There is very little research that deals with motion
scheduling from natural language texts. The above systems
simply execute motions as instructions are given or events
happen, and no scheduling is considered. However, in or-
der to execute multiple motions of multiple characters as
instructed by an input text, the execution timing of the mo-
tions must be coordinated. Baba et al. [9] developed a sys-
tem for generating an animation that satisfies temporal and
spatial constraints given by natural language texts. The sys-
tem determines appropriate initial positions of the agents
and objects that are specified in the input text. However,
the motions of the agents and motion scheduling were not
considered.

Coyne and Sproat [10] developed WordsEye, which con-
verts natural language texts to a scene. Because their pur-
pose is to generate a still image, when a character motion is
indicated in a given text, the system simply chooses a pose
for the action from the database.

There have been various studies on generating a charac-
ter’s gestures for a monologue or conversation [11]. These
methods generate motions by composing short fragments
of motions based on signal processing of the input speech
rather than by interpreting the meaning of the speech.

There are also animation engines that support some script
language such as Improv [12] and Alice [13]. However, it
is still difficult to program the agents and to make use of
a large amount of existing motion data. In addition, markup
language formats for describing animation including scenes,
characters and actions have been proposed [14, 15]. How-
ever, they are difficult to describe by hand. The animation
files should be created by using specific authoring software.
Moreover, it is difficult to add and reuse motion data using
such file formats and authoring software.

There are many motion synthesis methods which gener-
ate new motions from a small number of motions [17, 18].
However, they require a manual setup for each motion mod-
ule. It is difficult for end users to add new motion modules.
Although currently our system selects one motion from the

Fig. 2 System overview

database, it is possible to extend our system to blend a num-
ber of selected motions based on quantitative motion query
parameters such as contact position.

3 System overview

In this section, we explain the overview of our system
(Fig. 2) and data representation (Fig. 3).

When an input text is given to the system, natural lan-
guage processes (syntax analysis and semantic analysis) are
applied first. The syntax analysis is the process of convert-
ing a plain text to a tree structure with phrase tags and de-
pendencies. Figure 3(b) is an example of the analyzed tree
which is computed from an input text (Fig. 3(a)). The type
of each phrase and the dependency between phrases are de-
termined. For example, S, NP, VP and PR in Fig. 3(b) rep-
resent sentence, noun phrase, verb phrase and preposition,
respectively.

The semantic analysis extracts information about mo-
tions described in the input text from the tree structure.
A query frame contains information for the motion search.

342 M. Oshita

Fig. 3 Example of data
representation

One is generated for each verb in the text. The temporal
constraints contain information about execution timing be-
tween verbs. For example, QF1∼QF3 and TC1∼TC2 in Fig.
3(c) represent query frames and temporal constraints, re-
spectively.

Based on the temporal constraints, motion scheduling de-
termines the execution order of each motion clip, which cor-
responds to each query frame as shown in Fig. 3(d). Note
that exact execution times are not decided at this point, be-
cause the duration of each motion is not known until motion
clips are searched from the database and automatic motions
are added later.

The motion search is applied for each query frame. In ad-
dition, when it is necessary, automatic motions are inserted
before the motion. Finally, motion clips and their execution
timings are passed to the motion synthesis module as a mo-
tion timetable, as shown in Fig. 3(e).

The motion synthesis generates an animation by smoothly
connecting given motion clips. The interactions between
characters and between a character and objects are handled
by this module based on the information that the motion
clips have.

The scene information contains characters and objects
and their initial states, including postures, positions, and ori-
entation. Each object has certain object information includ-
ing names, a default contact point, alternative contact points
and their names. For example, a desk object has “desk”, “ta-
ble”, etc. as its names. An object also has sets of pairs con-
sisting of a part name and its position (e.g., “above”, “un-
der”, “side”, etc.). This information is used to search for
appropriate motions and determine appropriate contact po-
sitions according to an adjective that is used in the input
text. In addition, an object has a default position which is
used when no adjective is specified. This kind of object in-
formation is commonly used in similar approaches [5, 10].
In addition, a scene also has default entering and leaving
points as the default goal locations for locomotive motions
(see Sect. 5.5). Currently, our system assumes that the scene
information is provided in advance by the user.

The scope of this paper is the components in the dot-
ted box in Fig. 2. There are many tools for syntax analy-
sis that can be used with our system. The Stanford parser
[19] is used for our implementation. For motion synthesis,
our system uses an external animation system [20]. The sys-

Generating animation from natural language texts and semantic analysis for motion search and scheduling 343

tem generates continuous motions from given motion clips
and their execution timings. The system determines an ap-
propriate synthesis method for each transition based on the
constraints between the foot and the ground during motions.
Alternatively, another commercial animation system such as
MotionBuilder, Maya, 3ds Max, etc. can be used.

4 Motion database

In this section, we describe the representation of motion
data. We first explain the case frame that is used in natural
language processing. Then, we explain our motion frame,
which is inspired by the case frame. We also describe our
database of characters and motions.

4.1 Case frame

The idea of a case frame was proposed by Fillmore [6].
A case frame represents the role of a verb. Each case of a
case frame is a phrase that represents an aspect of the verb.
Typically a case frame has the following cases:

– Agent: the person who performs the motion.
– Experiencer: the person who experiences something.
– Object: the object that an effect is caused to during the

motion.
– Instrument: the object that causes an effect during the mo-

tion.
– Source: the source or origin of the motion.
– Goal: the goal or target of the motion.
– Time: the time when the motion is performed.
– Location: the location where the motion is performed.

