Vis Comput (2009) 25: 757-769
DOI 10.1007/s00371-009-0365-x

ORIGINAL ARTICLE

Parallel smoothing of quad meshes

Young In Yeo - Tianyun Ni - Ashish Myles -
Vineet Goel - Jorg Peters

Published online: 24 April 2009
© Springer-Verlag 2009

Abstract For use in real-time applications, we present a fast
algorithm for converting a quad mesh to a smooth, piece-
wise polynomial surface on the Graphics Processing Unit
(GPU). The surface has well-defined normals everywhere
and closely mimics the shape of Catmull-Clark subdivision
surfaces. It consists of bicubic splines wherever possible,
and a new class of patches—c-patches—where a vertex has
a valence different from 4. The algorithm fits well into paral-
lel streams so that meshes with 12,000 input quads, of which
60% have one or more non-4-valent vertices, are converted,
evaluated and rendered with 9 x 9 resolution per quad at 50
frames per second. The GPU computations are ordered so
that evaluation avoids pixel dropout.

Keywords Subdivision - GPU - Smooth surface -
Quadrilateral mesh

1 Introduction and contribution

Quad meshes, i.e. meshes consisting of quadrilateral facets,
naturally model the flow of (parallel) feature lines and are
therefore common in modeling for animation. Any polyhe-
dral mesh can be converted into a quad mesh by one step
of Catmull-Clark subdivision [3]. But preferably, a designer
creates the mesh as a quad mesh so that no global refine-
ment is necessary. Smooth surfaces are needed, for example,

Y.I. Yeo (X)) - T. Ni - A. Myles - J. Peters
University of Florida, Gainesville, FL, USA
e-mail: yiyeo@cise.ufl.edu

V. Goel
Advanced Micro Devices, Sunnyvale, CA, USA

as the base for displacement mapping in the surface normal
direction [9] (Fig. 1).

For real-time applications such as gaming, interactive an-
imation, simulation and morphing, it is convenient to offload
smoothing and rendering to the Graphics Processing Unit
(GPU). In particular, when morphing is implemented on the
GPU, it is inefficient to send large data streams on a round
trip to the CPU and back. Current and impending GPU con-
figurations favor short explicit surface definitions, as derived
below, over recursively defined surfaces.

For the following GPU-based surface construction, we
distinguish two types of quads: ordinary and extraordinary.
A quad is ordinary if all four vertices have 4 neighbors. Such
a facet will be converted into a degree 3 by 3 patch in tensor-
product Bernstein—Bézier (Bézier) form by the standard B-
spline to Bézier conversion rules [4]. Therefore, any two ad-
jacent patches derived from ordinary quads will join CZ.
The interesting aspect of this paper is the conversion of the
extraordinary quads, i.e. quads having at least one, and pos-
sibly up to four, vertices of valence n # 4. We present a new
algorithm for converting both types of quads on the fly so
that

1. Every ordinary quad is converted into a bicubic patch in
tensor-product Bézier form, Fig. 3(b).

2. Every extraordinary quad is converted into a composite

patch (short c-patch) with cubic boundary and defined

by 24 coefficients, Fig. 3(c).

The surface is by default smooth everywhere (Lemma 1).

The shape follows that of Catmull-Clark subdivision.

5. Conversion and evaluation can be mapped to the GPU to
render at very high frame rates (at least an order of mag-
nitude faster than for example [2, 18] on current hard-
ware).

Rl

@ Springer

mailto:yiyeo@cise.ufl.edu

Y.I. Yeo et al.

758

Fig. 1 GPU smoothed quad meshes with displacement mapping

1.1 Some alternative mesh smoothing techniques
on the GPU

A number of techniques exist to smooth out quad meshes.
Catmull-Clark subdivision [3] is an accepted standard, but
does not easily port to the GPU. Evaluation using Stam’s
approach [19] is too complex for large meshes on the GPU.
The methods in [1, 2, 18] require separated quad meshes,
i.e. quad meshes such that each quad has at most one point
with valence n # 4. To turn quad meshes into separated quad
meshes usually means applying at least one Catmull-Clark
subdivision step on the CPU and fourfold data transfer to
the GPU. In more detail, Shiue [18] implements recursive
Catmull-Clark subdivision using several passes via the pixel
shader, using textures for storage and spiral-enumerated
mesh fragments. Bolz [1] tabulates the subdivision func-
tions up to a given density and linearly combines them in
the GPU. Bunnell [2] provides code for adaptive refinement.
Even though this code was optimized for an earlier genera-
tion GPUs, this implementation adaptively renders the Frog
(Fig. 2) in real-time on current hardware (see Sect. 5 for
a comparison with our approach). The main difference be-
tween our and Bunnell’s implementation is that we decouple
mesh conversion from surface evaluation and therefore do
not have the primitive explosion before the second rendering
pass. Moreover, we place conversion early in the pipeline so
that the pixel shader is freed for additional tasks.

Three alternative smoothing strategies mimic Catmull-
Clark subdivision by generating a finite number of bicubic
patches. PCCM [13, 14] generates NURBS output that could
be rendered, for example by the GPU algorithm of Guthe et
al. [6]. But this has not been implemented to our knowledge.

