
Visual Comput (2009) 25: 279–288
DOI 10.1007/s00371-008-0267-3 O R I G I N A L A R T I C L E

Xiaogang Jin
Chiew-Lan Tai
Hailin Zhang

Implicit modeling from polygon soup
using convolution

Published online: 15 July 2008
© Springer-Verlag 2008

X. Jin (�) · H. Zhang
State Key Lab of CAD & CG,
Zhejiang University, Hangzhou, 310027,
P.R. China
jin@cad.zju.edu.cn

C.-L. Tai
Hong Kong University of Science &
Technology, Hong Kong, P.R. China
taicl@cse.ust.hk

Abstract We present a novel method
for creating implicit surfaces from
polygonal models. The implicit
function is defined by convolving
a kernel with the triangles in the
polygonal model. By adopting
a piecewise quartic polynomial
kernel function with a finite support,
we derive a convolution model that
has a closed-form solution, and thus
can be efficiently evaluated. The user
only needs to specify an effective
radius of influence to generate an
implicit surface of desired closeness
to the polygonal model. The resulting
implicit surface is fast to evaluate, not
requiring accumulating evaluation
results using any hierarchical data

structure, and can be efficiently
ray-traced to reveal the detailed
features.

Keywords Convolution surfaces ·
Implicit surfaces · Ray tracing

1 Introduction

Recent progress in scanning technology has led to an
abundance of polygonal models. Polygonal models are
the preferred representation in many applications due
to their simplicity and the hardware support for fast
rendering. However, polygonal data reconstructed from
scanned point clouds are often imperfect, possibly con-
taining holes, non-manifold parts, or bad quality triangles
(slivers). Such general polygonal data are referred to as
polygonal soup. On the other hand, implicit representa-
tions define surfaces as isosurfaces of a scalar field in
3D. They are basically mesh-independent, with the desired
mesh only generated when needed. Implicit representa-
tions allow for efficient constructive solid geometry (CSG)
operations for several reasons: boolean operations can be
easily defined through inside–outside tests; contours and
blends can be efficiently generated; the resulting solid

models are guaranteed to be manifolds and thus manufac-
turable. They have also been proven to be good representa-
tions for modeling and animation of smooth time-varying
deformable objects of complex topology, such as liquid,
snow, cloud and organic shapes [3, 6, 8, 16, 17].

In this paper, we present a method to transform a poly-
gon data set to an implicit surface using convolution. The
polygon set is triangulated into triangles before comput-
ing the implicit surface. We develop a closed-form con-
volution model for convolving a piecewise quartic kernel
function with the triangle primitive. The analytical solu-
tion enables the resulting convolution surface to be ef-
ficiently evaluated. The user can intuitively control how
closely the resulting implicit surface approximates the
input polygon data by selecting a proper effective ra-
dius.

Our method is most closely related to that of Shen
et al. [20]. They use a moving least-squares formulation

280 X. Jin et al.

to compute an implicit surface that approximates or in-
terpolates the given polygonal data. The tightness of the
surface is controlled through an iterative procedure that
adjusts the constraint values over each polygon. In add-
ition, all input vertices are ensured to be enclosed by the
implicit surface through an iterative procedure. In con-
trast, our method produces an implicit surface that is arbi-
trarily close to the input polygons by simply controlling an
effective radius parameter. Our formulation leads to a field
function that can be evaluated quickly, allowing the result-
ing surface to be efficiently ray-traced. Moreover, thanks
to our skeleton-based modeling approach, our method is
versatile for animation. A model can be easily separated
into individual skeletal primitives or combined with other
skeletal primitives, achieving complex shapes and special
effects for animation purpose.

2 Related work

Skeleton-based implicit surfaces. A skeleton-based im-
plicit surface is commonly defined as a level set satisfying

S =
{
(x, y, z)

∣∣∣
∑

Fi(x, y, z)− T = 0
}

(1)

where Fi is the field function of the i-th contributing
source and T is the threshold field. Metaballs (or blobs,
soft objects) [1, 15, 23, 24] were the first skeletal-based
implicit surface introduced, and they are now widely
used in commercial software. However, metaballs use
only point fields, making them inefficient for represent-
ing flat surfaces. The convolution surface was introduced
by Bloomenthal and Shoemake [2] as a natural and pow-
erful extension to point-based field surfaces: by convolv-
ing a three-dimensional low-pass Gaussian filter kernel
along arbitrary skeletons. The resulting iso-surfaces pos-
sess the superposition property, thus avoiding bulges and
creases [5].

