
Vis Comput (2010) 26: 1393–1406
DOI 10.1007/s00371-010-0416-3

O R I G I NA L A RT I C L E

A lightweight approach to repairing digitized polygon meshes

Marco Attene

Published online: 10 February 2010
© Springer-Verlag 2010

Abstract When designing novel algorithms for geometric
processing and analysis, researchers often assume that the
input conforms to several requirements. On the other hand,
polygon meshes obtained from acquisition of real-world ob-
jects typically exhibit several defects, and thus are not ap-
propriate for a widespread exploitation.

In this paper, an algorithm is presented that strives to
convert a low-quality digitized polygon mesh to a single
manifold and watertight triangle mesh without degenerate
or intersecting elements. Differently from most existing ap-
proaches that globally resample the model to produce a fixed
version, the algorithm presented here attempts to modify the
input mesh only locally within the neighborhood of unde-
sired configurations.

After having converted the input to a single combinator-
ial manifold, the algorithm proceeds iteratively by removing
growing neighborhoods of undesired elements and by patch-
ing the resulting surface gaps until all the “defects" are re-
moved. Though this heuristic approach is not guaranteed to
converge, it was tested on more than 400 low-quality models
and always succeeded. Furthermore, with respect to similar
existing algorithms, it proved to be computationally efficient
and produced more accurate results while using fewer trian-
gles.

Keywords 3D scanning · Self-intersection · Degeneracy ·
Manifold

M. Attene (�)
IMATI-GE / CNR, Via De Marini, 6, 16149 Genova, Italy
e-mail: marco.attene@cnr.it

1 Introduction

Significant advances in 3D acquisition technologies have
brought a gradual change in the way 3D models are pro-
duced and handled, and currently digitized models are be-
coming more and more widespread. In particular, polygon
meshes are becoming a de facto standard in several appli-
cation contexts, and popular 3D shape repositories [1] are
currently dominated by this kind of models. Furthermore,
polygon meshes are widely used as native representation to
encode the surfaces produced by most acquisition technolo-
gies such as laser-triangulation 3D scanners.

Although producers of 3D digitizers try to make their
tools as flexible as possible, each specific application con-
text has its own requirements that define the class of sup-
ported 3D models. In industrial design, for example, sev-
eral downstream applications assume that the mesh does not
contain degenerate, or nearly degenerate, elements. In com-
puter graphics, numerous shape analysis tools expect the in-
put mesh to enclose a solid; such tools typically fail if the
mesh has holes, or provide unpredictable results if the input
has self-intersections.

Often, a 3D scanning session is considered to be com-
plete when all the views (i.e. the range images) are aligned
and merged within a single model [2]. While this is suffi-
cient for mere visualization purposes, at this stage polygon
meshes may contain degenerate elements, self-intersecting
or overlapping parts, surfaces holes, and a number of other
“flaws” that make them not appropriate for a widespread ex-
ploitation (see Fig. 1).

In this article, an automatic procedure is presented to
remove all the aforementioned flaws and transform a raw
digitized mesh into a single manifold and watertight trian-
gle mesh. Two main innovations characterize the proposed
approach with respect to existing methodologies. First, it

mailto:marco.attene@cnr.it


1394 M. Attene

Fig. 1 The raw model of a chair was produced by merging a set of
views acquired through laser scanning (left). The same model was
processed through the algorithm described in this article to become
the watertight surface of a polyhedron (right). Raw model courtesy of
Aim@Shape

strives to modify the mesh as little as possible, which makes
the algorithm less aggressive than typical volume-based
approaches. Second, it is tailored to treat a specific class
of meshes: for these meshes the algorithm leads to better
results with respect to those produced by existing CAD-
oriented methods, in terms of both visual quality and nu-
merical accuracy.

The main application domain of the repairing approach
presented here is constituted of raw digitized solid objects.
This choice makes it possible to assume that (1) the result-
ing mesh should be a single connected manifold bounding
a polyhedron, and (2) the sampling density should not vary
significantly from one part of the mesh to another.

2 Terminology

Undesirable characteristics of a triangle mesh can be roughly
classified as topological or geometrical defects. For this
reason, during the development of the algorithm described
here, particular care was taken to maintain a neat separation
between connectivity and geometry. In the remainder, some
notation adapted from [3] is used, and we denote a triangle
mesh as a pair (P,Σ), where P is a set of N point positions
pi = (xi, yi, zi) ∈ R

3 with 1 ≤ i ≤ N , and Σ is an abstract
simplicial complex which contains all the topological infor-
mation. The complex Σ is a set of subsets of {1, . . . ,N}.
These subsets are called simplices and come in three types:
vertices v = {i}, edges e = {i, j}, and triangles t = {i, j, k},
so that any non-empty subset of a simplex of Σ is again a
simplex of Σ , e.g., if a triangle is present so are its edges
and vertices.

The abstract simplicial complex Σ describes a topology,
or connectivity, on P . We refer to P as the geometry of the
triangle mesh M = (P,Σ), while we call connectivity, or
topology, of M the connectivity defined on P through Σ .

We say that M is combinatorially manifold iff Σ is a com-
binatorial manifold [16]. In its turn, Σ is a combinatorial
manifold iff all its vertices are manifold, and a vertex of Σ

is manifold if its neighborhood is homeomorphic to a disk
in the topology of Σ .

In a triangle mesh M = (P,Σ), for each simplex σ =
{i1, . . . , in}, the set |σ | ⊂ R

3 whose points can be defined
as linear convex combinations of the points pi1, . . . ,pin is
called the geometric realization of σ , and |M| = ⋃

σi∈Σ |σi |
is the geometric realization of M [3]. Thus, the geometric
realization is a set of points of R

3 for which an Euclid-
ean topology exists, and we say that |M| is manifold iff
the neighborhood of each point in |M| is homeomorphic
to a disk. Throughout the remainder of this paper we say
that M is geometrically manifold, or manifold in the Euclid-
ean sense, if |M| is manifold with respect to the Euclid-
ean topology. Note that a triangle mesh may be manifold
in the combinatorial sense and not in the Euclidean one, for
example when the mesh self-intersects. Also, a geometri-
cally manifold mesh may not be combinatorially manifold.
To obtain such a model, for example, start from a triangle
mesh which is both combinatorially and geometrically man-
ifold (e.g. a triangulated sphere), pick an edge e = {i, j},
add a new triangle t = {i, j, k} and set pk := pj . If we re-
lax the requirement of homeomorphism with a disk to the
weaker condition of homeomorphism with a disk or with a
half-disk, we say that M is manifold with boundary, which
holds both in the Euclidean and in the combinatorial sense.
We define an orientation of an edge as an ordering of its
two vertices. Furthermore, we call an orientation of a tri-
angle an equivalence class of ordering of its vertices where
(v1, v2, v3) � (vτ(1), vτ(2), vτ(3)) are equivalent orderings if
the parity of the permutation τ is even. Two triangles sharing
an edge e are consistently oriented if they induce different
orientations on e. A triangle mesh is orientable iff all its tri-
angles can be oriented consistently.