Each case needs to be a specific type of entity. Some
cases are mandatory for some verbs. A verb that has dif-
ferent roles depending on context has multiple case frames.

In general natural language processing systems, a pro-
cedure to select a case frame for an input text is as fol-
lows. First, based on the types and dependency of phrases
in the analyzed tree, candidate cases of each phrase are de-
termined. By searching for case frames that match the candi-
date cases, the most appropriate case frame and all its cases
are determined.

The case frame is a good way to extract and represent the
meanings of texts. The case frame is widely used in many
research papers such as [5, 10]. However, the case frame is
not suitable for representation of motion data for animation.
From the view point of motion representation, each case has
different roles depending on case frames. For example, the
“object” case of a case frame could be an object that the
character uses or another character that the character’s mo-
tion causes an effect on. Moreover, the case frame does not
contain information about postures and contact positions,
which are important for selecting motions.

Fig. 4 Example motion frame of “taking-an-object”

4.2 Motion frame

We propose a motion frame which contains the information
about a motion clip. The motion frame is inspired by the case
frame. However, we define the items of the motion frame
based on importance when we search for a motion according
to input texts.

There are many kinds of verbs in general English. How-
ever, our system handles only action verbs that involve a
physical motion, in other words, verbs that can be visualized
as an animation. Other kinds of verbs such as non-action
verbs (e.g., “think”, “believe”) or state verbs (e.g., “know”,
“exist”) are ignored in our system because they are difficult
to represent by a motion clip. Action verbs are categorized
into intransitive, transitive, and ditransitive verbs. Intransi-
tive verbs involve no other object (e.g., “he runs”). Transi-
tive verbs include one target object/character/position (e.g.,
“he opens the door”, “he hits her”, “he walks to the door”).
Ditransitive verbs include two target objects (e.g., “he gives
her the book”, “he cuts the bread with a knife”). For distrac-
tive verbs, one of the two target objects should be the object
that the character possesses. We call such objects “instru-
ments”. Therefore, action verbs have at most one “target”
object /character/position and at most one “instrument” ob-
ject. We use them as items of a motion frame instead of cases
in a case frame. In addition, contact position is used to select
a motion that fits the environment and previous motions.

The items of the motion frame are as follows. An exam-
ple of a motion frame is shown in Fig. 4. Note that some
items may not have any value depending on the motion.

– Agent Magent_ref : The reference to the character in the
database who performs the motion.

– Names of motion Mmotion_strings: The set of verbs that rep-
resent the motion. When a verb in the input text matches
one of the motion names, the motion frame will be a
candidate for the verb. To handle ambiguity, a motion
frame may have multiple names. For example, a “taking-
an-object” motion may have “take” and “pick up” as its
names.

– Instrument Minstrument_ref , Minstrument_params: The object
that the character uses in the motion. This is either a ref-
erence to an object in the database Minstrument_ref or the

344 M. Oshita

size and weight ranges of an object Minstrument_params. If
the motion requires a specific object such as “cutting with
a knife”, the object should be specified as a reference to
the instrument. Otherwise abstract conditions of an ob-
ject are specified. For example, if the motion is “poking
something with a long object”, then appropriate size and
weight ranges of the object are specified.

– Target: The reference to an object Mtarget_ref or the size
and weight ranges Mtarget_params are specified in the same
way as the instrument. If the target is a character, the ref-
erence to the character is specified in Mtarget_ref .

– Contact position Mcontact_vertical, Mcontact_horizontal: the
position of the end-effector when it makes contact with
the target. A contact position is specified when the motion
involves contact with a target character or object. Vertical
and horizontal positions are handled differently. Because
the horizontal position can be adjusted by lateral move-
ment (see Sect. 7.2), the vertical position is more impor-
tant for motion selection. For example, if multiple “taking
an object” motions are in the database and an input text
“he takes the bottle on the ground” is given, then based on
the position of the bottle, the appropriate taking motion
(e.g., “taking an object with squatting”) will be selected.
The contact position is automatically computed from the
contact information (see Sect. 4.3) of the motion data. The
contact position is expressed in the local coordinates of
the motion data.

– Target direction Mtarget_direction: The direction of the tar-
get. For some motion, even though the motion does not in-
volve contact with the target, the target direction is impor-
tant. For example, when “waving to a person” or “shoot-
ing a target” motion is executed, the character should face
the right direction. For some motion, both contact posi-
tion and target direction are specified. For example, “sit-
ting down on a sofa” motion should make contact with a
sofa from the front of the sofa.

– Initial posture Minitial_posture_flag: the character’s posture
when the motion begins. Currently, it is represented as
one of three states: standing, sitting, or lying down. The
initial posture is used to select a motion that matches the
terminal posture of the previous motion. In cases where
no such motion is in the database, an automatic changing
posture motion will be added (see Sect. 7.2).

– Adverbs Madverb_strings: The set of adverbs represent the
style of the motion such as “slowly” or “happily”.

Each item of motion frames must be specified by a user.
However, this is not such a difficult task for users. For each
motion frame (each motion clip), the user is asked to specify
the agent, verbs, target, and instrument. The agent is selected
from the character database. For the target and instrument, it
is either an appropriate object or agent that is selected from
the database or the size and weight range of an object. When
the motion involves a specific object (e.g., “cutting with a

sword”), the object should be selected. Otherwise, object
conditions are specified (e.g., “lifting up a light object using
one hand”). The contact position is automatically computed
form the motion and its contact information (see Sect. 4.3).
The initial posture is also automatically computed from the
motion clip. As a result, specifying the items of a motion
frame is very easy.

