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Abstract This paper presents a novel approach to stabilize
video sequences based on a 3D perspective camera model.
Compared to previous methods which are based on simpli-
fied models, our stabilization system can work in situations
where significant depth variations exist in the scenes and the
camera undergoes large translational movement. We formu-
late the stabilization problem as a quadratic cost function on
smoothness and similarity constraints. This allows us to pre-
cisely control the smoothness by solving a sparse linear sys-
tem of equations. By taking advantage of the sparseness, our
optimization process is very efficient. Instead of recovering
dense depths, we use approximate geometry representation
and analyze the resulting warping errors. We show that by
appropriately constraining warping error, visually plausible
results can be achieved even using planar structures. A va-
riety of experiments have been implemented, which demon-
strates the robustness and efficiency of our approach.

G. Zhang · W. Hua · X. Qin (�) · Y. Shao · H. Bao
State Lab of CAD&CG, Zhejiang University, Zhejiang, People’s
Republic of China
e-mail: xyqin@cad.zju.edu.cn

H. Bao (�)
e-mail: bao@cad.zju.edu.cn

G. Zhang
e-mail: zhangguofeng@cad.zju.edu.cn

W. Hua
e-mail: huawei@cad.zju.edu.cn

Y. Shao
e-mail: shaoyuanlong@cad.zju.edu.cn

X. Qin
School of Computer Science & Technology, Shandong University,
Jinan, People’s Republic of China

Keywords Video stabilization · Structure from motion ·
Optimization · View warping · Warping error

1 Introduction

The goal of video stabilization is to remove annoying shaky
motion from a video sequence. It plays an important role in
many applications, such as video compression, video edit-
ing, background estimation, and moving objects detection.

In general, video stabilization is made up of three stages:
motion estimation, filtering and compensation [15]. Motion
estimation is to select what kind of motion model and how
to estimate the motion, while motion filtering is to eliminate
undesirable image motion caused by jittering. Compensa-
tion is carried out by image re-sampling or view warping
operations, usually amounting to 2D affine or homography
transformations.

Essentially, video stabilization is to eliminate the un-
desirable camera motion in the video caused by hand-
held or mechanical vibration. Traditional approaches em-
ploy simplified models (e.g. affine model or homography
model [8, 10, 13]) to estimate 2D global motion of images.
Homography model is appropriate if the video scene under-
goes planar perspective transformation, e.g. planar scenes
with arbitrary camera motion, or arbitrary scenes with fixed
camera location. Conditions of affine models are even more
strict. However, these methods are too strict to hold on for
general video sequences because they will result in large er-
rors if significant depth variations exist in the scenes and
the camera undergoes large translational movement. Buehler
et al. [4] handled this problem from image-based rendering
standpoint based on projective reconstruction of video se-
quences and upgrading them to a quasi-affine model, and
then smooth the sequences via smoothing feature points.
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Some methods [5, 24] were proposed to smooth the video
sequences by compensating 3D rotation, which can be com-
pensated without the necessity of recovering depth informa-
tion. Zhu et al. [27] analyzed possible motion patterns and
proposed a 2.5D motion model that requires user interaction
to choose the dominant character of the motion in the video
sequence being analyzed. However, this method cannot deal
with general movement. The estimation of general 3D per-
spective camera motion is the classical structure from mo-
tion (SFM) problem [7, 9, 18, 25]. As an area of endeavor,
SFM problem has reached a degree of maturity with sev-
eral commercial offerings [1, 19]. In our implementation,
we employ the method proposed in [25].

Several filtering methods [8, 10, 13, 14, 27] have been
proposed to reduce unintentional camera motion with re-
spect to scenes while preserving the dominant, intentional
camera motion. As we know, missing image areas will
appear after stabilization by motion compensation. How-
ever, nearly all these previous methods did not discuss how
to control the tradeoff between missing image areas and
smoothness. Recently, Pilu [17] studied this problem and
used the Viterbi method to solve the most stable sequence
allowed by the size of the output window. However, this
method is recursive and does not give a closed-form solu-
tion. Matsushita et al. [13] proposed a motion in-painting
approach to fill in the missing image areas. In contrast, we
formulate the stabilization problem as a quadratic cost func-
tion on smoothness and similarity constraints. This allows
us to precisely control the smoothness by solving a sparse
linear system of equations.