PN-quads [15] are a variant of the three-sided patches
published in Vlachos et al. [21]. For each quad, one bicu-
bic ‘geometry patch’ and one biquadratic ‘normal patch’
are generated. Adjacent geometry patches join C° along the
edges and match the prescribed position P and normal N at

@ Springer

A

Fig. 2 Patches from ordinary quads (light) and extraordinary quads
(dark)

(a) quad neighborhood (b) bicubic (c') c-pat'ch

Fig. 3 (a) A quad neighborhood defining a surface piece. (b) A bicu-
bic patch with 4 x 4 control points marked as o. This patch is the output
if the quad is ordinary, and used to determine the shape of a (¢) c-patch
if the quad is extraordinary. A c-patch is defined by 4 x 6 control points
displayed as e. (For analysis, it can alternatively be represented as four
C!-connected triangular pieces of degree 4 with degree-3 outer bound-
aries identical to the bicubic patch boundaries)

each vertex. The separately computed normal patches also
join continuously and interpolate the prescribed normals N
at the vertices. Since the lighting is based on the continuous
normal field defined by the normal patches, an impression
of smoothness is conveyed; only the silhouette betrays the
lack of smoothness in the actual geometry defined by the
geometry patch. The shape of surfaces can be made more
rounded by taking as input the limit points and normals of
Catmull-Clark (PN-lim in Fig. 19). The method of Loop and
Schaefer [10] is very similar to PN-quads. It also generates
one bicubic patch per quad following the shape of Catmull-
Clark surfaces. Since these bicubic patches typically do not
join smoothly, Loop and Schaefer compute two additional
patches whose cross product approximates the normal of the
bicubic patch. As pointed out in [21], these trompe 1’ oeils
represent a simple solution when true smoothness is not
needed. In a comparison to our method, we show in Sect. 5
that the lack of smoothness in [10] can result in visible arti-
facts.

The quincunx split of the quad by the c-patch reminds
of the Zwart—Powell element [17, 22], simplest subdivision
[16] and 4-8 subdivision [20] due to the underlying box-
spline directions.

Parallel smoothing of quad meshes

759

2 The conversion algorithm

Here we give the algorithm for converting the quad mesh
into coefficients that define a smooth surface of low degree.
Analysis of the properties of this new surface type and the
implementation of the algorithm on the GPU follow in the
next sections. Essentially, the algorithm consists of comput-
ing new points near a vertex using Table 1, and, for each
extraordinary quad, additional points according to Table 2
(see Fig. 4). In Sect. 3, we will verify that these new points
define a smooth surface and in Sect. 4, we show how the
two stages naturally map to the vertex shader and geometry
shader stage, respectively, of the current GPU pipeline.

Table 1 Computing control points v, e, f and ¢, the projection of e,
at a vertex of valence n from the mesh points p; of a vertex neigh-
borhood; the subscripts are modulo 2n. By default, o, := (c, + 5 +

(cn +9)(c, + 1))/16, the subdominant eigenvalue of Catmull-Clark
subdivision

fi=@p«+2p2j +2p2j42+ p2j+1)/9
ej=(fj+ fi-1)/2
vi= #H)(nzp* + 23;5(4172,‘ + p2j+1))

ti=v4 Y cos TU e, j=0,1

noy

Table 2 Formulas for the 4 x 3 interior control points that, together
with the vertex control points v' and the tangent control pomts t’ de-

fine a c-patch. See also Figs. 9 and 10. Here ¢ := cos 2—” , sl :=sin 2—”

and superscripts are modulo 4. By default, g, := (Zi:O v+ 3(eO
e’i) +91)/64, the central point of the ordinary patch

1+c (ll+l

bhyy i=bho +)+ 1= C+ (t —v")
+m(f —eh)

by 1= by + 115 (’0 nth 4+ 5= 4 @t =
+ e U =™

b1y = 8 35y, + by — b3l — b5)/16
+ (]| + by = bait — b)) 16

</\/\>
Q\/ X
K
A

vertex neighborhood: Table 1

/\
XKD \
< N / /

C N \
c-patch interior: Table 2

Fig. 4 Vertex neighborhoods with coefficients v’ and e; and c-patch
interiors with coefficients bgl 1 b’m s b’i 12

2.1 Computing the vertex neighborhood

In the first stage, we focus on a vertex neighborhood. A ver-
tex neighborhood consists of a mesh point p, and mesh
points pi, k =0,...,2n — 1 of all quads surrounding p;
(Fig. 5). A vertex v computed according to Table 1 is the
limit point of Catmull-Clark subdivision as explained, for
example, in [7]. For n = 4, this choice is the limit of bicu-
bic subdivision, i.e. B-spline evaluation. The rules for e; and
fj are the standard rules for converting a uniform bicubic
tensor-product B-spline to its Bernstein—Bézier representa-
tion of degree 3 by 3 [4]. The points ¢; are a projection of
e; into a common tangent plane (see e.g. [5]). The default
scale factor oy, is the subdominant eigenvalue of Catmull-
Clark subdivision. We note that for n =4, ej 1o =2v —¢;
and o4 = 1/2 so that the projection leaves the tangent con-
trol points invariant as t; = e;:

2
tj =U+Z(€j_€j+2)=U~|—(€j—v)=€j, forn=4. (1)

2.2 Bicubic patches and c-patches

In the second stage, we gather vertex neighborhoods to con-
struct patches on quads. Combining information from four
vertex neighborhoods as shown in Fig. 6, we can populate a
tensor-product patch g of degree 3 by 3 in Bernstein—Bézier
(Bézier) form [4]:

3 3
3 3
gmvy=§:§:&4;>ﬁa—uﬁ*(»vﬂy—w*4

k=0 ¢=0

The patch is defined by its 16 coefficients or control points
gre. If the quad is ordinary, the formulas of Table 1 make
this patch the Bézier representation of a bicubic spline
in B-spline form. For example, in the notation of Fig. 6,
(8xk0)k=0,.3 = Y, tg, tll, v!). If the quad is extraordinary,
we use the bicubic patch to outline the shape as we replace

€n—1

.fn—l

o

2n—2
P2n—1
Fig. 5 Smoothing the vertex neighborhood according to Table 1. The

center point p, its direct neighbors p>; and diagonal neighbors p ;|
form a vertex neighborhood

@ Springer

760

Y.I. Yeo et al.