4.3 Motion data

Our system supposes that each motion is short and sim-
ple. A complex motion is difficult to represent by a motion
frame. If a user wants to add a long motion to the database,
the motion should be divided into pieces.

Some motions involve an interaction with an object or a
character. This information is very important for generating
animation and for selecting motions. Therefore, it is speci-
fied on the motion frame. The contact information consists
of the contact type (hold, release, or hit), contact time (lo-
cal time in the motion clip) and the end-effector (e.g., right
hand). This information is also necessary for generating an-
imation in the motion synthesis module (see Sect. 6.2).

Some motions that interact with another character cause
the reaction of the other character (e.g., “Jack hits Neo. Neo
falls”). Usually such cooperative motions are captured or
created at the same time but are stored as separate motion
clips. In our system, such cooperative motions are specified
on the motion frame. If a motion has cooperative motions
and no cooperative motion is indicated in the input text,
the system automatically executes a cooperative motion (see
Sect. 7.2). In addition, when two cooperative motions in-
clude physical contact, the timings and the initial positions
of these motions are coordinated (see Sect. 7.1).

4.4 Character and motion database

We use an object-oriented framework for the character and
motion database. As shown in Fig. 5, each character is con-
sidered to be an object that has various motions as its meth-
ods. A character inherits from a base character. A motion of
the base character can be overridden by another motion. The
motions that are not overridden are used as the motions for
the derived character. In this way, the hierarchy of charac-
ters and their motions are efficiently managed. A character
can inherit from multiple base characters. All motions that
the base characters have are used for the derived character.
Since the motion that most closely matches an input sen-
tence is selected from the available motions, even if there
are multiple motions with the same name, there is no prob-
lem with conflicts caused by the multiple inheritance.

If a user wishes to create a new character, she/he simply
adds the new character that inherits from a base character or
multiple base characters to the database and adds character-
specific motions to that character. Even if there are not many

Generating animation from natural language texts and semantic analysis for motion search and scheduling 345

Fig. 5 Example of a
hierarchical database of
characters

new motions for the new character, the motions of the base
characters are used. In this way, users can add new charac-
ters very easily.

The database can be implemented in various ways. If the
characters and motions are implemented using an object-
oriented programming language (e.g., C++ or Java), we
would represent motions as objects rather than methods and
implement a mechanism of motion inheritance on the char-
acter class, because it is practically difficult to handle mo-
tions as methods using such programming languages.

5 Natural language analysis

Although natural language processing techniques have ad-
vanced in recent years, it is still a challenge to understand
general texts because it requires not only language process-
ing but also a large knowledge of the world. However, our
system is supposed to take script-like text and only motion-
related descriptions in the text matter. This makes the nat-
ural language analysis much easier than general natural lan-
guage processing systems such as machine translation or
summarization systems. Moreover, because scene informa-
tion, such as characters and objects, is given in advance, we
do not need the same large dictionary required by general
natural language processing systems.

As explained in Sect. 3, the semantic analysis takes an
analyzed tree and generates query frames and temporal con-
straints. A query frame contains information of a verb for the
motion search. The temporal constraints contain information
about the execution timing between verbs. In the followings
of this subsections, we explain how the semantic analysis
works.

5.1 Query frame

To select a motion that matches an input text, we use a query
frame, which has the same items as the motion frame, and
whose items are determined by analyzing the syntax tree of
the input text (see Fig. 3(b)). Scene information is also used
to determine some items.

As explained in Sect. 4.2, unlike generic semantic analy-
sis, motion searches only need a target and an instrument
for each verb. Therefore, we determine these by applying
the following rules to each verb in the input text.

– A verb is used as the name of motion of the query frame
Qmotion_strings. If the verb is followed by a preposition or
noun, then all sets of the verb and the following word
are also set to Qmotion_strings because this could repre-
sent an idiom. Therefore, Qmotion_strings can contain mul-
tiple phases. For example, in “Jack falls back”, both the
phrases “fall” and “fall back” are set to Qmotion_strings.

346 M. Oshita

– If a noun represents a character in the scene and the verb
is dependent on the noun, the character is considered as
the agent (subject) of the query frame Qagent_ref .

– If two nouns are dependent on the subject that the verb is
related to, they are considered as the target Qtarget_ref and
the instrument Qinstrument_ref . (E.g., in “Jack gives Neo
the book”, “Neo” is the target and “the book” is the in-
strument.)

– If only one noun is dependent on the subject, it is consid-
ered as the target Qtarget_ref .

– If a preposition phrase (e.g., “to Neo”) is dependent on
the subject, it is considered as the target Qtarget_ref or the
instrument Qinstrument_ref depending on the preposition.
If the preposition is “with” and the noun in the phrase
represents an object, the object is used as the instrument.
Otherwise, the noun is used as the target.

– If the character is holding an object, the object is also used
as Qinstrument_ref , even if it is not specified in the input
text.

– If a phrase considered to be an adverb in the syntax analy-
sis is dependent on the subject, the phrase is used as one
of the adverbs Qadverb_strings that can contain multiple
phrases.

After the names of the target and instrument are deter-
mined, we obtain the reference or value of each item from
the scene information. We suppose that the characters or ob-
jects in input texts always exist in the scene. Therefore, un-
like general semantic analysis, by looking up the scene in-
formation all nouns in input texts are determined.