Theoretically, convolution surfaces can be defined in
terms of any geometric primitives. However, for rendering
purpose, the function Fi(x, y, z) needs to be easy to evalu-
ate so as to efficiently locate the iso-surfaces. The best
case is when the the convolution integral yield a closed-
form solution that can be directly evaluated. The possibil-
ity of deriving a closed-form solution depends on both the
kernel function and the skeletal primitive. Bloomenthal
and Shoemake [2] calculate the field numerically using
a point-sampling method, thus suffering from potential
under-sampling artifacts. Later, researchers proposed the
Cauchy function [13, 21] as the kernel, leading to analyt-
ical solutions for convolving with points, line segments,
triangles, arcs and planes. However, it has an infinite sup-
port, and thus requires the use of a bounding box in prac-
tice to truncate the influence region, causing noticeable
artifacts. In this paper, we propose to use a finite-support

kernel function that allows efficient evaluation and pro-
duces smoother surfaces without approximation artifacts.

No kernel functions are known to produce closed-form
solutions when integrating along a free-form curve or sur-
face. Hornus et al. [9] focus on surfaces whose skele-
tons are a graph of interconnected subdivision curves
and surfaces and adopt a new kernel function that pro-
vides a closed-from solution when convolving along a line
skeleton with varying radius. Piecewise quartic kernel
function has been proposed to provide a closed-form solu-
tion for convolving along a quadratic curve [10].

Polynomial kernel functions are popular due to their
small computation cost. Nishimura and Kawai [15] use
piecewise quadratic polynomials to define metaballs.
Wyvill and Wyvill [23] introduce a six-degree polynomial
to model soft objects. Quartic polynomials are used in ray-
tracing software such as Rayshade and POV-Ray. Jin and
Tai [10] use piecewise quartic polynomials for convolv-
ing with lines, arcs, quadratic curves. In this paper, we
show that the piecewise quartic polynomials also provide
a closed-form solution when convolving with the triangle
primitive.

Implicit surfaces from polygonal models. Construction of
implicit surfaces from polygonal models can borrow ideas
from the extensive research work on construction from
point clouds. We only mention a few representative works
here. In [7] and [22], the function is represented using
a globally supported radial spline, while locally supported
functions were used in [18]. In addition to representing
function as sums of continuous basis functions, level-set
methods have also been used to fit a surface to a point
cloud [14].

Yngve et al. [25] use a globally supported radial spline
to match the polygon data, however, the resulting surface
deviates substantially from the polygons. Shen et al. [20]
extend the moving least-squares framework from point sets
to polygon data by replacing the evaluation of coefficients
with an integration over the polygons. Since there is no
closed-form solution for the integration, they propose an ap-
proximation method, which is quite slow if accurate results
are needed. When the weights in the moving least-squares
system are set to interpolate the polygon soup, the integra-
tion over points on the polygons leads to infinity. They solve
this problem by finding a suitable weight parameter that is
smaller than the smallest feature size in the model. A dis-
advantage of the algorithm is that an iterative procedure is
needed to produce an implicit surface that not only approx-
imates the polygon model, but also encloses all polygons.
Finally, the cost of evaluating the implicit surface function
formulated with moving least-squares is linear in the num-
ber of polygon constraints, which is undesirable for huge
models. They address the high computation cost by main-
taining a hierarchical tree to store the integration of every
polygon in the leaves and define an approximate function
with the evaluation aided by the tree.

Implicit modeling from polygon soup using convolution 281

Kanai et al. [12] address the problem of implicit sur-
face reconstruction from polygon soup using an error-
driven approach. By borrowing the idea of interpolation
over points, they divide the points into smaller sets, inter-
polate each smaller set independently, then use the par-
tition of unity method to evaluate the implicit surface
function. Their algorithm approximates every polygon by
a quadratic implicit function that minimizes the distance
and gradient errors between the quadratic function and the
polygon. A hierarchical tree is then built by storing the
quadratic functions in the leaf nodes and constructing the
internal nodes by merging two children that produce the
smallest distance and gradient errors. A disadvantage of
their method is the large memory requirement for con-
structing the tree structure.

Our convolution formulation leads to an analytical sur-
face, which is fast to evaluate, without requiring special
data structure.

2.1 Convolution surface

A convolution surface is an iso-surface in a scalar field
implicitly defined by a skeleton consisting of three-
dimensional points and a potential function representing
the contribution of each skeletal point to the scalar field.