3 Related work

Algorithms to adapt polygonal meshes to particular appli-
cation contexts are comprehensively described in the liter-
ature [11], and specific approaches to remove topological
and geometrical defects have been proposed. Algorithms for
mesh repairing can be classified into two main categories:
surface-based and volume-based methods. Surface-based al-
gorithms try to remove the defects by modifying the input
only locally; these methods are not invasive, as they act
only where necessary, but unfortunately they typically fail
on complex configurations or require the user to interact to
resolve ambiguities. Volume-based algorithms use the input
to define a new (implicit) surface which is eventually tessel-
lated to produce the output mesh; these methods are typi-



A lightweight approach to repairing digitized polygon meshes 1395

cally much more robust and can treat a wide range of con-
figurations, but unfortunately they introduce modifications
in all the parts of the surface, regardless of the presence or
absence of defects.

3.1 Surface-based methods

Among surface-based methods, some approaches are de-
signed to fix topological flaws, while some others are more
general and attempt to fix the geometry as well. The first
subclass of topological methods is motivated by the fact
that for several applications it is sufficient that the mesh
can be encoded through data structures optimized for man-
ifold meshes. Moreover, in several scenarios the acquisi-
tion process produces meshes which are mostly combina-
torial manifolds, in the sense that only a small percentage
of vertices are singular. This fact prompted the develop-
ment of several algorithms that slightly modify the connec-
tivity to edit the singularities without changing anything far
from them. To achieve this goal, a widely used approach
consists of decomposing non-manifold meshes into simpler
parts, splitting at those elements (vertices, edges, facets,
etc.) where singularities occur [19, 30]. The result of such
a decomposition is a collection of singularity-free compo-
nents.

In [30] a method is proposed to convert a non-manifold
set of triangles to a set of manifold surface meshes. First,
non-manifold edges (i.e. edges having more than two inci-
dent faces) are identified, and each edge having 2k incident
faces is split into k manifold edges, so that if these edges
are bent by a small amount in the appropriate direction, the
resulting shape will not have self-intersections. This repre-
sentation is called an edge-manifold representation, and may
still contain isolated non-manifold vertices. Then, to guar-
antee a manifold topology, one has to identify and duplicate
properly the non-manifold vertices. A strategy is suggested
to produce a minimum number of vertex duplications [30].

In a similar setting, [19] introduces a strategy based on
two high level operations: cutting and stitching. The cutting
operation involves identifying non-manifold edges and cut-
ting the surface along such edges. Two strategies are avail-
able for cutting: a global method, operating on all the sur-
face elements, which is appropriate for cuts covering a large
portion of the surface, and a local strategy, operating only
on a set of marked vertices and edges, which is more effi-
cient in case of a small number of marked elements. The
result of the cutting operation is a manifold surface that
may contain boundary edges. Hence, a stitching operation
is performed, which involves joining two boundary edges
while guaranteeing that the surface has a manifold topol-
ogy. There are two greedy strategies for stitching: pinching
attempts to simply zip boundary edges created during the
cutting operation, while snapping attempts to stitch along

boundaries other than those, and reduces the number of con-
nected components of the surface. Differently from [30], the
method in [19] does not address geometric issues such as
self-intersecting surfaces.

In order to fix geometric flaws, Borodin and collea-
gues [9] remove artifacts such as surface gaps and cracks
using a vertex-edge contraction operator and a progressive
boundary decimation algorithm. Unfortunately, this method
is tailored to fix tessellated CAD models, and typically fails
when trying to fix meshes produced by modern acquisition
hardware that often contain complex holes bounded by sev-
eral curves.

Filling complex holes in meshes is a long-standing prob-
lem, and several solutions have been proposed, starting from
plain triangulation algorithms [5], up to more elaborated
approaches that guarantee a certain continuity of the nor-
mal field [25], even by using radial basis function interpola-
tors [12].

Based on the observation that tiny handles and tunnels are
often generated during the reconstruction of a mesh from
raw data, in [21] an algorithm is proposed to locate such
topological noise and locally re-triangulate the mesh in or-
der to reduce its genus.

Aside from the scientific literature, most commercial sys-
tems already provide algorithms to fix specific mesh prob-
lems. Among its repairing features, Geomagic [17] provides
several hole-filling algorithms that can also be launched au-
tomatically depending on specific parameters of the holes.
Besides automatic hole-filling, Polyworks [22] also provides
manual tools to deal with really tricky problems. One of
the most comprehensive tools for mesh repairing is Rapid-
form [23], which can automatically remove crossing, non-
manifold and other degenerate polygons, and fill holes intel-
ligently based on surrounding curvature. The common miss-
ing feature, however, is an integrated approach that com-
bines all the algorithms to produce a clean polyhedron out
of a raw merge of range images, possibly without requiring
user interaction. Though several algorithms are provided by
commercial systems, they are tailored for specific flaws, and
usually a sequential run of these algorithms is not sufficient
(see Sect. 4.2.4).

3.2 Volume-based methods

In some cases the input mesh exhibits a significant amount
of flaws, and surface-based approaches become inefficient
and do not always succeed. Such polygon soups can be more
effectively fixed through volume-based methods which, af-
ter having converted the mesh to a volumetric representa-
tion, produce a completely new mesh approximating the in-
put.

Earlier approaches use a BSP tree to represent the origi-
nal surface mesh [26]. The requirement of significant com-
putational resources for this approach, however, prompted



1396 M. Attene

the design of a more efficient algorithm in which the in-
put polygon soup is coded through an octree to produce the
output-closed manifold [24]. Besides its efficiency in terms
of speed and memory consumption, this method also pre-
serves geometric details and sharp features of the original
mesh. A major drawback is given by the fact that the out-
put may still contain topological singularities and, as most
volume-based approaches, both [26] and [24] are likely to
completely remove thin structures.

In [27] an algorithm is proposed to convert the input to
a uniformly sampled distance field which is processed and
eventually polygonized to produce a simplified version of
the input. If the main goal is to repair the input, it must be
considered that a global resampling is employed, and thus
important features such as sharp creases may be spoiled by
the processing.