The target character or object that is indicated in the input
text is searched from the scene information and the reference
and position are set to the query frame. When the target is
a character and a body part is indicated in the text such as
“She hit him in the head”, the reference and position of the
body part is set. When the target is an object in the scene, the
target size and weight are set in the query frame. The con-
tact position Qcontact_vertical, Qcontact_horizontal and the target
direction Qtarget_direction are set based on the position and di-
rection, respectively, of the target character or object. If an
adjective is used in the input text (e.g., “top of the table”,
“under the table”) and the object has the corresponding part
(see Sect. 3), the position of the corresponding part assigned
to the object is used as the contact position. If there is no ad-
jective, the default position specified for the object is used.
The instrument object that is indicated in the input text is
also set to the query frame.

5.2 Temporal constraints

Temporal constraints are extracted from input texts. The
types of temporal constraint are serial execution or syn-
chronized execution between two verbs. A serial execution

constraint has the execution order of two motions. A syn-
chronized execution constraint has relative execution tim-
ing. Temporal constraints are generated from a syntax tree
as follows:

1. For all pairs of sequential verbs in the input text, serial
execution constraints are assigned. For example, when
the input text “Jack walks in the room. Neo stands up.” is
given to the system, a serial execution section constraint
(Jack, walk) to (Neo, stands up) is generated.

2. When a word that indicates a reverse order exists in the
input text (e.g., “after”), the order of the serial execution
constraint is reversed. If a serial execution constraint is
already created, the old constraint is overridden. For ex-
ample, when the input text “Jack walks in the room after
Neo stands up.” is given to the system, a serial execution
constraint (Neo, stands up) to (Jack, walk) is generated.

3. When a word that indicates synchronization exists in the
input text (e.g., “at the same time” or “while”), a syn-
chronized execution constraint is added. If there is a con-
flicting constraint, it is overridden. For example, when
the input text “Jack walks in the room. At the same time,
Neo stands up.” is given to the system, a synchronized
execution constraint (Neo, stands up) and (Jack, walk) is
generated. The relative timings between two motions are
set to zero so that they start at the same time.

4. When the motions of two characters are cooperative mo-
tions and they include contact with each other, a synchro-
nized execution constraint is added and the relative exe-
cution timings of the two motions are determined based
on their contact information (Sect. 4.3). For example,
when the input text “Jack hits Neo. Neo falls” is given
to the system, a synchronized execution constraint (Jack,
hit) and (Neo, fall) is generated. At this point, the relative
timings are not set. They will be set based on the contact
times in the searched motion data, when the motions are
searched later.

5.3 Adjective and pronouns

Sometimes a character or an object is referred to by a com-
bination of adjectives and a noun instead of its name. In this
case, the system has to determine to which character or ob-
ject the expression refers. Moreover, when a pronoun (e.g.,
“he”, “she”, “it”, “they”) is used in the input text, the system
has to determine to which character or object the pronoun
refers. This process can be difficult especially when ambigu-
ous or euphemistic expressions are used. However, since our
system is meant to take simple script-like texts, we handle
these problems using the following method.

Each character and object in our database has a list of
adjectives, nouns, and pronouns by which the character can
be referred to. For example, a male soldier character would
have “he”, “they”, “man”, “guy”, “soldier”, etc. as its list of

Generating animation from natural language texts and semantic analysis for motion search and scheduling 347

adjectives and pronouns. The list is inherited from the base
character. If the adjective, noun, or pronoun appearing in the
input text represents a single character or object (e.g., “he”,
“the soldier”, “it”), the system searches for a character or an
object that matches the words.

However, if the words are ambiguous, meaning that there
are multiple characters or objects matching the given adjec-
tive, noun, or pronoun in the scene, the system has to choose
an appropriate character or object. Basically, if the noun or
pronoun represents a character or an object, this should be
mentioned in the previous sentences. A character can be the
agent Qagent_ref or the target Qtarget_ref of the query frame,
while an object (e.g., “it”) can be the target Qtarget_ref or the
instrument Qinstrument_ref thereof. By using this constraint,
the noun or pronoun is determined as follows.

1. If one of two items is clearly mentioned in the input text,
the other should be a different character or object. For
example, if the input text is “Neo comes to Jack. Jack
gives him a book”, the word “him” cannot represent Jack
since Jack is already the agent Qagent_ref of the query
frame of the second sentence. Therefore, in this case, the
system searches for characters in the previous sentence
and uses the other character Neo as the target Qtarget_ref .

2. If both of the items for characters are pronouns, the
agent of the previous sentence is also used as the agent
Qagent_ref . For example, if the input text is “Neo comes
to Jack. He gives him a book”, the system decides that
the first “he” in the second sentence represents Neo. In
the same way, if both the items for objects are pronouns,
although this is not common, the target of the previous
sentence is used as the current target and the instrument
of the previous sentence is used as the current instrument.

If the noun or pronoun represents multiple characters
(e.g., “they”, “soldiers”), the sentence should be represented
by multiple motions. Therefore, in such a case, multiple
query frames are generated. For example, if the input text
is “Neo hits the soldiers” and there are two soldiers A and B
in the scene, two query frames are generated with all items
except the target character the same. The same rule is ap-
plied when an item of the query frame represents multiple
characters (e.g., “Neo and Jack walk.”). However, if a mo-
tion frame matching the motion name has a target direction,
but not a contact position, the center position of all char-
acters referred to is used as the target direction, instead of
generating multiple query frames. For example, with the in-
put “Neo shoots the soldiers”, the “shooting” motion frame
has only a target direction, and a query frame whose target
position is the center of the soldiers is generated.

5.4 Infinitives and gerunds

Infinitives and gerunds are often used with a verb. In this
case, the system generates appropriate query frames and
temporal constraints depending on the verb.