L]
\s 1323

22

8

or 11 21 3l

02 12

00 10 20

Q. p
e

0 0

H_\/

Fig. 6 Patch construction. On the left, the indices of the control points
of g are shown. Four vertex neighborhoods with vertices v’ each con-
tribute one sector to assemble the 4 x 4 coefficients of the Bézier

patch g, for example goo = v°, g10 =¢{. g1 = . g0 =v'. g31 =¢}
(we use superscripts to indicate vertices; see also Fig. 9). On the right,

it by a c-patch (Fig. 3(c)). A c-patch has the right degrees of
freedom to cheaply and locally construct a smooth surface.
The c-patch is defined by the 4 x 6 c-coefficients constructed
in Tables 1 and 2:
V', 15 17, boyy, by, biyp, i=0,1,2,3.

By construction, the c-patch and an adjacent tensor-product
patch g have identical boundary curves of degree 3 where
they meet, an important consideration for preventing gaps in
the final GPU implementation.

Alternatively, we can view one c-patch as the union of
four polynomial patches b, i=0,1,2,3 of total degree 4.
A polynomial piece b’ of total degree 4 [4] has the Bézier
form
b' (uy, uz) == @

u1u2(1 up —uy)™.

!
bk(m k|£|

2

k+C+m=4
k. 4,m>0

The 4 x 6 c-coefficients imply the interior control points of
this representation (2) by C! continuity between the trian-
gular pieces: for j =0,1,2,3andi =0, 1,2, 3,

(bé—j,l,j + bli,_Slfj,j)/z;

and the boundary control points b;{ (0 are implied by degree-
raising [4]:

_b6_3> Js 1+] (3)

i
b3—j,0,l+]

o= (g +01) /20 biyei= (0 4307 /4
b640 = Ul+].

Basis functions corresponding to the 24 c-coefficients of the
c-patch can be read off by setting one c-coefficient to one

@ Springer

if extraordinary

»—Or—-

310 220 130

the same four sectors are used to determine a c-patch if the underlying
quad is extraordinary. Note that only a subset of the coefficients of the
four triangular pieces b' is actually computed to define the c-patch.
The full set of coefficients displayed here is only used to analyze the

construction

domain

bod

Fig. 7 The six basis functions of one sector of the c-patch

and all others to zero and then applying (3) and (4) to obtain
the representation (2). Figure 7 shows the six basis functions
of one sector. Two pairs are symmetric.

2.3 Interior c-patch coefficients

To derive the formulas for béll and its symmetric counter-
part b},, note that the formulas must guarantee a smooth
transition between b' and its neighbor patch on an adja-
cent quad, regardless whether the adjacent quad is ordinary
or extraordinary. That is, the formulas are derived to sat-
isfy simultaneously two types of smoothness constraints (see
Sect. 3). By contrast, bi112 is not pinned down by continu-
ity constraints. We could choose each b’in arbitrarily with-
out changing the formal smoothness of the resulting sur-
face. However, we opt for increased smoothness at the cen-
ter of the c-patch and additionally use the freedom to closely
mimic the shape of Catmull-Clark subdivision surfaces, as
we did earlier for vertices. First, we approximately satisfy

Parallel smoothing of quad meshes

761

Fig. 8 Dark lines cover the
control points involved in the
C? constraints (5). The points
on dashed lines are implied by
averaging

four C? constraints across the diagonal boundaries at the
central point b4 by enforcing

0 0 1
1 -1 0 0 by, by — by —4
0 1 —1 0 ||b, 1 by — bl —q
_ 2 P) 3
Ol 8 1 11 bi1y 2| by — bl —4q
— 3 3 0
bi1n by —biy —q

&)

where ¢ := %Z?:O(béu - b§21)~ The perturbation by g
is necessary, since the coefficient matrix of the C? con-
straints is rank deficient. After perturbation, the system can
be solved with the last equation implied by the first three.
We add the constraint that the average of blilz matches
8y 1= g(%, %), the center position of the bicubic patch. Now,
we can solve for b’1 12-1=0,1,2,3 to obtain the formula in
Table 2.

3 Verifying smoothness of the surface

In this technical section we formally verify the following
lemma. For the purpose of the proof, we view the c-patch
in its equivalent representation (2) as four Bézier patches of
total degree 4.

Lemma 1 Tivo adjacent polynomial pieces a and b defined
by the rules of Sect. 2 (Table 1, Table 2, (3), (4)) meet at
least

(i) C? ifa and b correspond to two ordinary quads
(i) C'ifa and b are adjacent pieces of a c-patch
(iii) C! if a and b correspond to two quads, exactly one of
which is ordinary
(iv) with tangent continuity if a and b correspond to two
different extraordinary quads.

Proof (i) If a and b are bicubic patches corresponding to or-
dinary quads, they are part of a bicubic spline with uniform
knots and therefore meet C2. (ii) If @ and b are adjacent
pieces of a c-patch then (3) enforce C! continuity.

For the remaining cases, let b be a triangular piece. Let
u the parameter corresponding to the quad edge between
bago = v°, where u = 0 and the valence is ng and boag = v'

Fig. 9 C' transition between a triangular patch b (fop) and a bicubic
patch a (bottom)

0
tno—l

Fig. 10 G! transition between two triangular patches

where u = 1 and the valence is n; (see Fig. 9 for (iii) and
Fig. 10 for case (iv)). By construction, the common bound-
ary b(u,0) = a(0, u) is a curve of degree 3 with Bézier con-
trol points (v°, tg, tll, v!) so that bicubic patches on ordinary
quads and triangular patches on extraordinary quads match
up exactly.