The volume-based paradigm is also used for a specific
kind of mesh repair called mesh completion [28]. In these
approaches the volume is represented by a pair of graphs
representing the interior and the exterior of the model. De-
pending on the desired topology of the repaired model, these
approaches fill mesh gaps rather efficiently and effectively.
Similarly, volumetric diffusion has also been used in [14] to
fill complex holes.

An octree representation is also used by Bischoff and
Kobbelt [7] to remove combinatorial and geometrical sin-
gularities from tessellated CAD models. This approach is
specifically designed for CAD models, and expects the in-
put to be a set of tessellated patches, each without self-
intersections. Moreover, possible mesh gaps are filled only
if they are smaller than a user-defined threshold; in order to
avoid introducing unnecessary distortion while closing all
the gaps, such a threshold may need to differ from one part
of the model to another, and this makes it difficult to au-
tomatize the process in order to build a watertight manifold
mesh.

The method presented in [8] uses an octree to completely
resample an arbitrary polygon mesh, so that the result is
guaranteed to be the boundary of a solid object which stays
within a user-prescribed distance from the original mesh.
Though providing strong guarantees, this method suffers
from the typical drawback of volume-based approaches, that
is, it inserts a distortion even in those parts of the surface that
do not contain any flaw.

4 Repairing process

The automatic repairing procedure described here is per-
formed in two successive phases: topology reconstruction
and geometry correction. Both the stages have been de-
signed with the objective of modifying the mesh as little as
possible.

4.1 Topology reconstruction

This stage of the algorithm aims to convert the set of in-
put polygons into a single combinatorially manifold and ori-
ented triangle mesh. Note that in this section only the con-
nectivity of the input is taken into account, and the goal of
the algorithm described here is to construct a single combi-
natorial manifold without boundary.

Most graphic formats widely used to share 3D models
(OFF, VRML, PLY, etc.) encode surface meshes through in-
dexed face sets; specifically, these file formats contain a first
block specifying the position of the vertices, and a second
block in which each polygon is represented through a se-
quence of indices of vertices in the first block. Clearly, files
of this type are not guaranteed to represent a well-defined
polyhedron, while they may easily encode non-manifold
and/or non-orientable sets of polygons.

For the sake of simplicity, our algorithm first converts
each polygon to a set of triangles through triangulation.
Then, the first step in the topology reconstruction amounts to
building an explicit connectivity between adjacent triangles.
After having triangulated the input polygons, triangle con-
nectivity can be reconstructed as follows: first, an empty list
L of edges is created, then for each triangle {i, j, k} its three
edges {i, j}, {j, k} and {k, i} are inserted into L and, finally,
L is sorted according to a suitable order relation; specifi-
cally, for a generic pair of edges e1 = {i, j} and e2 = {k,n}
in L, without loss of generality we assume that i ≥ j and
k ≥ n, and define a lexicographical order relation as follows:

e1 ≤ e2 iff i < k OR (i = k AND j ≤ n) (1)

Two triangles are adjacent iff they induce consecutive edges
in the sorted list L. Thus, by keeping a link between each
edge ei in L and the triangle that originated ei , it is possible
to retrieve all the triangles adjacent to a given one in optimal
time. Specifically, let t be a triangle bounded by the edges
e1, e2 and e3. The triangles adjacent to t can be obtained by
accessing ei in L and by looking at its successive and pre-
vious edges in the list; if such previous (or successive) edge
has the same vertices as ei , then the triangle that originated it
is adjacent to t . By explicitly encoding the edges in the data
structure, this approach to compute triangle adjacencies re-
quires a number of operations which is linearly proportional
to the number of adjacent triangles, thus it is optimal. There-
fore, this makes it possible to actually walk across adjacent
triangles in optimal time, which is necessary to implement
region-growing algorithms to, for example, calculate a con-
sistent orientation of the triangles in a mesh.

At this point, a fundamental step of the algorithm aims
to remove topological singularities. To achieve this objec-
tive, we chose to rely on the approach described in [19] be-
cause both the cutting strategy and the pinching phase are
relatively cheap in terms of computational resources, which



A lightweight approach to repairing digitized polygon meshes 1397

is important when dealing with big meshes. If the resulting
manifold mesh is made of more than one connected compo-
nent, only the biggest component is kept, that is, the compo-
nent made of the largest number of triangles. In this phase,
isolated vertices are considered as connected components on
their own, and hence are removed.

Next, the algorithm assigns an orientation to one seed tri-
angle, and propagates the orientation to neighboring trian-
gles; specifically, let t be an already processed triangle and
let s be a triangle adjacent to t and not already processed.
If s and t are not consistently oriented, then s is inverted,
that is, two of its three vertices are swapped in the ordered
set. Once all the triangles have been visited and possibly in-
verted, the mesh is traversed and possibly cut along edges
having non-consistently oriented incident triangles. Clearly,
if such a cut takes place, the combinatorial manifold pro-
vided by the algorithm does not completely conform to our
requisites as it has a boundary; in other words, in this case
the algorithm fails to produce a single combinatorial mani-
fold without boundary.

If no cuts were necessary, the mesh may still have holes
that were already present in the original input. For each hole,
a patching procedure such as the one described in [25] in
launched. This procedure first triangulates the hole as de-
scribed in [5], and then inserts new vertices in the patch-
ing triangulation so as to resemble the sampling density of
the surrounding region: these new vertices are moved to po-
sitions that minimize the normal-field variation. Note that
though the hole-filling procedure is guaranteed to converge,
the resulting patches are not guaranteed to be intersection-
free.

To summarize, the topology reconstruction phase pro-
ceeds as described in Algorithm 1.

Algorithm 1 Main steps of the topology reconstruction
phase

Require: An indexed face set F .
Ensure: A single combinatorial manifold M.

1: Triangulate all the faces in F
2: Initialize M with the resulting triangles
3: Compute the triangle–triangle adjacency relations
4: Remove singularities as described in [19]
5: Remove all the connected components but the largest

one
6: Orient the mesh
7: if cuts were necessary then
8: warn the user and terminate
9: else

10: patch mesh holes with new triangles [25]
11: end if

Fig. 2 The zero-order simplicial neighborhood N0(t,M) of a trian-
gle t (left), its first-order neighborhood N1(t,M) (middle), and its sec-
ond-order neighborhood N2(t,M) (right)

4.2 Geometry correction

Once the connectivity of the mesh is “fixed” as described
in Sect. 4.1, the geometric aspects are dealt with as fol-
lows. Typical geometric flaws in a triangle mesh include
degenerate elements (i.e. triangles with null area) and self-
intersections.