– If the verb is “do”, “perform”, etc. (e.g., “Neo performs
dancing“), the infinitive or the gerund is represented as
the motion and is used to generate a corresponding query
frame. In this case, the verb is not involved in the query
frame.

– If the verb is “start”, “try”, etc., the infinitive or the gerund
is used to generate a corresponding query frame in the
same way. However, in this case, the next event is con-
sidered to happen before the motion finishes. Therefore,
a temporal constraint is generated to execute the next mo-
tion just after this motion starts.

– If the verb is “repeat”, “keep”, etc., the infinitive or gerund
is used to generate a corresponding query frame. The mo-
tion is repeated before the next motion starts, and is there-
fore, specified in the query frame. This information is
used for motion scheduling to duplicate a motion when
it can be executed more than once.

– It the verb does not fall into any of the above cases, both
the verb and the infinitive or gerund are represented as
motions (e.g., “Neo walks waving to Jack”). In this case,
multiple query frames are generated. In addition, tempo-
ral constraints are generated to execute all motions at the
same time.

The system uses a dictionary of pairs consisting of the
verb and the corresponding method, to determine which
method should be applied.

In addition, if a gerund exists on its own in the input text
(“Neo walks to the door, waving to Jack”), a query frame is
generated for the gerund and a temporal constraint is gen-
erated to execute the gerund and the verb in the sentence at
the same time. In this case, the agent of the verb becomes
the agent of the gerund as well.

5.5 Locomotive motions

Locomotive motions such as walking and running require
special care because the target position and path vary de-
pending on the situation and appropriate motions should be
generated instead of simply executing a motion in the data-
base. How to generate locomotive motions is explained in
Sect. 6.3. In this section, we explain how to handle locomo-
tive motions in natural language analysis.

As discussed in Sect. 8, natural language is not suited to
specifying the locomotion path. Therefore, our system cur-
rently does not handle it and only determines the target posi-
tion of locomotive motions. We categorize locomotive mo-
tions into the following types depending on how the target
position is handled.

– Moving to a target position. If the verb is a locomotive
motion (e.g., “walk”, “run”, “go”, etc.) and a target po-
sition is explicitly specified in the input text (e.g., “Neo
walks to the door.”), the query frame includes the target

348 M. Oshita

position Qcontact_vertical, Qcontact_horizontal and a flag indi-
cating that this is a locomotive motion.

– Entering and leaving. Sometimes the target position is not
specified in the input text. In this case, if the verb is a spe-
cific verb, the locomotive motion is handled as an enter-
ing or leaving motion. For example, if the verb is “leave”,
“walk away”, “disappear”, etc., the verb is handled as a
leaving motion and the leaving position specified in the
scene information is used as the target position. The query
frame also includes a flag indicating locomotive motion.

– Simple walking. If a target position is not specified and
the verb represents a locomotive motion excluding an en-
tering or leaving motion (e.g., “Neo walks.”), a walking
motion is simply executed. In this case, the query frame
does not include a flag indicating locomotive motion. This
query frame is handled in the same way as the other query
frames. As a result, a motion of walking forward from the
character’s current position is selected and executed.

5.6 Adverbs

Adverbs are handled in different ways depending on the
word. As explained in Sect. 5.2, if the adverb represents
temporal information, an appropriate temporal constraint is
generated. If the adverb represents the frequency or timing
of executing a verb, the adverb is handled in the same way
as infinitives and gerunds in Sect. 5.4. For example, if an
adverb such as “repeatedly”, “twice”, etc. is specified, the
third option in Sect. 5.4 is applied. The system has a dictio-
nary of adverbs for these cases. If the adverb is not found in
the dictionary, it is assigned to a query frame to search for
an appropriate motion as explained in Sect. 5.1.

6 Motion search

In this section, we explain how to search for an appropriate
motion for each verb in the input text. Handling multiple
verbs and motions is dealt with in the next section. A query
frame is generated for each verb as explained in the previous
section. Based on the query frame, a motion is selected from
the database.

6.1 Evaluation of motion frame

A motion frame that best matches the query frame is
searched for in the database. This search is performed in
three steps.

In the first step, all candidate motion frames in which the
motion name and agent match the query frame are selected
from the database. All motion frames with the agent charac-
ter or its base characters are potential candidates.

In the second step, the motion frames whose items do
not match the query frame are excluded as candidates. If the

query frame has a target Qtarget_ref , or Qtarget_params and/or
an instrument Qinstrument_ref , or Qinstrument_params but the
motion frame does not, then it is excluded. Moreover, if a
motion frame has target parameters, instrument parameters,
or the vertical contact position, and the values of the query
frame exceed the specified ranges, then that motion frame is
also excluded.