In compensation stage, original frames should be warped
to obtain motion-compensated frames. However, view warp-
ing without accurate geometry information will introduce
warping error, which may result in serious artifacts. With
depth maps, some methods such as 3D warping [12] and
layered-depth images [20] can render new views by project-
ing the pixels of the nearby points of view to their proper
3D locations and re-projecting them onto a new image. Re-
cently, Bhat et al. [3] proposed to stabilize video by smooth-
ing out the original camera path and re-rendering the scene
as seen from the new camera path with recovered dense
depth maps. Unfortunately, obtaining dense depth informa-
tion from real images is hard even for the state-of-the-art
vision algorithms. Snavely et al. [21], on the other hand, pro-
duced 3D meshes by triangulating sparse point clouds, and
rendered each mesh with texture map to synthesize a new
view. However, missing geometry and outlying points can
sometimes cause distracting artifacts.

These limitations and practical demands motivated us to
develop an effective method, which does not involve com-
plex dense depths recovery, but can still obtain visually plau-
sible stabilized results. In order to achieve this goal, we
make an in-depth analysis of the warping error caused by

geometry approximation. Our experiments show that even
using planar structure to approximate scene geometry, visu-
ally plausible results can be achieved, by constraining the
warping error to achieve optimal smoothness results and
avoid the distortion artifacts. In order to achieve optimal
smoothness, we formulate the stabilization problem as a
quadratic cost function on smoothness and similarity con-
straints. By exploiting the sparseness of the linear system,
our optimization process is very efficient and fast.

The rest of this paper is organized as follows. Section 2
gives an overview of our method, and introduces the pro-
posed cost function for video stabilization as well as the op-
timization method. We elaborate our view warping method
and make an analysis of warping error in Sect. 3. Experi-
mental results are given in Sect. 4. Finally, we conclude the
whole paper.

2 Our approach

2.1 Overview

We begin the description with the original video sequence
VO = {I (oi)|i = 1, . . . , n}, where oi is the ith original cam-
era, I (oi) is its corresponding image, and O is the se-
quence of original cameras. We aim to obtain its motion-
compensated sequence VC = {I (ci)|i = 1, . . . , n}, where ci

is the ith compensated camera, and C is its sequence. Our
algorithm consists of the following three major steps:

Step 1 For each original frame I (oi), recover the extrin-
sic and intrinsic parameters of the corresponding original
camera oi in the set O = {oi |i = 1, . . . , n}.

Step 2 Solve the stabilized camera set C = {ci |i = 1, . . . , n}.
Step 3 For every i = 1, . . . , n, perform view warping oper-

ations to obtain motion-compensated frames:

I (oi) → I (ci), i = 1, . . . , n,

where the output frames VC = {I (ci)|i = 1, . . . , n} form the
resultant motion-compensated video sequence.

The first step is the SFM problem, which outputs the
recovered camera motion parameters with sparse 3D fea-
ture points. In the second step, the stabilized camera mo-
tion parameters can be achieved, by solving a quadratic cost
function on smoothness and similarity constraints. In the
third step, we employ view warping to obtain the motion-
compensated video sequence.

2.2 Camera motion estimation

Our automatic feature tracking algorithm is based upon
SIFT algorithm [11] for its reliable performance even in
wide-baseline matching case. We extract SIFT features from
each frame of the input video sequence and match the
features frame by frame. Corresponding features are con-
strained according to the epipolar geometry theory [26]. We
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use RANSAC algorithm [6] to find a set of inliers that have
consistent epipolar geometry. The matched feature points
constitute the feature tracks. Then we use the SFM method
proposed in [25] to recover the camera motion parameters
from the given video sequence. For completeness we briefly
summarize the algorithm as follows.

As we know, structure and motion estimation with
longer tracks is more reliable and robust than with short
tracks [7, 25]. Let N be the minimum track length we re-
quire. Then we select the tracks not shorter than N as su-
perior tracks for reconstruction. And we use the interval
(N − 1)/2 to select the key frames to ensure that all su-
perior tracks stride over at least two key frames. Then we
initialize the projective reconstruction from the reference
triple key frames according to the criteria proposed in [25].
The projective reconstruction is upgraded to a metric frame-
work at an appropriate moment through self-calibration. For
each newly added frame, the new camera parameters and 3D
points are initialized, and existing structure and motion are
refined. Finally, the whole structure and motion are refined
through bundle adjustment [23].