In this paper, we adopt the following definition of
convolution surface proposed by McCormack and
Sherstyuk [13]. Let P(x, y, z) be a space point in R3, and
let g : R3 → R be the geometry function that represents
a modeling skeleton V :

g(P) =
{

1, P ∈ skeleton V
0, otherwise.

(2)

Let f : R3 → R be a potential function generated by
a single point in the skeleton V , and let Q be a point in the
skeleton. Then the total field contributed by the skeleton at
a point P is the convolution of two functions f and g:

F(P) =
∫

V

g(Q) f(P − Q)dV = (f ⊗ g)(P). (3)

Thus, f is also called the convolution kernel. The exis-
tence of a close-form solution to this integration depends
on both the primitive and potential function. We adopt
a piecewise quartic polynomial since it leads to the sim-
plest computation:

f(r2) =
{(

1− r2

R2

)2
, r ≤ R

0, r > R
(4)

where R is the effective radius of the kernel. Note that it
has a finite support; specifically, skeleton primitives that
have distance larger than R from point P will have zero
field contribution to P.

An important property of convolution surfaces is
the superposition, or the evaluation-independent prop-
erty, which means that summing the convolution surfaces
generated by two separate skeletal primitives yields the
same surface as that generated by the combined skele-
ton [21].

3 Field computation for triangular models

We assume that the input polygon model, which may be
a mesh with manifold connectivity or a polygon soup, con-
sists of only triangles (i.e., other types of polygons are
assumed to have been triangulated). We use all the tri-
angles as skeleton primitives to generate a convolution
surface. To evaluate the field function F at a point P
we must first identify the integration domain of each tri-
angle in its influence region. We represent the finite sup-
port of the kernel function as a clipping sphere, centered

Fig. 1. All possible intersection configurations between a clipping
sphere and a triangle

Fig. 2. The intersecting area of the clipping sphere and a triangle
defines the integration domain. The integration domains for the two
examples are: S1 + A1 − A2 (left) and S1 + S2 + A1 + A2 (right),
where Si are triangle segments and Ai are chord segments

282 X. Jin et al.

at P with radius R. The area of intersection between
the clipping sphere and the triangle defines the effect-
ive area that contributes to that field, i.e., the integration
domain.

We first identify all the possible configurations of the
clipping sphere intersecting a triangle. We note that the
number of intersection points between a circle and the
edges of a triangle is always even, and is at most six,
discounting the degenerate cases such as when an edge
is tangential to the circle. Therefore, there are four pos-
sible cases: the number of intersection points is 0, 2, 4
or 6. Considering symmetry features, Fig. 1 shows all the
possible scenarios. The cases of zero or six intersecting
points are simple. For the case of two intersecting points,
the circle may either intersect one edge at two points or
intersect two edges each at one point. Finally, for the case
of four intersecting points, the circle may either intersect
two edges each at two points or intersect one edge at two
points and two other edges each at one point. For each of
the six cases, the integration domain can be decomposed
in terms of two types of primitives: triangle segments and
chord segments. Figure 2 shows two examples of decom-
position.

3.1 Convolution integral over triangle segments

Let P ∈ R3 be an arbitrary point at which we want to
evaluate the field contribution of a triangle segment ABC
(Fig. 3). Let Q(x, y) be a point on the line segment BC.
Expressing the vector AQ as u AB+ vAC, where v =
1 −u, we can write the squared distance from P to Q as
((P − A)− (u AB+vAC))2. Let (0, 0), (r, 0), (s, t) be the
coordinates of the vertices A, B, C, respectively, in a Eu-
clidean system. For the coordinates (x, y) of Q, we can
write (x, y)= u(r, 0)+v(s, t), thus dx d y = rt du dv. Not-
ing that rt is twice the triangle area, and using the sine
rule for triangles, we get dx d y = |AC| |AB| sin(α)du dv,
where α is the angle between AB and AC.

Fig. 3. Convolution integral over a triangle segment ABC, where O
is the projected point of P

To simplify the expressions of the integration result,
we first define

l1 = |AC|, l2 = |AB|, h2 = |AP|2 − R2,

a = AP · AC
|AC| , b = AP · AB

|AB| , c = cos(α).