Denote by 01b the partial derivative of b along its first
parameter—i.e. along the common boundary—and by 0,0
the partial derivative in its second variable. Since b(u,0) =
a(0, u), we have 91b(u, 0) = da(0, u). The partial deriva-
tive in the first variable of a is, similarly, d;a. We will ver-
ify that the following conditions implying tangent continuity
hold:

if one quad is ordinary (case (iii)),

01b(u, 0) =202b(u, 0) + 31a(0, u); (6)
if both quads are extraordinary (case (iv)),

((1 —u)ho + ukl)alb(u, 0) = 02b(u, 0) 4+ 01a(0, u),

X 2
where Ag:=1+¢c, Ay:=1—c', andc’ := cos<—n).

n;
(7N

Both equations, (6) and (7), equate vector-valued polyno-
mials of degree 3 since we write d1b(u, 0) in degree-raised
form. The equations hold if and only if all corresponding
Bézier coefficients are equal on both sides. Off hand, this
means checking four vector-valued equations for each of (6)
and (7). However, in both cases, the setup is symmetric with
respect to reversal of the direction in which the boundary
b(u, 0) is traversed. That means, we need only check the first

@ Springer

762

Y.I. Yeo et al.

two equations (6") and (6”) of (6) and the first two equations
(7") and (7") of (7). We verify these equations by inserting
the formulas of Tables 1 and 2.

To verify (6), the key observation is that ng =n; =4 if
one quad is ordinary. Hence ¢ =c!' =0 and s =s! =1
(cf. Table 2) and t; = ej.. Therefore, for example (cf. Fig. 9)

3 0 + 0
28:6(0,0) =2 - 4(b3o1 —v°) = gZ <¥ _ v0>

= 3(6‘8 + e(l)) — 6v0,
where the factor % stems from raising the degree from 3 to 4;

and the second Bézier coefficient of d1b(u, 0) (in degree-
raised form) and of 20,b(u, 0) are respectively (cf. Fig. 9)

; () —v°) +2(el —€))
3

and

1_,0 0_ .0 0_,0
e —ey ey—UV f —eo)

2-4(br11 — b =8
(b211 — b310) (1 + g 3

Then, comparing the first two Bézier coefficients of 915 (u, 0)
and 202b(u, 0) + 01a(0, u) yields equality and establishes
C! continuity:
3(e) — 1) =3(e) +¢f) — 607 =3(e) —°), (©)
315(0,0)
(€0 —v") +2(el —¢p)
=2(ej —ep) + (e — v°) +3(" — ep) = 3(f° — 7).
(6"

20,b(0,0) d1a(0,0)

The equations for (7) are similar, except that we need to
replace e by ¢; and keep in mind that, by definition,

(11 = %) + (1 =) =280 — 09)

Hence, for example,

3,b(0,0) + 91a(0, 0) = 4(b3o1 — v° + azor — v°)

= %4 2¢%(r) —v°).

The first of the four coefficient equations of (7) then sim-
plifies to

3(1+¢%) (1) —v°)
= 4(b3o1 + azor — 20°)

0, .0 no—=1_ .0
1 t + 1
=3(120_”0+1 : o_vo>

= 3%(200(%) —00) +2(1) — 7). (7

@ Springer

Noting that terms (fo — eg) / (8(s¥ + s!)) in the expansions
of by11 and ap1; cancel, the second coefficient equation is

620 (t] —15) +3x1 (1) — v°)
=12(ba11 + az11 — 2b310)

12.20+¢% , |, o 12:2(1=¢h
=f(11—fo)+f

(1 —°).
7"

It is easy to read off that the equalities hold. So the claim of
smoothness is verified.]

4 GPU implementation

We implemented our scheme in DirectX 10 using the ver-
tex shader to compute vertex neighborhoods according to
Table 1 and the geometry shader primitive triangle with ad-
Jjacency to accumulate the coefficients of the bicubic patch
or compute a c-patch according to Table 2. We implemented
conversion plus rendering in two variants: a 1-pass and a 2-
pass scheme. Bicubic and c-patch are implemented in sepa-
rate shaders.

The 2-pass implementation constructs the patches in the
first pass using the vertex shader and the geometry shader
and evaluates positions and normals in the second pass. Pass
1 streams out only the 4 x 6 coefficients of a c-patch. it does
not stream out the 4 x (4;2) Bézier control points of the
equivalent triangular pieces. The data amplification neces-
sary to evaluate takes place by instancing a (#, v)-grid on the
vertex shader in the second pass. That is, we do not stream
back large data sets after amplification. Position and nor-
mal are computed on the (4, v) domain [0..1]? of the bicu-
bic or of the c-patch (not on any triangular domains). Table 3
lists the input, output and the computations of each pipeline
stage. Figure 11 illustrates this association of computations
and resources. Overall, the 2-pass implementation has small
stream-out, short geometry shader code and minimal ampli-
fication on the geometry shader (see Appendix).

In the 1-pass implementation, the evaluation immediately
follows conversion in the geometry shader, using the geom-
etry shader’s ability to amplify, i.e. output multiple point
primitives for each facet (Fig. 12). While a 1-pass imple-
mentation sounds more efficient than a 2-pass implementa-
tion, DX10 limits data amplification in the geometry shader
so that the maximal evaluation density is 8 x 8 per quad.
Moreover, maximal amplification in the geometry shader
slows the performance. The performance difference between
the two implementations is easily visible when comparing
Tables 4 and 5, with the caveat that we did not spend much
time optimizing the clearly slower 1-pass approach.