2.3 The cost function for video stabilization

Previous approaches usually employ classical filter algo-
rithms (e.g. Gaussian filtering, Kalman filtering, time aver-
aging, etc.), which is difficult to precisely control the trade-
off between missing image areas and smoothness. We adopt
an optimization process to determine C by minimizing a
cost function on smoothness and similarity constraints. Es-
sentially, image jittering is caused by the shaky motion of a
camera. Therefore, if we can smooth the camera motion, im-
age jittering can be removed. At the same time, the motion-
compensated sequence should be similar to the original se-
quence, in order to make missing areas small. Therefore,
each term is separated into two parts, which are smoothness
cost and similarity cost. We use subscripts m and s to distin-
guish smoothness and similarity, and superscripts c and o to
indicate compensated and original parameters, respectively.

The camera motion can be decomposed into rotation,
translation, and zooming components. To ensure the visual
smoothness of the stabilized video, the rotational, trans-
lational and zooming acceleration should be minimized.
Therefore, we respectively define the rotational smoothness
term EΘm, zooming smoothness term Ef m, and transla-
tional smoothness term Etm. The formulations are given as
the following:

EΘm =
∑

1≤i≤n−2

∥∥Θc
i − 2Θc

i+1 + Θc
i+2

∥∥2
,

Ef m =
∑

1≤i≤n−2

∥∥f c
i − 2f c

i+1 + f c
i+2

∥∥2
, (1)

Etm =
∑

1≤i≤n−2

∥∥tci − 2tc
i+1

+ tci+2

∥∥2
,

where Θ denotes the rotational vector expressed by Euler
angles, f denotes the focal length, and t denotes the trans-
lational vector.

Similarity constraints require that the warped views
should look similar to the original ones and they share large
common scene region. Therefore, the camera parameters of
the original frames should be as close to those of the warped
frames as possible. Our similarity terms are simply given as
follows:

EΘs =
∑

1≤i≤n

∥∥Θc
i − Θo

i

∥∥2
,

Ef s =
∑

1≤i≤n

∥∥f c
i − f o

i

∥∥2
, (2)

Ets =
∑

1≤i≤n

∥∥tci − toi
∥∥2

.

Finally, the cost functions respectively corresponding to
rotational, zooming and translational components are de-
fined as:

EΘ = ω2
ΘmEΘm + ω2

ΘsEΘs,

Ef = ω2
f mEf m + ω2

f sEf s, (3)

Et = ω2
tmEtm + ω2

tsEts ,

where ωΘm, ωf m, ωtm, ωΘs , ωf s , ωts are weights of the
cost terms, and the square terms are for convenience of lin-
ear equations in (4). We should minimize (EΘ + Ef + Et)

to obtain the target sequence. Since the rotation, focal length
and translation are independent of each other, we can min-
imize EΘ , Ef and Et respectively. It can speed up compu-
tation with less memory requirement. Sequentially, without
loss of generality, we can set ωΘs = 1, ωf s = 1, ωts = 1.

We mainly use ωΘm and ωf m to control smoothness
since human observers are much more sensitive to rotational
vibrations, and only camera rotation and zooming can be
compensated without the necessity of recovering depth in-
formation. Usually ωΘm = ωf m = 100 can obtain extremely
smooth results. Specifically, Ef can be ignored if the focal
length is constant.

For translation, since we do not have dense depth in-
formation, any kind of warping methods for compensating
the translation may result in warping error, which eventu-
ally causes image jittering. Therefore, the tradeoff between
translational smoothness and warping error; i.e., the trans-
lational smoothness weight ωtm should be carefully set. We
will discuss view warping and analyze warping error in the
next section.

2.4 Optimization

The cost functions in (4) are quadratic and independent.
Therefore, optimizing them is equal to solving the following
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linear equation arrays for rotation, focal length, and transla-
tion, respectively:

{
ωΘm

(
Θc

i − 2Θc
i+1 + Θc

i+2

) = 0, i = 1, . . . , n − 2,

ωΘs

(
Θc

i − Θo
i

) = 0, i = 1, . . . , n,

{
ωf m

(
f c

i − 2f c
i+1 + f c

i+2

) = 0, i = 1, . . . , n − 2,

ωf s

(
f c

i − f o
i

) = 0, i = 1, . . . , n,

{
ωtm

(
tci − 2tci+1 + tci+2

) = 0, i = 1, . . . , n − 2,

ωts
(
tci − toi

) = 0, i = 1, . . . , n.