4.2.1 Higher-order simplicial neighborhoods

In order to repair geometric flaws, the algorithm presented
here makes use of the notion of simplicial neighborhood.
Let L be a submesh of a combinatorial manifold M , pos-
sibly with boundary, and let N(L,M) be the submesh de-
fined by a set of triangles that share at least a vertex with
L. N(L,M) is said to be the simplicial neighborhood of
L [31]. In the particular case in which L is made of a sin-
gle triangle t , we define the notion of higher-order simpli-
cial neighborhood. Specifically, we call kth-order simplicial
neighborhood of a triangle t in M the submesh of M de-
fined as N(N(. . . (N(t,M) . . .),M),M), with k − 1 nested
levels. Thus, the first-order simplicial neighborhood corre-
sponds to the simplicial neighborhood, the second-order is
the simplicial neighborhood of the simplicial neighborhood,
and so on. In the remainder a compact notation is used, and
the kth-order simplicial neighborhood of a triangle t in M is
denoted as Nk(t,M). Finally, by convention, we say that the
zero-order simplicial neighborhood of a triangle is the tri-
angle itself, that is, N0(t,M) = t . Examples of higher-order
simplicial neighborhoods are shown in Fig. 2.

4.2.2 Degeneracy removal

While the removal of exactly degenerate elements can be
easily performed using [10], removing nearly degenerate
triangles appears to be much harder. Unfortunately, how-
ever, skinny triangles may be the source of several problems
even if they are not exactly degenerate. The attempt to mea-
sure the level of degeneracy of a triangle has led to several
definitions, in particular in the study of Finite Element meth-
ods [33] where well-shaped simplices are fundamental for a



1398 M. Attene

Fig. 3 Nearly degenerate triangles are removed through edge swap
(top) or edge collapse (bottom) as described in Sect. 4.2.2. In this image
the value of ε is exaggerated on purpose to better convey the concept

robust computation. In order to assess the degeneracy of tri-
angles, we chose to implement a strategy based on the Ep-
silon Geometry introduced in [20]. In our framework, the
value of ε is an angle. If a triangle has an angle smaller
than ε or bigger than π − ε, such a triangle is declared to
be degenerate. In this case, the algorithm strives to resolve
the degeneracy through swapping and contraction of edges,
inspired from ideas of [10]. Specifically, triangles having a
nearly flat angle are treated by swapping the edge opposite
to such angle, while triangles having a nearly null angle are
removed by collapsing the edge opposite to such angle to its
midpoint (checks are performed in this order). The value of
ε may be tuned by the user. To run the experiments shown in
this paper, a default value of arcsin(10−5) was used; in [3],
this particular value was proven to be a good compromise
between precision and robustness in most practical cases.
Schematic examples are shown in Fig. 3.

Note that due to topological constraints (i.e. the mesh
must remain a combinatorial manifold), not all the edge
swaps and the edge collapse operations can be per-
formed [15]. Therefore, it may happen that a degeneracy
would need to be treated but actually cannot be due to such
constraints. In this case, we remove all the triangles belong-
ing to the simplicial neighborhood N(ti,M) of the degen-
eracy ti and patch the resulting gap using [5]. Then, we
run the swap/collapse routine within the patch and, if once
again it does not succeed, for each remaining degeneracy
tjk

we compute the second-order simplicial neighborhood
N2(tjk

,M), remove it from the mesh and triangulate the gap
again, and so on. In other words, at each iteration we en-
large the size of the neighborhood of the degeneracies that
could not be solved through the swap/collapse routine. The
process stops with failure after a prescribed number of at-
tempts. In our prototype implementation the number of such
iterations is limited to 3; this value provides an extremely
high percent of success (all the degeneracies in our 400

test models could be resolved) while keeping the modifica-
tion enclosed within a tight neighborhood (i.e. a third-order
simplicial neighborhood) of the original flaw. After the re-
moval of the patch, but before the gap re-triangulation, the
algorithm needs to check and possibly remove small dis-
connected components that detached from the main object.
When k is sufficiently large, in fact, the kth-order simplicial
neighborhood of a triangle may be non-simply connected,
and in this case its removal would leave little disconnected
pieces that need to be removed. Also, in the hole left by the
removal of a simplicial neighborhood, some of the bounding
vertices may be non-manifold: in this case, each such singu-
larity is automatically duplicated [19] and, by construction,
the patching triangulation exhibits (exactly) degenerate tri-
angles that can be easily removed through a single edge-
collapse.

Algorithm 2 provides a sketch of the proposed iterative
approach.

Algorithm 2 Algorithm for degeneracy removal

Require: A combinatorial manifold M and an integer
threshold max_iterations

Ensure: A combinatorial manifold M′ and a status notice
(success/failure)

1: M′ := M
2: Let S be the set of all the triangles of M′
3: for k = 1 to max_iterations do
4: Run the swap/collapse algorithm within S

5: Let T be the set of degeneracies in S untreatable
due to topological constraints

6: if T = ∅ then
7: terminate with success /* M′ is degeneracy-

free */
8: end if
9: Let R be the union of the kth-order simplicial

neighborhoods of the tis ∈ T

10: Remove R from M′
11: Remove possible disconnected components

from M′
12: Patch the remaining gaps with a new set P of tri-

angles
13: S := P

14: end for
15: if S contains degenerate triangles then
16: terminate with failure /* M′ has degenerate trian-

gles */
17: else
18: terminate with success /* M′ is degeneracy-free */
19: end if



A lightweight approach to repairing digitized polygon meshes 1399

4.2.3 Removal of self-intersections

In several application contexts the input mesh is assumed to
enclose a polyhedron, and thus it is required not to have self-
intersections. While it is relatively easy to check a mesh for
self-intersections, it is not that trivial to remove them while
modifying the mesh only locally. Similarly to the treatment
of degenerate triangles, the algorithm proposed here is based
on an iterative removal/gap-filling approach.

Clearly, the detection of intersecting triangles cannot be
performed by simply checking each pair of triangles, as this
would lead to a quadratic complexity which is not afford-
able for even relatively small meshes. Hence, the automatic
detection must rely on some kind of optimization, which is
often based on spatial subdivision. Typical approaches are
based on kd-trees, octrees [32] or on hierarchies of object-
oriented bounding boxes [18]. In our context, however, we
mostly target the processing of digitized models, which have
the characteristic that triangles do not have much variation
in size. For this reason, we rely on a uniform space subdi-
vision that can be efficiently computed as described in [29].
Besides being efficient from the point of view of the com-
putation time, using this solution is also cheap in terms of
memory consumption, as only the voxels that actually con-
tain portions of triangles are encoded. Within each voxel, a
brute-force algorithm is run which checks all the possible
pairs of triangles for intersection. During experimentation, a
fixed grid size made of 1003 voxels proved to behave satis-
factorily for scanned models ranging from few thousand to
nearly 4 million faces. Probably a more elaborate study of
the grid size, which might adapt to the mesh at hand, would
lead to slightly better performances; however, this is not the
main focus of this article, and the fixed cubic grid used was
good enough for all our test cases.