Parallel smoothing of quad meshes 763
Table 3 2-Pass conversion: VS = vertex shader, GS = geometry
shader, PS = pixel shader. VS Out of Pass 1 outputs n points f; for
one vertex (hence the subscript) and GS In of Pass 1 retrieves four anut Assembler
points f', each generated by a different vertex of the quad (hence the g /1
superscript) (7] o
2 . P-,n, O i
= Bk
- o | Vertex Shader
Pass 1 Conversion 0
ED V, tn.t1 .fj
VS In Ds N, 0 E,,. Y
VS Use texture lookup to retrieve paj, p2j+1 ® Vit b, « om
Compute v, e;. f;, fo. 11 (Table 1) . S shader] e
VS Out v, to, 11, fj, j=0.n—1 ‘_>_<r
= T _
. . . . e = = =
GS In v 1o, 1y, f1i=0.3 o g R T |
. . Coefficients —— ° sl
GS if ordinary quad a e & o
assemble gy, k, [=0..3 (Fig. 6) o—o— o—=b
else bagot, to, t,
S v wp g 9K
compute b}, ,, bi,,, b}, (Table 2) b211*, D121, b11z
GS Out if ordinary quad, stream out g4, k,/ =0..3 -
else stream out by, 14, 11, bbbl bl 15, i =0..3 g Input Assembler]
Pass 2 Evaluating position and normal ‘—:1 B
& ¥ (u.v) '
VSIn (u, v) = Vertex Shader
A if ordinary quad g’
compute normal and position at (u, v) ﬁ . |
by the tensored de Casteljau’s algorithm ‘: pesition, norms
Compute the remaining Bézier control points (3) =
Compute normal and position at (u, v) ® l color
by de Casteljau’s algorithm adjusted to c-patches
VS Out position, normal Fig. 11 2-pass implementation detailed in Table 3. The first pass con-
verts, the second renders. Note that the geometry shader only computes
PS In position, normal at most 24 coefficients per patch and does not evaluate
PS compute color
PS Out color
5 Results Input Assembler

We compiled and executed the implementation on the lat-
est graphics cards of both major vendors under DirectX10
and tested the performance for several industry-sized mod-
els. Two surface models and models with displacement map-
ping are shown in Figs. 2 and 1 respectively. Table 4 sum-
marizes the performance of the 2-pass algorithm for differ-
ent granularities of evaluation. The (rocket) Frog model, in
particular, provides a challenge due to the large number of
extraordinary patches.

The Frog Party shown in Fig. 18 currently renders at
50 fps for uniform evaluation of nine frogs for N =9, i.e.
on a9 x 9 grid. That is, the implementation converts nine
times 1292 coarse input quads, of which 59% are extraordi-
nary, and renders nearly 1.5 million polygons 50 times per
second. Additionally, our method scales well to higher tes-

= P:, n, o

] \

] I

< Vertex Shader

&

s v, to by i ?
{vr] S w0
= . A s
g Vi, toi by, fi

& TT

5 H

e Geometry Shader T

g H

< 11

o

l position, normal

Pixel Shader

l color

Fig. 12 At present, the 1-pass conversion-and-rendering must place
patch assembly and evaluation on the geometry shader. This is not ef-
ficient

@ Springer

764

Y.I. Yeo et al.

Table 4 Frames per second for some standard test meshes with each
patch evaluated on a grid of size N x N; eqs = percentage of extra-
ordinary quads. Sword and Frog are shown in Fig. 2, Head in Fig. 12
of [11]. For the smallest object, Sword, at low resolution, rendering
rather than evaluation is the bottleneck. The measurements were made
on an NVidia GeForce 8800 GTX graphics card

Mesh (verts, quads, eqs) Frames per second

N=5 9 17 33
Sword (140, 138, 38%) 965 965 965 703
Head (602, 600, 100%) 637 557 376 165
Frog (1308, 1292, 59%) 483 392 226 87

Table S Performance of the 1-pass implementation

Mesh Slower 1-pass implementation

N=2 5 8
Sword 389 96 43
Head 108 34 15
Frog 44 10 4

Table 6 Average deviation from the Catmull-Clark limit surface in
position (parametric distance scaled by local quad size) and normal
(angle) for the examples in Fig. 13

Average Distance to Catmull-Clark
(@) (b) (©

[10]

Position 1.20 1.58 1.67

Normal 2.09 1.94 2.74
c-patch

Position 0.70 0.77 0.80

Normal 1.48 1.64 1.77

sellation levels, since the patch creation time does not in-
crease for larger evaluation grids. On the same hardware,
we measured Bunnell’s efficient implementation (distribu-
tion accompanying [2]) featuring the single frog model, i.e.
1/9th of the work of the Frog Party, running at 44 fps with
three subdivisions (equivalent to tessellation factor N = 9).
That is, GPU smoothing of quad meshes is an order of mag-
nitude faster. Compared to [18], the speedup is even more
dramatic. While the comparison is not among equals since
both [18] and [2] implement recursive Catmull-Clark sub-
division, it is nevertheless fair to observe that the speedup is
at least partially due to our avoiding stream back after am-
plification (data explosion due to refinement).