(4)

For n frames, the number of equations of each array is
6n − 6, 2n − 2, and 6n − 6 for the components of rotation,
focal length, and translation, respectively. Without loss of
generality, here we only consider the optimization of the fo-
cal length component. If we denote

X = [
f c

1 , f c
2 , . . . , f c

n

]�
,

b = [
0, . . . ,0,ωf sf

o
1 , . . . ,ωf sf

o
n

]
,

then the corresponding equation array can be expressed as
AX = b. By applying the least square method, its solution
is:

X = (
A�A

)−1
A�b.

If n is large, the computation is very time-consuming. How-
ever, we find that although A is a (2n − 2) × n matrix, it
has only 5n − 6 non-zero elements, which means that both
A and A�A are highly sparse. Therefore, we can exploit the
sparseness to speed up the computation. Here, we propose
a smart method to implement A�A by taking advantage of
sparseness efficiently.

Generally, for any m × n matrix A = (aij ), we have:

A�A =
∑

i=1,...,m

A�
i Ai

=
∑

i=1,...,m

⎛

⎜⎜⎝

ai1

ai2

. . .

ain

⎞

⎟⎟⎠ (ai1 ai2 . . . ain). (5)

Here Ai denotes the ith row vector of A. If we store only the
non-zero elements of Ai , then A�

i Ai computes only the mul-
tiplication of non-zero elements to eliminate all the redun-
dancy of the zero computation. Therefore, we have chosen
to represent sparse matrices using Compressed Row Stor-
age (CRS) format [2]. The CRS format is a general for-
mat which makes no assumptions about the sparsity struc-
ture of the matrix and does not store any unnecessary ele-
ments. The additional cost is to search index in sparse ma-
trix A�A due to the compressed structure. We denote NA

Table 1 Efficiency examination of our optimization algorithm

Frame number Parameter number Calc. time (seconds)

11 77 0.015

61 427 0.093

101 707 0.141

290 2030 0.452

521 3647 0.860

and Nr as the average number of non-zero elements in a
row of A and A�A, respectively. We can employ a balanced
binary search tree for quick searching. In our implementa-
tion, we directly use C++ STL map class, whose complexity
is O(log2 Nr). Consequently, the total cost of A�A opera-
tion is O(mN2

A log2 Nr). Then we can use a sparse linear
equation solver to solve it. In our implementation, we adopt
the TAUCS Library [22] to solve the sparse linear systems.
Table 1 shows the running time of our optimization algo-
rithm. The computation cost is nearly linear to the number
of frames being processed. The total computation time for
521 frames is less than one second, which proves the effi-
ciency of our optimization method.

3 View warping and warping error

As we know, it is still not robust to obtain dense depth
maps or sparse point clouds with existing algorithms. There-
fore, we try other ways to sidestep this problem. Warp-
ing without accurate geometry information will introduce
warping errors, which may cause image jittering or other
distracting artifacts. In this section, we make an in-depth
analysis of the warping error caused by using planar ap-
proximation. We have experimented with two planar warp-
ing techniques: slant planar impostors and optimal constant
depth (i.e. fronto-parallel plane), constraining warping error
in two different ways.

3.1 Warping error

Warping error can be measured by the difference between
the warped image and the desired accurate image. Consider
a 2D point xp on the original image, and its corresponding
3D location Xp . We define warping error as the distance be-
tween the warped point Hxp and xc

p ∼ Kc(RcXp + tc) on
the desired image:

eW
p = ∥∥Hxp − xc

p

∥∥, (6)

where H is a 3 × 3 matrix (i.e. homography ). Kc, Rc and
tc are the motion-compensated camera parameters.

For previous approaches using affine or homography
models, constraining warping error is difficult, since it is
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hard to formulate the accurate target images due to the lack
of the information of accurate camera parameters and 3D
geometry.

3.2 View warping with slant planar impostors

If scenes are roughly planar, we can estimate the planar
transform (or homography) Hi by minimizing the following
function:

min
∑

j

∥∥Hixij − Kc
i

(
Rc

i Xj + tci
)∥∥2

, (7)

where Kc
i , Rc

i and tci are the intrinsic matrix, rotation matrix
and translation vector of the ith warped frame, respectively,
xij is the 2D image position of the j th feature point on the
ith original frame, and Xj is its corresponding 3D location.

The goal of this method is to minimize the total warping
error of all the feature points, and this method works well
in planar scenes. However, if the scenes deviate from planar
structure, it may cause visible image distortions, as demon-
strated in Fig. 1 and the supplementary video.