After having identified all the pairs of intersecting trian-
gles, the algorithm just removes them (both the intersecting
and the intersected triangles are deleted for each pair). Pos-
sible disconnected components resulting after the removal
are deleted too, and the remaining gaps are filled using [5].
At this point, the voxel grid is updated with the new tri-
angles that have been created to fill the gaps, and the self-
intersection check is run again within the updated voxels.
For each triangle that still intersects other parts of the mesh,
its first-order simplicial neighborhood is removed, the gaps
filled and the voxels updated. If there are still intersecting
triangles, their second-order neighborhood is removed, and
so on. The process stops with failure when the simplicial
neighborhood reaches a prescribed maximum order. As in
the degeneracy removal step, in our prototype implementa-
tion the number of such iterations is limited to 3. In Fig. 4
an example is shown in which all the self-intersections could
be removed in two iterations.

Algorithm 3 provides a sketch of the proposed approach.

Algorithm 3 Algorithm for removal of self-intersections

Require: A combinatorial manifold M and an integer
threshold max_iterations

Ensure: A combinatorial manifold M′ and a status notice
(success/failure)

1: M′ := M
2: Let S be the set of all the triangles of M′
3: Let G be a uniform 1003 voxel grid tightly enclos-

ing M′
4: for k = 0 to max_iterations do
5: Let H be the set of voxels intersecting at least a

triangle of S

6: Check for triangle–triangle intersections within
each voxel of H

7: Let T be the set of intersecting triangles detected
above

8: if T = ∅ then
9: terminate with success /* M′ is not self-

intersecting */
10: end if
11: Let R be the union of the kth-order simplicial

neighborhoods of all t ∈ T

12: Remove R from M′
13: Remove possible disconnected components

from M′
14: Patch the remaining gaps with a new set P of tri-

angles
15: S := P

16: end for
17: Let H be the set of voxels intersecting at least a triangle

of S

18: if S contains intersecting triangles then
19: terminate with failure /* M′ has self-intersections

*/
20: else
21: terminate with success /* M′ is not self-

intersecting */
22: end if

4.2.4 Integrated flaw removal

Since the objective of the repairing algorithm is to re-
move both degeneracies and self-intersections, the above-
described iterations must be integrated into a single loop.
Notice that the two routines cannot be simply launched in
sequence, because there is no guarantee that the degeneracy
removal does not introduce self-intersections and vice versa.
Indeed, after having deleted all the faulty triangles and the
resulting disconnected components, the remaining holes are
patched as described in [5]: this hole-filling algorithm sim-



1400 M. Attene

Fig. 4 After having converted the model to a combinatorial mani-
fold without degeneracies, self-intersecting triangles (depicted in blue)
are located and their higher-order simplicial neighborhoods are re-

triangulated as described in Sect. 4.2.3. After two iterations the mesh
no longer contains any self-intersection. Note that vertices which are
entirely in the blue regions are simply eliminated from the mesh

Fig. 5 Self-intersection removal in the Stanford dragon. All the in-
tersecting triangles were selected (bottom-left, line 7 in Algorithm 3)
and removed. The resulting holes were patched (bottom-right, line 14
in Algorithm 3). The rear-leg region shown in the magnification was
fixed in a single iteration

ply triangulates the boundary polygon without adding any
new vertex. In [5], the authors prove that there exist some
3D polygons for which all the possible triangulations self-
intersect, and verifying that a given polygon can be triangu-

lated without self-intersections is an NP-complete problem.
Therefore, some heuristics have been introduced to compute
the triangulation, and though the algorithm is guaranteed to
converge to a solution, there is no guarantee that such a solu-
tion is a geometrically manifold mesh without degeneracies.

Thus, in its integrated version, the algorithm alternates
between degeneracy and intersection treatment within a
unique loop, until all the flaws are removed. As for the in-
dividual sub-algorithms described in Sects. 4.2.2 and 4.2.3,
the algorithm stops with failure after a prescribed number of
attempts (10 in our experimental implementation).

In the example in Fig. 5, the original model has 407
boundary loops, 26 082 degenerate triangles and 6711 in-
tersecting triangles. All the loops have been filled by Al-
gorithm 1, whereas after the first iteration of Algorithm 4
the model still has 31 degenerate triangles and 8 self-
intersections. After the second iteration of Algorithm 4 the
model is completely fixed.

Summarizing, the overall geometry correction can be
implemented through Algorithm 4. The whole procedure,
which includes both the topology reconstruction and geom-
etry correction phases, is shown in Fig. 6.

4.2.5 Adaptation to other domains

The algorithm presented here has been designed to process
raw digitized models, hence it should not be expected to pro-
duce accurate results on meshes created differently; unsuit-
able models include sparsely tessellated CAD surfaces or
even digitized models which have already been processed
somehow, for example through mesh simplification. In these



A lightweight approach to repairing digitized polygon meshes 1401

Fig. 6 a Original raw mesh coming from the fusion of 11 aligned
range images (courtesy of Aim@Shape). Note the hole on the right
and the self-intersecting facets on the left of the magnification. b The
combinatorial manifold resulting from the topology reconstruction

phase. The hole has been filled, whereas some triangles are still self-
intersecting. c The final fixed mesh produced by processing the com-
binatorial manifold through the geometry correction phase

Algorithm 4 Main steps of the geometry correction phase

Require: A combinatorial manifold M
Ensure: A combinatorial manifold M′ and a status notice

(success/failure)

1: M′ := M
2: max_iterations := 10
3: for k = 0 to max_iterations do
4: Run Algorithm 2 with parameters M′ and 3. Let

M̃ be the output.
5: M′ := M̃
6: Run Algorithm 3 with parameters M′ and 3. Let

M̃ be the output.
7: M′ := M̃
8: if both the algorithms succeeded and M′ has no

degenerate faces then
9: terminate with success /* M′ has no geomet-

ric flaw */
10: end if
11: end for
12: terminate with failure

cases the algorithm can be run as well, but the modifications
introduced may easily become too coarse (see Fig. 7(b)).
This behavior can be explained by observing that, differently
from raw digitized shapes, other kinds of models may be
characterized by a sparse vertex sampling, either locally or
globally. Clearly, re-triangulating a simplicial neighborhood
in a sparsely sampled region may easily become a macro-
scopic operation. Thus, an adaptation of the degeneracy re-
moval phase is necessary to process the aforementioned un-
suitable models while maintaining the modifications within
tolerable bounds.