Figure 13, right, visualizes the approximation to a
densely refined Catmull-Clark mesh. Both geometric dis-
tance, as percent of the local quad size, and normal dis-
tance, in degrees of variation, are measured. Large models

@ Springer

(@) /ﬂ

Geometry pu L
distance Wl 3%
]

1%
Geometry gy 5o
distance Wl 3%

W %

o
1

Normal pg -
angle M 3
I

0% . \ ‘-)
Geometry gy ;: A / Z .
distance Wl 3% \ A | %
W % ~
\ Y D B e

Fig. 13 Comparison to Catmull-Clark. Position (distance) and nor-
mal (angle) difference to the limit surface of Catmull-Clark subdivi-
sion for (left) the scheme in [10] and (right) the c-patch surface (see
also Table 6). Lighter shading means better match. The number of com-
pared samples are (a) 24,578, (b) 73,730, (c) 73,730

and models with a large percentage of regular quads appear
visually indistinguishable when rendered by subdivision or
c-patch smoothing. We therefore chose small, predictable
models with many extraordinary input quads (and without
displacement). Table 6 quantifies and summarizes these dis-
tances. Since we have been asked to compare c-patch sur-
faces to the non-smooth approximation [10], Fig. 13 and
Table 6 juxtapose the measurements. The more subtle effect
of not creating smooth surfaces is evident from Fig. 14.

Parallel smoothing of quad meshes 765

Fig. 14 C° artifacts (top) of [10] at the base of the nostril and arch of ~ Fig. 17 Close-up of the Frog
the eye (straight line). (bottom) c-patch construction for comparison

s

Fig. 15 Real-time displacement on the twisting Sword model.
See [12]

b k Fig. 18 Asynchronous animation of nine Frogs [12]
Despite the lower total degree and internal C' join, the
visual appearance of c-patches is remarkably similar to that
of bicubic patches. In particular, the close-up in Fig. 17 il-
lustrates our observation that c-patches do not create shape
problems compared to a single bicubic patch. As is generally
the recommendation for quad meshes, adjacent high-valent
vertices in the input model should be avoided (see the sin
terms in the denominator of the formulas of Table 2). The

video [12] (see screen shots in Figs. 15, 16, 17, 18) illus-
Fig. 16 Real-time displacement on the twisting Frog model [12] trates real-time displacement and animation.

@ Springer

766

Y.1. Yeo et al.

Fig. 19 Comparison. (Input)
quad mesh, (PN)-quad and
(PN-lim) PN-Quad using
Catmull-Clark limit points and
normals [15], (ACC) [10]
(c-patch) this paper, (CC)
Catmull-Clark subdivision

6 Discussion

@ Springer

Input

PN

PN-
lim

ACC

patch

CC

with complex morphing and displacement. The separation
into vertex and patch construction stages isolates the com-
Smoothing quad meshes on the GPU offers an alternative to ~ putation on arbitrary valences from the final patch construc-
highly refined facet representations transmitted to the GPU tion, simplifying the vertex and geometry shaders. More-
and is preferable for interactive graphics and integration over, the data transfer between passes in the 2-pass conver-

Parallel smoothing of quad meshes

767

sion is low since only 4 x 6 control points are intermittently
generated.

Since we only compute and evaluate in terms of the 24 c-
patch coefficients, the computation of the cubic boundaries
shared by a bicubic and a c-patch is mathematically identi-
cal. An explicit ‘if’-statement in the evaluation guarantees
the exact same ordering of computations since boundary co-
efficients are only computed once, in the vertex shader, ac-
cording to Table 1. That is, there is no pixel drop out or gaps
in the rendered surface. The resulting surface is watertight.

We advertised a 2-pass scheme, since, as we argued, the
DX10 geometry shader is not well suited for data amplifica-
tion and evaluation after conversion. The 1-pass scheme out-
lined in Sect. 4 may become more valuable with the avail-
ability of a dedicated hardware tessellator [8]. Such a tes-
sellator will make amplification more efficient and support
watertight adaptive tessellation (which is why we only dis-
cussed uniform tessellation in Sect. 4). Such a hardware am-
plification will also benefit the 2-pass approach in that the
(4, v) domain tessellation, fed into the second pass will be
replaced by the amplification unit.

Acknowledgements This work benefited from CGAL'’s half-edge
data structure, and used Bay Raitt’s Frog and the ZBrush Sword model.
This work was supported by NSF CCF-0728797.

Appendix: Shader code

The HLSL code will be posted at the authors” web site. The
code below has been edited for readability.

struct InputMeshVertex {
uint n BLENDINDICESO; // valence
uint index : BLENDINDICES1;}; // I—-ring start

struct Sector { // one c—patch sector
float4 bl12;
float4 b211, bl2l;

float4 b300, b210, bl20; };
typedef Sector cPatch[4]; // one c—patch
struct VertexOutput {

uint n : BLENDINDICESI ;
floatd4 v : SV_POSITION ;
float4 t0 : TANGENTO;
floatd t1 : TANGENTO;
float4 f[MAX VALENCE] POSITIONO;

// Vertex Shader

VertexOutput VertexBasedExtyPatchConstruction (
InputMeshVertex input,
uint vID SV_VertexID)

VertexOutput vout;

float4 direct[MAX], // direct neighbors
diag [MAX]; // diagonal neighbors

float4 vLocation; // vertex position

// position (from vertex texture cache)
vLocation = float4 (gVertexLocation.Load(
int3 (vID, gAnimationFrame ,0)).xyz,1);