3.3 View warping with optimal constant depth

Suppose that the scene in one frame lies in a plane which is
perpendicular to the viewing direction (i.e. constant depth).
With the given camera parameters, we can project each pixel
to its corresponding 3D location and sequently re-project it
onto the target view. Similarly to the warping with slant pla-
nar impostor, this warping is also a planar transformation
and can be represented by a homography. The optimal depth
of this plane is zc = 2(z−1

min + z−1
max)

−1 (see Appendix for the
detail), where [zmin, zmax] is the depth range. In step 1, we
can obtain a set of spare 3D feature points. According to the
depth distribution of these features, we can reliably estimate
zmin and zmax.

Although the total warping error is a little larger than the
slant planar impostors, the resulting artifacts are usually less
objectionable, perhaps because we are much more sensitive
to seeing unnatural image distortions and the optimal con-
stant depth method does not cause this annoying artifact.
Therefore, we prefer to use it rather than planar impostors
as default for view warping.

3.4 Warping error analysis

Warping error also results in visual jittering and therefore
should be contained in the measurement of video jittering.
By making an analysis of the warping error, we can get the
solution of optimally setting the weights ωtm and ωts .

For the ith frame, its original translation is toi , and its
compensated translation is tci . Therefore, the changing trans-
lation vector t = (tx, ty, tz) can be computed by t = tci − toi .

For point p, its 3D homogeneous coordinate is denoted as
(x, y,1,1/z), where z is its depth value. If we use zc to es-
timate its depth, the warping error will be (see Appendix for
the detail):

eW = f

(
1

z
− 1

zc

)
(tx − xtz, ty − ytz)

�. (8)

Then we have:

∥∥eW
∥∥ = f

∣∣∣∣
1

z
− 1

zc

∣∣∣∣
√

(tx − xtz)2 + (ty − ytz)2. (9)

Because the camera focal angle is usually small (typically
less than 35 degrees) and most interesting points are close
to the image center (i.e. x and y is small), so, for convenient
computation, we approximate it as:

∥∥eW
∥∥ ≈ f

∣∣∣∣
1

z
− 1

zc

∣∣∣∣ · ‖t‖ = f

∣∣∣∣
1

z
− 1

zc

∣∣∣∣
∥∥tci − toi

∥∥. (10)

Another part of video jittering results from the vibration
of the compensated translation. For a point p, its image po-
sition in the compensated image i is xc

i , and its image posi-
tion in the compensated image i + 1 is xc

i+1. Then the dis-
placement dc can be defined as dc = xc

i+1 − xc
i . If we de-

note t′i = tci+1 − tci , we have dc = f
z
(t′x −xt′z, t′y −yt′z)�.

In order to minimize jittering, the displacement needs to be

constant, i.e. (dc)′ = ∂dc

∂i
= 0. Denoting a = ∂t′ci

∂i
= ∂tic

2

∂i2 , i.e.
the second derivative of translation, we have:

(
dc

)′ = f

z
(ax − xaz, ay − yaz)

�, (11)

where ax , ay and az are the three components of the vec-
tor a.

Similarly to (10), for a = tci−1 − 2tci + tci+1, we have:

∥∥(
dc

)′∥∥ ≈ f
1

z
‖a‖ = f

1

z

∥∥tci−1 − 2tci + tci+1

∥∥. (12)

In order to constrain the jittering, we should minimize
both ‖eW‖2 and ‖(dc)′‖2. Then the cost function can be for-
mulated as:

Ejit =
(

1

z

)2∥∥tci−1 − 2tci + tci+1

∥∥2 +
(

1

z
− 1

zc

)2∥∥tci − toi
∥∥2

.

(13)

When weight ratio ωtm : ωts = z−1 : |z−1 − z−1
c |, the cost

function Ejit is equal to the cost function Et. In this case,
the solution not only minimizes Et but also Ejit . That is, the
best smoothness effect can be achieved.

If z is close to zmin (or zmax), the corresponding opti-
mal value is close to z−1

min : |z−1
min − zc

−1| (or z−1
max : |z−1

max −
zc

−1|). Especially under the optimal constant depth zc =
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2(z−1
min + z−1

max)
−1, they become 2zmin/(zmax − zmin) and

2zmax/(zmax − zmin), respectively. Considering that z is dis-
tributed in [zmin, zmax], the optimal ωtm : ωts can be com-
puted by averaging them as follows:

(ωtm : ωts)opt = 2zmin/(zmax − zmin) + 2zmax/(zmax − zmin)

2
= (zmax + zmin)/(zmax − zmin), (14)

which becomes 1 if zmax 	 zmin. Therefore, if zmin and zmax

are unknown, we usually set ωtm : ωts = 1 as the default
in (4).