To achieve this result, in our prototype implementation
we have added an optional local refinement driven by a
user-specified tolerance value. Specifically, before proceed-
ing with Algorithm 4, the mesh is analyzed to detect all the
faulty triangles (i.e. nearly degenerate or intersecting other
triangles) having at least an edge longer than the prescribed
threshold. Each such triangle is subdivided in four subtrian-
gles by splitting its three edges at their midpoints. Then, the
mesh is re-analyzed and the resulting defects are subdivided
again, and so on, until all the edges of faulty triangles be-
come shorter than the prescribed threshold. An example of
the effect of this improvement is shown in Fig. 7(c).



1402 M. Attene

Fig. 7 The original woman model (a) is too sparsely sampled, and
the repairing algorithm produces coarse artifacts near formerly self-
intersecting areas (b); by performing few local iterations of midpoint

subdivision within such areas before correction, the resulting patches
become more accurate (c)

5 Experimental results

The repairing algorithm described in this paper has been
extensively tested on several models, and it always suc-
ceeded. Experiments were run both on raw scanned mod-
els downloaded from the Internet [1] and on models created
on purpose through digitization of real objects; for this pur-
pose, a Minolta Vivid 910 laser scanner was used to acquire
the shapes, whereas range images were aligned and merged
through Minolta’s software Polygon Editing Tool. On the re-
sulting polygonal meshes the vertex density is rather high
and uniform, and the modifications introduced in order to
repair each geometric flaw are hardly visible unless a sig-
nificant zoom is used. In numbers, however, the distance
between the original mesh and the repaired model depends
on the resolution used by the scanner, on the distance be-
tween the surface and the scanner’s sensor, and on the spe-
cific lens employed. In our experiments, we scanned objects
whose absolute size is at most 520 millimeters (length of the
bounding-box diagonal), the resolution of each range image
was 640 × 480 pixels, the focal distance was approximately
600 millimeters, and a “tele” lens provided by Minolta was
used. In these conditions, the maximum distance between
the original model and its repaired version was measured
using the Metro tool [13], and we have verified that it never
exceeded 0.0098 times the model’s bounding-box diagonal
(see Fig. 8 and Table 1). Note that on laser-scanned mod-
els this value is comparable with the distance of a typical

outlier from the underlying surface. Moreover, such a max-
imum distortion is extremely localized, as demonstrated by
the value of the mean distance which is typically smaller by
several orders of magnitude.

Since they dealt with raw scanned models, all the afore-
mentioned experiments were run without the adaptation dis-
cussed in Sect. 4.2.5. Nevertheless, such adaptation was
used during the testing of the algorithm on another set of
40 sparsely sampled models (see Fig. 7 for an example). For
these tests, the threshold length for edges of faulty triangles
was set to 0.005 times the length of the bounding-box di-
agonal. Even in these cases, the algorithm has always been
able to terminate with success.

It is worth mentioning that the algorithm presented here
proved to be computationally efficient. As an example, the
whole repairing of the bimba model (3.7 million triangles)
has taken 87 seconds, which is comparable with the time
spent by [7] in its best run to repair the ventilator model (269
thousand triangles, Fig. 11 in [7]), and is significantly bet-
ter than the 126 seconds spent by [27] to produce the fixed
woman model shown in Fig. 9d. More timing results are re-
ported in Table 1.

5.1 Comparison with existing approaches

We compared the algorithm described in this paper with
other three approaches, two employing a global surface re-
sampling ([27] and [24]), and one attempting to fix de-
fects by modifying the mesh only locally around them [7].



A lightweight approach to repairing digitized polygon meshes 1403

Fig. 8 Two examples of test models successfully repaired. Original raw data courtesy of Aim@Shape

Table 1 Distortion. For each model, this table reports the number of
triangles in the original and in the fixed mesh, and distance information
as reported by Metro [13]: namely, the maximum absolute distance of
the original from the fixed mesh, the mean and the rooted-mean-square
distances, and the maximum distance with respect to the length of the

bounding-box diagonal. Distances are expressed in millimeters, with
the exception of the woman and the dragon models for which no spe-
cific unit of measurement was available. Time is expressed in seconds,
and does not include input/output from/to file

Model Fig. Input Output Max Mean Dist RMS Max Dist bb-diag time

Name Triangles Triangles Dist (×10−5) (×10−3) wrt bb-diag

chair 1 98 523 101 784 1.116099 1.1 0.435 0.002460 453.70 3.2

dancer 8 140 804 149 206 0.994584 6.9 5.676 0.002831 351.32 4.1

sofocle 11 350 664 410 138 0.472599 2.3 0.445 0.003317 142.48 9.4

blade 6 389 103 391 314 0.035633 0.1 0.087 0.000211 168.88 7.8

bimba 8 3 745 150 3 755 938 1.169993 5.2 5.297 0.002242 521.85 87.1

woman 7 11 534 12 634 0.001109 0.5 0.051 0.000600 1.74 1.2

dragon 5 871 414 844 248 0.002774 0.1 0.033 0.009748 0.27 16.1

Although the method in [27] proved to be robust and al-
ways succeeded, it requires a significant amount of re-
sources to produce satisfactory results. Better performances
are achieved by [24] but, in both the cases, the results are
isosurfaces of discrete scalar fields; hence, to provide suffi-
ciently accurate results, the resolution of the volume grids
must be significantly high, with consequent high triangle
counts in the corresponding output isosurfaces. With respect
to the method presented in [7], our approach appears to
be slightly more general for some aspects: in [7] the algo-
rithm is able to detect and fix only intersections between
different tessellated patches, and the new triangles inserted
through the dual-contouring approach are not guaranteed to
be intersection-free. Nevertheless, we could compare our re-
sults with those coming from an adapted version of [7] in
which all the self-intersections can be detected, without the
limitation of belonging to different patches. In this case, we
could verify that our approach is less invasive in the sense
that the modifications introduced are less visible; further-

more, with a comparable accuracy, the results of our ap-
proach contain significantly less additional triangles, and in
all our experiments the results are perfectly free of any in-
tersection or degeneracy (see Fig. 9). As a final remark, it
is worth to remind that the algorithm presented here is de-
signed to fix meshes which are assumed to enclose solid
objects. In such a context, [7] may be difficult to use be-
cause, in order to avoid introducing unnecessary distortion
while closing all the gaps, the threshold may need to differ
from one part of the model to another. On the other hand,
however, the method presented here is not suitable to treat
meshes with desired boundaries; in this regard, the approach
proposed in [7] gives more flexibility.