In the third step, all candidate motion frames are evalu-
ated based on the similarity between the motion frame and
the query frame items using the following equation:

E = w0R(Mtarget_params,Qtarget_params)

+ w1R(Minstrument_params,Qinstrument_params)

+ w2D(Mcontact_vertical,Qcontact_vertical)

+ w3D(Mcontact_horizontal,Qcontact_horizontal)

+ w4D(Mtarget_direction,Qtarget_direction)

+ w5F(Minitial_posture_flag,Qinitial_posture_flag)

+ w6A(Madverb_strings,Qadverb_strings)

+ w7H(Magent_ref ,Qagent_ref), (1)

where R(M,Q),D(M,Q),F (M,Q),A(M,Q),H(M,Q)

are the functions that compute normalized distance
(0.0 ∼ 1.0) between size and weight parameters, contact po-
sitions, posture flags, adverbs, and hierarchical positions, re-
spectively. The distances between the size and weight range
of the motion frame and the object size and weight of the
query frame are computed so that the distance becomes zero
when the values are at the center of the range and the dis-
tance becomes one when the values are at the edge of the
range. The distance between posture flags is computed in
such a way that the distance is zero when they match and
otherwise the distance is one. The distance between adverbs
is computed so that the distance is zero when there is at least
one pair of matching adverb between the motion frame and
query frame and otherwise the distance is one. The distance
between hierarchical positions of the characters is computed
from the number of inheritances between them (see Fig. 5).
The candidate motion frame whose evaluation is the small-
est will be selected and used for animation. w0 ∼ w7 are
weight parameters. They can be set for each motion frame
in the case that some items are important for the motion. In
our current experiments, we used 1.0 for all weights on all
motions.

6.2 Motion modification

The motion clip of the selected motion frame is used for
animation. However, even if the closest motion frame is se-
lected, the contact position may not exactly match the query
frame. In that case, the motion clip is modified using inverse

Generating animation from natural language texts and semantic analysis for motion search and scheduling 349

kinematics. The posture of the character during the motion
is modified so that the contact position of the end-effector
(e.g., hand) matches the target position in the query frame.

When the character is far from the target, changing the
end-effector position is not enough. In addition, when the
character executes the selected motion it may need to first
take an instrumental object or change its posture (e.g., stand-
ing up). These cases are handled by adding automatic mo-
tions before the selected motion instead of modifying the se-
lected motion. Automatic motions are explained in Sect. 7.2.

6.3 Locomotive motion

When a query frame indicates a locomotive motion (see
Sect. 5.5), appropriate motion enabling the character to
move to the target position must be generated. Several meth-
ods, such as [16], have been developed to generate walking
motions. In our system, the character should not only walk,
but also turn and step, in order to move to the appropriate
position and direction. Therefore, we generate locomotive
motions based on the target position and/or target direction
according to the steps below using the set of motion data
that the character has.

1. If the target direction is specified and the target position
is not, an appropriate turning motion is generated. An
appropriate motion based on the target direction is se-
lected from the motions with ‘turn’ as their motion name
in the database. If only the target direction is specified,
the process stops here.

2. If the target position is specified and it is not in front
of the character, a turning motion is added in the same
way as in the first step so that the agent faces the target
position.

3. If the target position is within one step, a stepping mo-
tion is added in the same way as the turning motion. The
motion is selected from all ‘step’ motions.

4. If the target position is more than one step in the dis-
tance, a walking motion is added. The walking motion is
repeated until the agent reaches the target position. The
step length in each walking cycle is adjusted so that the
walking cycle ends at the target position. The motion is
selected from ‘walk’ motions. Currently, our system gen-
erates a straight path to the target position even if there
are obstacles.

5. If the target direction is specified and it does not match
the character’s direction at the end point of the walking
motion, a turning motion is once again added.

As explained above, the system uses the “turn”, “step”
and “walk” motions that the character has. Currently, the
system selects an appropriate motion and modifies it if nec-
essary. Alternatively, motion blending can be used to gen-
erate more appropriate motions by using multiple motions
[16, 18].

7 Motion scheduling

In this section, we explain how our system handles multiple
motions from an input text. Basically, the system searches
for a motion for each verb in the input text. However, in or-
der to make an animation, the execution timing of each mo-
tion must also be determined. Moreover, the continuity of
motions should be considered. For example, when a charac-
ter makes contact with an object in the scene, the character
must first move close to the object. Our system takes care of
this kind of continuity of motions.

When multiple characters perform multiple motions the
motions should be scheduled. However, an exact execution
time for each motion is not usually specified in the input
text. In order to determine the motion schedule, we need
information about the motions such as duration and contact
information.

Our motion schedule works as follows. First, temporal
constraints are extracted from input texts in addition to query
frames (Sect. 5). Second, query frames are roughly sched-
uled based on the temporal constraints (Sect. 7.1). Note that
at this point, only process orders of query frames are deter-
mined. Finally, by searching for a motion frame that matches
each query frame in order of process, the execution timing of
each motion is determined. When automatic motions are re-
quired to be executed before a motion, they are added incre-
mentally (Sect. 7.2). By repeating this process for all query
frames, the motion clips and their execution timings are de-
termined.

7.1 Scheduling query frames

Based on temporal constraints, the query frames are sched-
uled roughly at first. After that, the process order of all query
frames (verbs) is determined. For motions that have a syn-
chronized execution constraint, their process orders are tem-
porarily set as one of them being processed first. The exact
timings of all query frames are determined in the process
order.

For each query frame, a motion clip is searched from the
database as explained in Sect. 6.1. Before searching each
motion, the scene condition is set to the time when the mo-
tion is executed because the selected motion may change
depending on the position of the character or object that the
motion involves. The execution timing of the motion is de-
termined based on the duration of the selected motion. The
next motion is started just after the previous motion is fin-
ished if they have a serial execution constraint. If they have
a synchronized executing constraint, their execution timings
are determined based on the contact timings of the selected
motions.

This process is repeated from the first motion to the last.
When multiple query frames are synchronized based on the

350 M. Oshita

temporal constraints, the motions for all query frames are
searched and their execution timings are delayed until all
constraints are satisfied.