4 Results

We have tested our approach with a variety of video se-
quences taken by a hand-held video camera. All experiments
are carried out on a PC with Intel Pentium IV 2.4 GHz CPU
with 1 GB memory. Appealing results are obtained in our
experiments.

The current processing speed of our SFM step is rela-
tive slow, which typically takes about two minutes to process
100 frames. There is a lot of room for improvement in our
unoptimized research code since we employ a standard SFM
algorithm, whose running time was not our major concern
in this paper. Recently, Nistér [16] proposed a fast SFM
method for video with real-time performance. It would be
especially beneficial to our system. Our stabilization opti-
mization step is quite quick, which only takes about 0.14
seconds for 100 frames (Table 1). Our view warping can
perform near real-time (about 0.1 second per frame with
640 × 480 resolution).

The evaluation and comparison of video stabilization al-
gorithms is a difficult task, since there is no ground truth
available for real sequences and the standard of evaluation is
also difficult to formulate. Especially, our method employs a
3D perspective camera model, and previous approaches em-
ploy affine/homography models. Perhaps, perceptual judg-
ment of stabilization is the best option to evaluate video
stabilization algorithms aimed at the human observer. For
comparison, we also implement the stabilization method
proposed in [13] with both affine and homography motion
models. The radius of Gaussian filtering range is 10 frames
(i.e. k = 10 in [13]). The algorithms are shown in Table 2,

Table 2 Stabilization algorithms

Algorithm Model Filtering Compensation

1 affine Gaussian affine

2 homography Gaussian homography

3 3D camera linear opt. opt. const. depth

4 3D camera linear opt. planar impostors

Table 3 Smoothness evaluation on the four examples shown in this
paper. A small value indicates that the stabilized result is more smooth

Smoothness Evaluation Algorithm

1 2 3 4

Example A 2.37 2.39 2.02 1.97

Example B 1.01 0.99 0.59 0.57

Example C 1.21 1.20 1.23 1.16

Example D 5.10 5.15 3.39 2.58

where the algorithms 3 and 4 are our algorithms with differ-
ent warping strategies, i.e. optimal constant depth and slant
planar impostors, respectively.

We selected four video sequences (which we call A, B,
C and D) and 7 persons to perform a user test. For each ex-
ample, there are four stabilization results obtained by four
different algorithms (shown in Table 2). Each user indepen-
dently evaluates the stabilized results. Except the example
C for which four algorithms produce comparable results, all
users consider the effects with algorithms 3 and 4 signifi-
cantly outperform those with other two algorithms. In or-
der to quantitatively evaluate the stabilized results, we mea-
sured the smoothness of the tracked feature points in the sta-
bilized sequences by computing the average of the second-
order differentials of the trajectories of all feature points, i.e.
‖2xt − xt−1 − xt+1‖. Table 3 reports the detailed statistics.
Again, the smoothness errors with algorithms 3 and 4 are
much smaller than those with their counterparts, for all ex-
amples except the example C. This is actually in accordance
with the user study. The reason is that most video sequences
contain large camera translations and significant depth vari-
ations in the scenes. It should be noted that a 2D affine or ho-
mography model works well in many examples in which the
scenes undergo planar perspective transformations. In these
cases, our stabilized results are comparable with results by
previous methods.

In order to illustrate obvious differences of view warp-
ing with optimal constant depth and slant planar impostors,
we generate a simulation sequence. The reason is that real
videos usually do not contain exaggerated shaky transla-
tions. In addition, exaggerated shaky motion may cause se-
rious motion blur, which is difficult for tracking. We con-
struct a scene which contains two planes. Figure 1 shows
the different results employing slant planar impostors and
optimal constant depth with different cost weights, in which
the depth of the front one is 100, and that of the back one
is 300. The sequence of translation which is recovered from
a real video sequence is shaky, and is smoothed with two
different cost weights ωtm = 2 and ωtm = 100 (ωΘm = 100,
the focal length is constant), as shown in Fig. 1(a). As can be
seen, if wtm is set larger, the compensated translational pa-
rameters get smoother (the curves get smoother). However,
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Fig. 1 The comparison of view warping in two different ways with
different cost weights. (a) The original translational motion parameters
and stabilized ones for the simulation sequence. (b) The comparison