5.2 Limitations and failure cases

The repairing procedure requires to access the various parts
of the mesh, and unfortunately an obvious solution was
not found to subdivide the input into smaller pieces to be



1404 M. Attene

Fig. 9 An example showing a comparison of the results achieved by
b our approach, c [7], d [27] and e [24], starting from a common orig-
inal mesh a. Self-intersecting triangles are shown in blue. Besides the
evident benefit in terms of visual quality, our algorithm provides more
accurate results using less triangles. In this example, the original a is

made of 11 534 triangles, while b, c, d and e contain 12 634, 17 174,
110 908 and 363 776 triangles respectively. In contrast, the maximum
distance from a is 0.001109 for b, 0.001391 for c, 0.018388 for d, and
0.006189 for e

processed separately. To fix huge meshes, a possibility is to
use dedicated PCs equipped with large memory made ac-
cessible through 64 bit operating systems. Our 32 bit imple-
mentation could treat models made of up to 4 million trian-
gles without switching to virtual memory.

The algorithms discussed in this article are not guaran-
teed to terminate with success, thus it is worth mentioning
which are the possible causes of failure. While Algorithm 1
fails only if the input is intrinsically not orientable (e.g. a
Möbius strip), Algorithms 2 and 3 can fail if the hole-filling
procedure creates unwanted elements (degeneracies or self-
intersections) at all the iterations. Though this is extremely
rare for digitized meshes, it is possible to synthesize a patho-
logical case in which the configuration of the holes makes
the filling algorithm produce self-intersections at all the it-
erations (see Fig. 10).

6 Applications

The fully automatic nature of the tool proposed in this arti-
cle opens various possibilities. For example, it can be incor-
porated as an optional post-loading stage within novel 3D
processing systems; if the input can be successfully fixed,
the system may activate additional functionalities which are
defined only for meshes bounding polyhedra. Also, the new
algorithm can be plugged into a batch script to automatically
fix big shape repositories without any user intervention. In
this case, possible failures can be simply logged and later
analyzed and treated manually using appropriate tools [3].

Fig. 10 A self-intersecting bent tube representing a synthesized fail-
ure case (top-left). After having identified the intersecting triangles
(top-right and bottom-left), the algorithm removes them and the result-
ing disconnected pieces. By attempting to minimize the normal vari-
ation, the hole filler patches the two holes with cylindrical surfaces
(bottom-right, inner view) that intersect each other at all the iterations

6.1 Benchmark generation

As a practical application, the algorithm presented here
has been used to automatically produce the SHREC 2008
benchmark on watertight models [6]. After having collected
the 400 raw meshes constituting the previous year’s ver-
sion of the benchmark, we have created a batch script to
run the repairing algorithm on each model. As a result, we
obtained 400 clean meshes that could undergo further au-



A lightweight approach to repairing digitized polygon meshes 1405

Fig. 11 The original raw mesh has holes, degeneracies and self-
intersections (a). After a global topology reconstruction which in-
cludes hole-filling (b), geometric flaws (c) are fixed as described in

Sect. 4.2 (d). The final clean mesh can be successfully tetrahedrized
using tetgen (e)

tomatic processing which was necessary to create the fi-
nal benchmark. Most input models were already clean, and
thus were not modified by the algorithm, whereas all the
other meshes were successfully fixed. Specifically, the algo-
rithm presented in this paper was able to successfully fix
all the 5584 degenerate triangles and all the 17 961 self-
intersections present in 146 out of 400 meshes constituting
the whole data set.

6.2 Conversion to tet mesh

The generation of tetrahedral meshes out of raw input sur-
face meshes represents a further example in which the auto-
matic nature of the algorithm can be exploited. In our exper-
iments several fixed models, including the 400 fixed meshes
discussed in Sect. 6.1, have been converted to tetrahedral
meshes through the tetgen open-source software tool [34].
This tool was able to tetrahedrize all the repaired models,
and this is a further demonstration of the good quality of
the results of the algorithm presented here. The resulting
tetrahedral meshes could be successfully used to test a novel
shape segmentation method [4]. Figure 11 shows an exam-
ple of the whole processing pipeline, from the input raw sur-
face mesh to the output tetrahedral mesh.

7 Conclusions

The algorithm described in this paper, the experimental re-
sults obtained so far and the comparison with existing ap-
proaches, demonstrate that raw digitized 3D models can be

improved through ad hoc procedures with several advan-
tages. Among these, we have shown that it is possible to sig-
nificantly reduce the distortion introduced in the fixed model
and, at the same time, it is possible to design completely
automatic conversion mechanisms. This latter aspect is not
negligible, as it makes it possible to automatically correct
and convert even big databases without user intervention.

Future research will investigate strategies to computa-
tionally detect the suitability of an input model to be re-
paired; we argue that the number of facets and their sam-
pling distribution can provide useful indications in this
sense, and may lead to automatic approaches to set plausible
thresholds for the adaptation scheme proposed in Sect. 4.2.5.

Acknowledgements This work has been partially supported by the
FP7 FOCUS K3D Coordination Action. Special thanks are due to Prof.
Leif Kobbelt for the time spent to adapt his algorithm, for having pro-
vided results for comparison, and for the valuable information pro-
vided about his work. Also, I would like to thank Stephen Bischoff
and his co-authors for having provided an implementation of the re-
pairing method by Nooruddin and Turk that could be used to further
compare the results presented here against the state of the art. Last
but not least, I am grateful to Bianca Falcidieno, Michela Spagnuolo
and all the members of the Shape Modeling Group at IMATI-CNR for
helpful discussions.