7.2 Automatic motions

During the motion scheduling and motion search, a searched
motion can sometimes not be executed. In that case, auto-
matic motions are generated and added before the searched
motion. As explained earlier, the purpose of our system
is to reuse motion data without complex motion planning
which may require additional programming for each mo-
tion. Therefore, our system deals with minimum automatic
motions. The additional motions are also selected from the
database. Therefore, each character is easily customized by
adding specific kinds of motion to the database without
adding any rules or modules.

7.2.1 Locomotive motion

If a motion includes interaction with another character or an
object in the scene (i.e., a query frame contains a target ob-
ject or character), the character has to be in the right place to
make contact with the object or character. If not, the system
automatically adds locomotive motions for the character to
move to the right place and to face the right direction.

If the motion frame has a contact position and target di-
rection (e.g., “sitting on a chair” motion should be executed
in the right position and direction to the chair), an appro-
priate locomotive motion is generated so that the character
approaches the right point and turns in the right direction.
The method for generating locomotive motions explained in
Sect. 6.3 is used. If the motion frame has a contact posi-
tion, an appropriate locomotive motion is generated so that
the character approaches the right point. If the motion frame
only has a direction (e.g., “shooting toward the target” mo-
tion), the character merely turns without walking. As ex-
plained in Sect. 6.3, our current system has no path plan-
ning; the character merely moves in a straight line to the
target position.

7.2.2 Taking an instrument

When a character uses an instrument in a motion (i.e., a
query frame contains an instrument and the character does
not hold it), the character must pick up the instrument object
before they use it. When a motion to take the instrument is
not explicit in the input text, a ‘take’ motion is selected from
the database. When the character is away from the instru-
ment, locomotive motions are also added before the taking
motion.

7.2.3 Changing posture

For motion searches, if there is no candidate motion whose
initial posture matches the terminal posture of the previous
motion (i.e., the initial posture of a query frame does not
match any of the candidate motion frames), a changing pos-
ture motion such as standing up is added. In this case, all
motions that include a state change will be candidate mo-
tions.

7.2.4 Cooperative motion

As explained in Sect. 4.3, when a motion involves inter-
action with another character, a cooperative motion of the
other character follows. When a selected motion frame has
cooperative motions and any of them are not indicated in
the input text, the default cooperative motion and a temporal
constraint of the motion frame are automatically added.

8 Experiment and discussion

We have implemented our method and motion database.
Currently, the system has six characters as shown in Fig. 5
and about 50 motions that are collected from a commercially
available motion capture library. We have tested our system
with some short sentences and found that an appropriate mo-
tion was selected from each sentence even though the same
verb is used in different sentences. An example of the gener-
ated animation is available from the author’s web site (http://
www.cg.ces.kyutech.ac.jp/research/modb/index.html).

To evaluate our framework, we tested it with a published
movie script (The Matrix, 1999). Because our motion data-
base does not yet have enough data, we checked whether our
methods could handle the descriptions in the movie script
and output appropriate query frames. There were about 830
actions (verbs) in the script. We found that about 87% of
these were processed by our system without any problems.
However, 4% were complex expressions that are difficult to
handle using simple rules, such as a sentence with the sub-
ject being a character’s body (e.g., “His elbow hits the en-
emy.”, “His body jumps.”), vague representation (e.g., “he
stares into the darkness”), indirect expression (e.g., “He has
no answer.”), and ambiguous nouns or pronouns. 4% were
verbs that cannot be represented by a motion including non-
action or state verbs explained in Sect. 4.2, such as “He
feels that ∼”, a verb representing a result of a motion such
as “miss” in “he shoots her and misses”. 5% were verbs
representing initial states in the scene but not actions (e.g.,
“they are dead”, “he stands in the room”). As discussed later,
a non-text-based interface is suitable for specifying initial
states or positions of locomotion. According to the above
results, 9% of the verbs in the sample script were actually

http://www.cg.ces.kyutech.ac.jp/research/modb/index.html
http://www.cg.ces.kyutech.ac.jp/research/modb/index.html

Generating animation from natural language texts and semantic analysis for motion search and scheduling 351

verbs that cannot be represented as motions. This shows that
95% of verbs that can be represented as motion were han-
dled by our methods. Although it is possible to extend our
semantic analysis to support more complex expressions, this
will require a great deal of knowledge and rules, which is
contrary to the aims of this research. If a complex expression
cannot be handled by the system, the user should rephrase it
as a plain expression rather than adding more knowledge
and rules to the system.

However, even if an animation is generated from a given
text, since there is limited information in an input text, a user
may not be satisfied with the motions that are found in the
database. Moreover, since we use a simple method for gener-
ating locomotive motion, motion modification, and motion
synthesis, a user may not be satisfied with the synthesized
animation. To evaluate the effectiveness of our system, we
intend conducting a practical user study in a future work.
Improvement of motion generation and the external motion
synthesis system [20] is also a future work.

Our current system cannot handle object motions. How-
ever, as they are also important for animation, it is easily
possible to extend our system to handle them, as they tend
to be simpler than human motions.

The fundamental principle of our framework is to make
use of motion data without requiring any additional motion
specific rules. Currently, our system does not support high-
level motion planning such as automatically dividing com-
plex motion into small motions or path planning with object
avoidance. Because we use simple rules for automatic loco-
motion, the resulting animations are not so natural. This can
be solved by adding more motion data and some sophisti-
cated modules that generate new motion from a number of
motion data sources such as [17, 18].

Our system supposes that scene information, such as the
positions of objects and characters, is provided by the user.
The existing text-to-scene system [10] can be integrated
with our system. However, specifying the positions using
natural language can be harder than using a conventional
mouse-based interface. So can specifying locomotion path.
From a practical viewpoint, a hybrid of a text-based inter-
face and a conventional interface might be more useful.