of the stabilized results of view warping in two different ways (optimal
constant depth and slant planar impostors), with different cost weights

due to the warping error, it does not mean that the compen-
sated video will certainly become more stable. Figure 1(b)
shows the motion-compensated frames, by optimal constant
depth and slant planar impostors with different cost weights.
The optimal value of ωtm is 2 in this sequence according
to (14); larger values cannot obtain smoother result. On the
contrary, they can cause larger warping errors and unnatural
artifacts (far objects become very shaky, etc.), as demon-
strated in the supplementary video. It should be noted that
view warping with slant planar impostors causes obvious
image distortions in the case of large warping error, whereas
the result of view warping with optimal constant depth is
much more natural. However, if the scene can be dominated
by a slant plane, view warping with slant planar impostors
will obtain more accurate result. Figure 2 shows an example
for a simulated world consisting of a single inclined plane
under similar motions. We set the cost weights ωtm = 100,
ωΘm = 1000 (focal length is constant). Since the scene is a
single slant plane, it can be exactly represented by plane im-
postors. Therefore, for this example, view warping with pla-
nar impostors can obtain the best result, without introducing
warping error (Fig. 2(c)). In contrast, view warping with op-
timal constant depth will cause warping error (as shown in
Fig. 2, (b) and (d)), so that the jittering cannot be fully elim-
inated.

We examine four real sequences with various scenes and
camera motion taken by a hand-held camera. All these se-
quences contain lots of vibrations and depth variation. In
these examples, the weights are all set as ωΘm = ωf m = 100
and ωtm = 1, if without mentioning. Since human beings are
much more sensitive to distracting effect in video sequences
than in still images, please refer to the accompanying videos
for the detail effects. In order to demonstrate the sequence
effects of smoothness in still images, we mark all the su-
perior tracks, where the tracks are showed by white lines,
their image positions in the current frame are indicated by

Fig. 2 A simulated example consisting of a single inclined plane.
(a) The original translational frame. (b) The compensated frame by
warping with optimal constant depth. (c) The compensated frame by
warping with planar impostors. (d) The difference image of (b) and (c).
Due to the warping error, (b) has a significant displacement compared
with (c)

green crosses, and the positions in neighbor frames by red
crosses.

As shown in Fig. 3, sequence A consists of complex
scene with tree leaves in the front and a building in the dis-
tance. From Fig. 3(d), we notice that the building compen-
sated by affine and homography models is slanted in differ-
ent ways within 0.5 seconds, which results in obvious jit-
tering in target video sequences. Both our methods demon-
strate very stable effects in this sequence.

Sequence B was taken in our campus, and is a roughly
planar structure. Only the track line and the current feature
points are marked in Fig. 4. From Fig. 4(a), the routes of the
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Fig. 3 Stabilization of the sequence A. (a) The recovered rotational
parameters and the stabilized ones. (b) One of the original frames
with the recovered camera trajectory. (c)Three frames of stabilized

sequences with four algorithms (refer to Table 2). (d) The magnified
snapshots of (c) around the building area

Fig. 4 The stabilization of the sequence B with different algorithms: (a) shows the original frame; (b), (c) and (d) show one stabilized frame of
the algorithms 1, 2, and 4, respectively

feature points in the original sequence are very wandering,
which results in very dense white line folding since the cam-
era motion is unstable. The stabilized feature tracks based on
affine model or homography model are still a little wander-

ing, while our model method demonstrates a very smooth
route. Carefully comparing the video sequences of Fig. 4,
(b) and (c), we can find that homography model is prior to
affine model in planar scenes. This is because that homog-
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Fig. 5 The results of the sequence C: (a) shows the recovered focal length. (b) An original frame with feature tracks. (c) The stabilized image
with feature tracks applying algorithm 3

Fig. 6 The results of the sequence D: (a) shows the recovered camera trajectory; (b) shows one original frame; and (c), (d), (e), and (f) show the
different stabilization results with algorithms 1, 2, 3, and 4, respectively

raphy model can accurately describe the image motion in
planar scenes.

Our camera tracking method can handle variable focal
lengths in a zooming sequence. Our stabilization algorithm
demonstrates robust effects in video sequence C, in which
the focal length varies in large range as shown in Fig. 5(a),
while an original and its motion compensated frame are
shown in Fig. 5, (b) and (c), respectively, with the illustrative
feature tracks.