// Set vertex to Catmull—Clark limit

uint n = input.n;

uint index = input.index;
vout.v = vLocation*n#*n;
[unroll]

for (uint i = 0; i < n; ++i) {

float ftmp = gRinglIndex.Load(
int2 (index+i%x2, 0));
float4 vtmp = gVertexLocation.Load(
int3 ((uint)ftmp, gAnimationFrame ,0));
direct[i] = float4 (vtmp.xyz, 1);
ftmp = gRinglndex.Load(
int3 (index+i*x2+1, 0));
vtmp = gVertexLocation.Load(
int3 ((uint)ftmp, gAnimationFrame ,0));
diag[i] = floatd (vtmp.xyz, 1);
vout.v +4+= 4.0xdirect[i] + diagl[i];
}

vout.v /= (n*(n+5));

// Face points

[unroll]
for (uint i = 0; i < n; ++i) {
uint im = (i+n—1) % n;

vout.f[i] = (4.0/9.0)x vout.v
+ (2.0/9.0)x direct[im]
+ (1.0/9.0)*«(direct[i]+diag[im]);
}

// Two tangents; cCos(n,i)=cos((2xPl/n)xi
vout.t0 = float4 (0.0, 0.0, 0.0, 0.0);
vout.tl = float4 (0.0, 0.0, 0.0, 0.0);
for (uint i = 0; i < n; ++i) {
uint ip = (i + 1) % n;
float4 e = 0.5%x(vout.f[i]+vout.f[ip]);
vout.t0 += cCos(n,i)x*e;
vout.tl += cSin(n,i)x*e;
}
const float ¢ = cCos(n,1);
const float sigma =
(c+5+sqrt ((c+9)x(c+1)))/16;
vout.t0 /= n % sigma;
vout.tl /= n % sigma;
vout.n = input.n;
return vout;

// Geometry Shader

[maxvertexcount (24)]

void FacetBasedExtyPatchConstruction (
triangleadj VertexOutput input[6],
inout PointStream <GS_OUTPUT> Stream ,
uint pID SV_PrimitivelD)

cPatch pat; // c—patch coefficients

// Load index offsets (packed in uint)
uint rot_packed = gOffsetData.Load(

int3 (pID, 0, 0));
uint rot_off[4];
[unroll] // 4 bits encode each rotation
for (uint i = 0; i < 4; ++i)

@ Springer

Y.I. Yeo et al.

rot_off[i] = (rot_packed >> (4xi)) & OxF;

// Compute b300, b210 and bl20

[unroll]

for (uint k = 0; k < 4; ++k) {
const uint km = (k+4—1) % 4;
const uint n = input[k].n;
const uint off = rot_off[k];
const uint offm = (off+(n—1))%n;
pat[k].b300 = input[k].v;
pat[k].b210 = input[k].v

+ input[k].tO*xcCos(n,offm)
+ input[k].tl*cSin(n,offm);
pat[km].bl120 = input[k].v
+ input[k].tO*xcCos(n, off)
+ input[k].tl*cSin(n, off);
}

// Compute b211, bl21 for each sector
(removed——see Table 2)

// Compute bl12 for each sector

[unroll]

for (uint k = 0; k < 4; ++k) {
const uint km = (k+3) % 4;
const uint km2 = (k+2) % 4;
const uint kp = (k+1) % 4;
const uint kp2 = (k+2) % 4;

pat[k].bl12 = b004
+ (3.0/16.0) = (
pat[k].b211 + pat[k].bl21
— pat[kp].b121 — pat[km].b211)
+ (1.0/16.0) * (
pat[kp].b211 + pat[km].bl21
— pat[kp2].b211 — pat[km2].b121);
}

// Stream out the c—patch control points
(removed——straightforward)

References

. Bolz, J., Schroder, P.: Rapid evaluation of Catmull-Clark subdivi-
sion surfaces. In: Web3D ’02: Proceeding of the Seventh Interna-
tional Conference on 3D Web Technology, pp. 11-17. ACM, New
York (2002)

. Bunnell, M.: Adaptive tessellation of subdivision surfaces with
displacement mapping. In: GPU Gems 2: Programming Tech-
niques for High-Performance Graphics and General-Purpose
Computation. Addison-Wesley, Reading (2005). Chap. 7

. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on
arbitrary topological meshes. Comput. Aided Des. 10, 350-355
(1978)

. Farin, G.: Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide. Academic Press, San Diego (1990)

. Gonzalez, C., Peters, J.: Localized hierarchy surface splines.
In: Rossignac, S.S.J. (ed.) ACM Symposium on Interactive 3D
Graphics, pp. 7-15 (1999)

. Guthe, M., Balazs, A., Klein, R.: GPU-based trimming and tes-
sellation of NURBS and T-spline surfaces. ACM Trans. Graph.
24(3), 1016-1023 (2005)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Halstead, M., Kass, M., DeRose, T.: Efficient, fair interpolation
using Catmull-Clark surfaces. In: Proceedings of SIGGRAPH 93,
pp. 35-44 (1993)

Lee, M.: Next generation graphics programming on Xbox
360 (2006). http://download.microsoft.com/download/d/3/0/
d30d58cd-87a2-41d5-bb53-baf560aa2373/next_ generation_
graphics_programming_on_xbox_360.ppt

Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces.
In: Akeley, K. (ed.) Siggraph 2000 Proceedings. Computer Graph-
ics Annual Conference Series, pp. 85-94. ACM/Addison Wesley/-
Longman, New York/Reading/Harlow (2000)

Loop, C., Schaefer, S.: Approximating Catmull-Clark subdivision
surfaces with bicubic patches. ACM Trans. Graph. 27(1), 1-11
(2008)

Ni, T, Yeo, Y., Myles, A., Goel, V., Peters, J.: GPU smoothing
of quad meshes. In: Spagnuolo, M., Cohen-Or, D., Gu, X. (eds.)
IEEE International Conference on Shape Modeling and Applica-
tions, 4-6 June 2008, Stony Brook University, Stony Brook, New
York, pp. 3-10. ACM, New York (2008)