With our current system, if the user is not satisfied with
or wants to change an output motion, they must change the
input text and they cannot change the output motions di-
rectly. To address this, we are going to develop a natural
language-based motion editing interface with which a user
can change generated motions interactively by giving in-
structions to agents, as real directors do with actors.

9 Conclusion

We have proposed an animation system that generates ani-
mation from natural language text such as movie scripts or

stories. Our future work includes the expansion of both the
system and the motion database. Currently, creating anima-
tions is very difficult, especially for nonprofessionals. We
believe that our system will alleviate this and provide many
creators with a means of expressing their stories as anima-
tion.

References

1. Oshita, M.: Generating animation from natural language texts and
framework of motion database. In: Proc. of International Confer-
ence on Cyberworlds 2009, pp. 146–153, Bradford, UK (2009)

2. Winograd, T.: Understanding Natural Language. Academic Press,
San Diego (1972)

3. Badler, N., Bindiganavale, R., Allbeck, J., Schuler, W., Zhao, L.,
Palmer, M.: Parameterized action representation for virtual human
agents. In: Embodied Conversational Agents, pp. 256–284 (2000)

4. Bindiganavale, R., Schuler, W., Allbeck, J., Badler, N., Joshi,
A., Palmer, M.: Dynamically altering agent behaviors using nat-
ural language instructions. In: Proc. of Autonomous Agents 2000,
pp. 293–300 (2000)

5. Tokunaga, T., Funakoshi, K., Tanaka, H.: K2: animated agents that
understand speech commands and perform actions. In: Proc. of
8th Pacific Rim International Conference on Artificial Intelligence
2004, pp. 635–643 (2004)

6. Fillmore, C.J.: The case for case. In: Universals in Linguistic The-
ory, pp. 1–88 (1968)

7. Lu, R., Zhan, S.: Automatic Generation of Computer Animation:
Using AI for Movie Animation. Springer, Berlin (2002)

8. Sumi, K., Nagata, M.: Animated storytelling system via text. In:
Proc. of International Conference on Advances in Computer En-
tertainment Technology (2006)

9. Baba, H., Noma, T., Okada, N.: Visualization of temporal and spa-
tial information in natural language descriptions. Trans. Inf. Syst.
E79-D(5), 591–599 (1996)

10. Coyne, B., Sproat, R.: Wordseye: an automatic text-to-scene con-
version system. In: Proc. of SIGGRAPH 2001, pp. 487–496
(2000)

11. Levine, S., Theobalt, C., Koltun, V.: Real-time prosody-driven
synthesis of body language. ACM Trans. Graph. 28(5), 172 (2009)
(In: Proc. of ACM SIGGRAPH Asia 2009)

12. Perlin, K., Goldberg, A.: Improv: a system for scripting interactive
actors in virtual worlds. In: Proc. of SIGGRAPH ’96 Proceedings,
pp. 205–216 (1996)

13. Conway, M.J.: Alice: easy-to-learn 3D scripting for novices. PhD
Dissertation, University of Virginia (1997)

14. Hayashi, M., Ueda, H., Kurihara, T., Yasumura, M.: TVML (TV
program Making Language)—automatic TV program generation
from text-based script. In: Proc. of Imagina ’99, pp. 84–89 (1999)

15. Shim, H., Kang, B.G.: CAMEO—camera, audio and motion with
emotion orchestration for immersive cinematography. In: Proc. of
International Conference on Advances in Computer Entertainment
Technology (ACE) 2008, pp. 115–118 (2008)

16. Park, S.I., Shin, H.J., Shin, S.Y.: On-line locomotion generation
based on motion blending. In: Proc. of ACM SIGGRAPH Sympo-
sium on Computer Animation 2002, pp. 105–111 (2002)

17. Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and adverbs: Mul-
tidimensional motion interpolation. IEEE Comput. Graph. Appl.
18(5), 32–40 (1998)

18. Kovar, L., Gleicher, M.: Automated extraction and parameteriza-
tion of motions in large data sets. ACM Trans. Graph. 23(3), 559–
568 (2004)

352 M. Oshita

19. Klein, D., Manning, C.D.: Fast exact inference with a factored
model for natural language parsing. In: Advances in Neural In-
formation Processing Systems 15 (NIPS 2002), pp. 3–10 (2003)

20. Oshita, M.: Smart motion synthesis. Comput. Graph. Forum 27(7),
1909–1918 (2008)

Masaki Oshita received his BS,
MS, and PhD degrees from Kyushu
University in 1998, 2000, and 2003,
respectively. Since 2003, he has
been an associate professor in the
Department of Systems Innovation
and Informatics at Kyushu Institute
of Technology. His research inter-
est is on-line computer animation
which includes interactive motion
control of human figures, motion
control interface, motion synthesis,
physics-based simulation, human–
computer interaction, computer vi-
sion, etc.

	Generating animation from natural language texts and semantic analysis for motion search and scheduling
	Abstract
	Introduction
	Related work
	System overview
	Motion database
	Case frame
	Motion frame
	Motion data
	Character and motion database

	Natural language analysis
	Query frame
	Temporal constraints
	Adjective and pronouns
	Infinitives and gerunds
	Locomotive motions
	Adverbs

	Motion search
	Evaluation of motion frame
	Motion modification
	Locomotive motion

	Motion scheduling
	Scheduling query frames
	Automatic motions
	Locomotive motion
	Taking an instrument
	Changing posture
	Cooperative motion

	Experiment and discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