References

1. AIM@SHAPE shape repository (2004). http://shapes.aimatshape.
net/

2. Albertoni, R., Papaleo, L., Robbiano, F., Spagnuolo, M.: Towards
a conceptualization for shape acquisition and processing. In: Proc.
of 1st International Workshop on Shapes and Semantics (2006)

http://shapes.aimatshape.net/
http://shapes.aimatshape.net/


1406 M. Attene

3. Attene, M., Falcidieno, B.: Remesh: An interactive environment
to edit and repair triangle meshes. In: Shape Modeling and Appli-
cations, pp. 271–276 (2006)

4. Attene, M., Mortara, M., Spagnuolo, M., Falcidieno, B.: Hierar-
chical convex approximation for fast region selection. Comput.
Graph. Forum 27(5), 1323–1333 (2008)

5. Barequet, G., Sharir, M.: Filling gaps in the boundary of a polyhe-
dron. Comput. Aided Geom. Des. 12(2), 207–229 (1995)

6. Biasotti, S., Attene, M.: Shrec08 entry: Report of the stability
track on watertight models. In: Shape Modeling and Applications
(2008)

7. Bischoff, S., Kobbelt, L.: Structure preserving cad model repair.
Comput. Graph. Forum 24(3), 527–536 (2005)

8. Bischoff, S., Pavic, D., Kobbelt, L.: Automatic restoration of poly-
gon models. ACM Trans. Graph. 24(4), 1332–1352 (2005)

9. Borodin, P., Novotni, M., Klein, R.: Progressive gap closing for
mesh repairing. In: Advances in Modelling, Animation and Ren-
dering, pp. 201–213 (2002)

10. Botsch, M., Kobbelt, L.: A robust procedure to eliminate degener-
ate faces from triangle meshes. In: Vision, Modeling and Visual-
ization, pp. 283–290 (2001)

11. Botsch, M., Pauly, M., Kobbelt, L., Alliez, P., Levy, B., Bischoff,
S., Roessl, C.: Geometric modeling based on polygonal meshes.
In: SIGGRAPH Course Notes (2007)

12. Branch, J., Prieto, F., Boulanger, P.: Automatic hole-filling of tri-
angular meshes using local radial basis function. In: Proceedings
of 3DPVT’06, pp. 727–734 (2006)

13. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error
on simplified surfaces. Comput. Graph. Forum 17(2), 167–174
(1998)

14. Davis, J., Marschner, S., Garr, M., Levoy, M.: Filling holes in
complex surfaces using volumetric diffusion. In: Int. Symposium
on 3D Data Processing, Visualization, Transmission, pp. 428–438
(2002)

15. Dey, T.K., Edelsbrunner, H., Guha, S., Nekhayev, D.: Topology
preserving edge contraction. Publ. Inst. Math. (Beograd) 20(80),
23–45 (1999)

16. Floriani, L.D., Morando, F., Puppo, E.: Representation of non-
manifold objects through decomposition into nearly manifold
parts. In: ACM Solid Modeling, pp. 304–309 (2003)

17. Geomagic, Inc. Geomagic Studio. http://www.geomagic.com/
18. Gottschalk, S., Lin, M.C., Manocha, D.: Obbtree: A hierarchical

structure for rapid interference detection. In: ACM Siggraph Pro-
ceedings, pp. 171–180 (1996)

19. Guéziec, A., Taubin, G., Lazarus, F., Horn, B.: Cutting and stitch-
ing: Converting sets of polygons to manifold surfaces. IEEE Trans.
Vis. Comput. Graph. 7(2), 136–151 (2001)

20. Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: building ro-
bust algorithms from imprecise computations. In: ACM Sympo-
sium on Computational Geometry, pp. 208–217 (1989)

21. Guskov, I., Wood, Z.: Topological noise removal. In: Proceedings
of Graphics Interface, pp. 19–26 (2001)

22. InnovMetric Software, Inc. Polyworks. http://www.innovmetric.
com/

23. INUS Technology, Inc. Rapidform. http://www.rapidform.com/
24. Ju, T.: Robust repair of polygonal models. ACM Trans. Graph.

23(3), 888–895 (2004)

25. Liepa, P.: Filling holes in meshes. In: Eurographics Symposium
on Geometry Processing, pp. 200–205 (2003)

26. Murali, T., Funkhouser, T.: Consistent solid and boundary repre-
sentations from arbitrary polygonal data. In: Proceedings of Sym-
posium on Interactive 3D Graphics, pp. 155–162 (1997)

27. Nooruddin, F., Turk, G.: Simplification and repair of polygonal
models using volumetric techniques. ACM Trans. Vis. Comput.
Graph. 9(2), 191–205 (2003)

28. Podolak, J., Rusinkiewicz, S.: Atomic volumes for mesh com-
pletion. In: Eurographics Symposium on Geometry Processing,
pp. 33–42 (2005)

29. Rocchini, C., Cignoni, P., Ganovelli, F., Montani, C., Pingi, P.,
Scopigno, R.: The marching intersections algorithm for merging
range images. Vis. Comput. 20(2–3), 149–164 (2004)

30. Rossignac, J., Cardoze, D.: Matchmaker: manifold breps for non-
manifold r-sets. In: Proc. of 5th ACM Symposium on Solid Mod-
eling and Applications, pp. 31–41 (1999)

31. Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise Linear
Topology. Springer, Berlin (1972)

32. Samet, H.: Spatial Data Structures: Quadtrees, Octrees and Other
Hierarchical Methods. Addison Wesley, Reading (1989)

33. Shewchuk, J.R.: Delaunay refinement algorithms for triangular
mesh generation. Comput. Geom. Theory Appl. 22(1–3), 21–74
(2002)

34. Si, H., Gaertner, K.: Meshing piecewise linear complexes by con-
strained Delaunay tetrahedralizations. In: Proceedings of the 14th
International Meshing Roundtable, pp. 147–163 (2005)

Marco Attene is a researcher at
IMATI-GE/CNR, where he inves-
tigates new directions, paradigms
and algorithms for 3D geometric
modelling, processing and analysis.
Marco holds a PhD in Electronic
and Computer Engineering and a
Research Management diploma.
He has been an invited PhD student
at the University of Otago (NZ) and
an invited researcher at INRIA (F).
Marco contributed to the concep-
tion and implementation of suc-
cessful international projects, and
within the EU FP6 AIM@SHAPE

NoE he coordinated a team of 20 experts for the definition of meta-
data to describe digital shapes, currently at the basis of the popular
AIM@SHAPE Repository. He promoted key collaborations and joint
research programs with world-leading groups in the area. He regularly
serves as program committee member for international conferences,
and has been member of the organizing board of SMI’01 (IEEE Shape
Modelling Int. Conference) and SAMT’07 (Int. Conf. on Semantic
and Digital Media Technology 2007). Marco has been organizer of the
“Stability on watertight models” track of the SHREC 2008 interna-
tional contest on 3D shape retrieval.

http://www.geomagic.com/
http://www.innovmetric.com/
http://www.innovmetric.com/
http://www.rapidform.com/

	A lightweight approach to repairing digitized polygon meshes
	Abstract
	Introduction
	Terminology
	Related work
	Surface-based methods
	Volume-based methods

	Repairing process
	Topology reconstruction
	Geometry correction
	Higher-order simplicial neighborhoods
	Degeneracy removal
	Removal of self-intersections
	Integrated flaw removal
	Adaptation to other domains


	Experimental results
	Comparison with existing approaches
	Limitations and failure cases

	Applications
	Benchmark generation
	Conversion to tet mesh

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