Ni, T, Yeo, Y., Myles, A., Goel, V., Peters, J.: GPU smoothing
of quad meshes (2008). http://www.cise.ufl.edu/research/SurfLab/
08smi

Peters, J.: Patching Catmull-Clark meshes. In: Akeley, K. (ed.)
Siggraph 2000 Proceedings. Computer Graphics Annual Confer-
ence Series, pp. 255-258. ACM/Addison Wesley/Longman, New
York/Reading/Harlow (2000)

Peters, J.: Modifications of PCCM. Technical Report 2001-001,
Dept. CISE, University of Florida (2001)

Peters, J.: PN-quads. Technical Report 2008-421, Dept. CISE,
University of Florida (2008)

Peters, J., Reif, U.: The simplest subdivision scheme for smooth-
ing polyhedra. ACM Trans. Graph. 16(4), 420-431 (1997)
Powell, M.: Piecewise quadratic surface fitting for contour plot-
ting. In: Software for Numerical Mathematics, pp. 253-271. Aca-
demic Press, San Diego (1974)

Shiue, L.-J., Jones, 1., Peters, J.: A real-time GPU subdivision ker-
nel. ACM Trans. Graph. 24(3), 1010-1015 (2005)

Stam, J.: Exact evaluation of Catmull-Clark subdivision sur-
faces at arbitrary parameter values. In: SIGGRAPH, pp. 395-404
(1998)

Velho, L., Zorin, D.: 4-8 subdivision. Comput. Aided Geom. Des.
18(5), 397427 (2001). Special issue on Subdivision Techniques
Vlachos, A., Peters, J., Boyd, C., Mitchell, J.L..: Curved PN trian-
gles. In: 2001, Symposium on Interactive 3D Graphics. Bi-Annual
Conference Series, pp. 159-166. ACM, New York (2001)

Zwart, P.: Multivariate splines with nondegenerate partitions.
SIAM J. Numer. Anal. 10(4), 665-673 (1973)

Young In Yeo is a doctorate student
at University of Florida. He received
his B.Sc. from Yonsei University in
2003 and completed his Masters de-
gree at the Korean Advanced In-
stitute of Science and Technology
(KAIST) in 2005. His research fo-
cuses on geometric modeling and
high quality surface rendering in
real-time.

http://download.microsoft.com/download/d/3/0/d30d58cd-87a2-41d5-bb53-baf560aa2373/next_generation_graphics_programming_on_xbox_360.ppt
http://download.microsoft.com/download/d/3/0/d30d58cd-87a2-41d5-bb53-baf560aa2373/next_generation_graphics_programming_on_xbox_360.ppt
http://download.microsoft.com/download/d/3/0/d30d58cd-87a2-41d5-bb53-baf560aa2373/next_generation_graphics_programming_on_xbox_360.ppt
http://www.cise.ufl.edu/research/SurfLab/08smi
http://www.cise.ufl.edu/research/SurfLab/08smi

Parallel smoothing of quad meshes

769

Tianyun Ni received a Ph.D. at Uni-
versity of Florida in 2008 where
Dr. Jorg Peters was her adviser. At
school her research area was mod-
eling and computing with geome-
try, especially on how to construct
smooth surfaces on the GPU. She
currently works in NVidia’s De-
veloper Technology team to de-
velop new graphics techniques and
help game developers to incorporate
these techniques into their games.
Her publications can be found at
http://www.cise.ufl.edu/~tni.

Ashish Myles started as an under-
graduate at the University of Florida
and barely finished his Ph.D. in
2008. How he manages to tie his
own shoelaces without spraining his
brain is a mystery. Nevertheless, he
is headed for a Postdoc at New York
University where he hopes to write
many more short autobiographical
sketches employing his unsavory
wit to insult his competence.

Vineet Goel Ph.D., is a Fellow
at AMD Graphics Unit. He is a
graduate of University of Central

Florida and University of Roorkee,
| India. He has been an Architect for
the ATI/AMD Radeon GPUs and
Xbox360 for the past 10 years. He
holds 11 patents and has published
15 papers in the graphics related
area.

Jorg Peters is Professor of Com-
puter and Information Sciences at
University of Florida. He is inter-
ested in representing, analyzing and
computing with geometry. To this
end he has developed new tools for
free-form modeling and design in
spline, Bézier, subdivision and im-
plicit representations.

He obtained his Ph.D. in 1990 in
Computer Sciences from the Uni-

P
" versity of Wisconsin, Carl de Boor
advisor. In 1991 and 1992, he held

positions at the IBM T.J. Watson
Research Center and Rensselaer
Polytechnic Institute, before moving to the computer science depart-
ment of Purdue University. In 1994, he received a National Young
Investigator Award. He was tenured at Purdue University in 1997 and
moved to the University of Florida in 1998 where he became Full Pro-
fessor.

He serves as Associate Editor for the journals CAGD, APNUM and
ACM ToG and on various program committees as well as chair of the
SIAM interest group on geometric design. His students have built such
useful tools as BezierView and TIPS.

@ Springer

http://www.cise.ufl.edu/~tni

	Parallel smoothing of quad meshes
	Abstract
	Introduction and contribution
	Some alternative mesh smoothing techniques on the GPU

	The conversion algorithm
	Computing the vertex neighborhood
	Bicubic patches and c-patches
	Interior c-patch coefficients

	Verifying smoothness of the surface
	GPU implementation
	Results
	Discussion
	Acknowledgements
	Appendix: Shader code
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