Sequence D is a mountain area (downloaded from http://
iss.bu.edu/litvin/stabilization/). From the trajectory of video
camera shown in Fig. 6(a), we can find that the transla-
tion distances are very uneven. Both affine and homogra-

phy models are obviously distorted, especially in the end of
the sequence where some objects are very close to the cam-
era. Notice the left peak area in Fig. 6, (c) and (d), where
the feature points are not proportionally spaced in the se-
quence, while our method is much better as shown in Fig. 6,
(e) and (f). However, for our methods, the result of apply-
ing optimal constant depth is appreciably better than slant
planar impostors. The reason is that the scenes deviate from
planar, especially in the later part of the sequence. We com-
pare the results of different ωΘm in Fig. 7(b), where the
larger value produces smoother results but larger missing re-
gions.

http://iss.bu.edu/litvin/stabilization/
http://iss.bu.edu/litvin/stabilization/
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Fig. 7 Results with different cost weights. (a) The recovered and stabilized rotational motion parameters for sequence D with different cost
weights. (b) The original and motion-compensated frames. The middle column: ωΘm = 5, ωtm = 1. The right column: ωΘm = 100, ωtm = 1

5 Conclusion and discussion

We have proposed a novel method to stabilize video se-
quences based on a 3D perspective camera model without
recovering dense depth maps. The video stability is opti-
mized by balancing the smoothness and similarity, which
is related to the rotation, zooming, and translation compo-
nents with suitable weights. Based on a 3D perspective cam-
era model, the depth relative motion, i.e. camera translation,
and depth irrelative motion, i.e. camera rotation and zoom-
ing, are separated. Consequently, the unwanted motion, es-
pecially camera rotation and zooming, can be smoothed effi-
ciently without introducing warping error, and translation is
also smoothed under control by setting optimal weight. By
taking advantage of the sparseness of the linear system, our
optimization process is very efficient.

We have experimented with two warping methods with
planar geometry approximation, i.e. slant planar impostors
and optimal constant depth method, which have obvious
advantages over traditional stabilization methods, such as
employing affine or homography models. Our stabilization
method can produce high quality stabilized video sequences,
and is very useful for some high-end applications, such as
film-making and TV.

Our approach employs a 3D perspective camera model,
and thus highly relies on the accuracy of the Structure-from-
Motion (SFM) results. Till now obtaining accurate camera
motion parameters for long video sequences is still quite
challenging [7], our approach may not work well if the SFM
algorithm fails to get precise results. We expect to address
this problem in our future work.
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Appendix

For pixel p in the ith frame, its 3D location is (xz, yz, z)�
in the coordinate system of the original camera, where
z is its depth value. So its homogeneous coordinate is
(x, y,1,1/z)� in the coordinate system of the original cam-
era. For the ith frame, its original translation is toi , and its
compensated translation is tci . Therefore, the changing trans-
lation vector t = (tx, ty, tz) can be computed: t = tci − toi .
From the original camera to the motion-compensated cam-
era, its 3D position becomes (xz + tx, yz + ty, z + tz)

�, i.e.

homogeneous coordinate becomes ( xz+tx
z+tz

,
yz+ty
z+tz

,1,1/(z +
tz))

�. Then the displacement of p in the 2D image can be
computed as follows:

d =
(

f
xz + tx

z + tz
, f

yz + ty

z + tz

)�
− (f x,fy)�

=
(

f
tx − xtz

z + tz
, f

ty − ytz

z + tz

)�
.

For convenience, we replace z + tz with z by simply offset-
ting the coordinate, hence

d =
(

f
tx − xtz

z
, f

ty − ytz

z

)�
. (15)

If we use the constant depth zc for each pixel, instead of
its true depth value, the estimated displacement becomes

dW =
(

f
tx − xtz

zc

, f
ty − ytz

zc

)�
. (16)
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Therefore, the warping error is

eW = d − dW = f

(
1

z
− 1

zc

)
(tx − xtz, ty − ytz)

�.

We assume the depths of the scene are in the range of
[zmin, zmax], i.e. zmin ≤ z ≤ zmax. Therefore, when zc =
2(z−1

min + z−1
max)

−1, the upper bound of warping error is min-
imal:

∥∥eW
∥∥ = f

∣∣∣∣
1

z
− 1

zc

∣∣∣∣
√

(tx − xtz)2 + (ty − ytz)2

≤ 1

2
f

(
1

zmin
− 1

zmax

)√
(tx − xtz)2 + (ty − ytz)2.
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