Then, using the quartic kernel function in Eq. 4, the field
function of the triangle segment ABC at point P is:

F(P)

=
1∫

0

1−u∫

0

(
1− ((P − A)− (u AB+vAC))2

R2

)2

× l1l2 sin(α)dvdu

= l1l2 sin(α)

1∫

0

1−u∫

0

dvdu

×
(

−h2 +2l2bu +2l1av− l2
2u2 − l2

1v
2 −2uvl1l2c

R2

)2

= l1l2 sin(α)

6R4

[
3h4 + (−4(al1 +bl2)+ (

l2
1 + l2

2 + l1l2c
))

h2

+2
(
a2l2

1 +b2l2
2 +abl1l2

)

− 2

5

(
al1

(
3l2

1 +2cl1l2 + l2
2

))

− 2

5

(
bl2

(
l2
1 +2cl1l2 +3l2

2

))

+ 1

5

((
l4
2 + l4

2

)+ cl1l2
(
l2
1 + l2

2

))

+ 1

15
(1+2c2)l2

1l2
2

]
. (5)

3.2 Convolution integral over chord segments

Integration over chord segments involve two possible
cases: the angle subtending the arc is smaller than or
greater than π

2 (Fig. 4). For the first case, the chord seg-
ment is the area of the pie minus the isosceles triangle. For
the second case, the chord segment is the area of the big
pie plus the isosceles triangle. Let e1 be a unit vector along
one of the edges subtending the arc and e2 be a unit vector
perpendicular to e1. Let point O be the projection of the
point P onto the plane of the intersecting triangle. Note
that O is always the center of the arc (clipping sphere).
The value of the convolution integral over a pie slice at
a given point P is:

F(P) =
∫

Ω

(
1− (OP−ue1 −ve2)

2

R2

)
dΩ (6)

Implicit modeling from polygon soup using convolution 283

Fig. 4. Convolution integral over a chord segment. Two scenarios:
the subtending angle is greater than (left) and smaller than (right)
π/2

Letting u = r cos(θ), v = r sin(θ), and using the fact
that |OP|2 = R2 −r2

0, where r0 is the radius of the arc, we
can obtain

F(P) =
α∫

0

r0∫

0

(
1− (OP− (r cos(θ)e1 +r sin(θ)e2))

2

R2

)2

×r dr dθ

=
α∫

0

r0∫

0

(
1− OP2 −r2

R2

)2

r dr dθ

=
α∫

0

r0∫

0

(
r2

0 −r2

R2

)2

r dr dθ = α×r6
0

6R4 . (7)

Equation 5 can be applied directly to compute the convo-
lution integral over the isosceles triangle. Noting that the
vertex A of the triangle ABC in the derivation of Eq. 5 is in
fact the point O here, we obtain l1 = l2 = r0, h2 = |AP|2 −
R2 = OP2 − R2 = −r2

0 , a = 0, and b = 0. Thus the integra-
tion over the isosceles triangle is

F(P) = (22−9×cos(α)+2×cos2(α))×r6
0 sin(α)

90R4 . (8)

Finally, combining both the integrations over the pie area
and over the isosceles triangle, the field function over the
chord segment is

F(P) = α×r6
0

6R4

± (22−9×cos(α)+2×cos2(α))×r6
0 sin(α)

90R4 .

(9)

4 Rendering convolution surfaces

With the field function defined, Eq. 1 can be used to lo-
cate the surface. Several methods exist for rendering im-
plicit surfaces. Depending on the application, a different

rendering method may be most suitable. Existing methods
can be divided into two main categories. Indirect methods
polygonize the implicit surface to within a given tolerance,
allowing the use of polygon-rendering techniques and hard-
ware for interactive inspection. Direct methods render the
implicit surfaces directly without polygonizing them.

Although polygonal representation has become a stand-
ard in computer graphics industry, polygonizing implicit
surfaces has two drawbacks. First, the polygonization may
not accurately detect disconnected components or small
features. For models with such features, it is necessary
to extract at a very fine resolution, resulting in a large
number of polygons. Second, the surface has to be repoly-
gonized each time the modeling implicit surface equation
F(x, y, z) = T changes. Such circumstances arise in ani-
mated metamorphoses, with each component of an object
modeled using an implicit equation and move relative to
each other.

Sederberg and Zundel [19] developed a direct scan-line
method for rendering more accurately algebraic implicit
surfaces at an interactive speed. Ray-tracing is another
important direct rendering method. Compared with poly-
gonization, it may be slower, but it provides an accurate
rendering for visualizing implicit surfaces.

We propose a ray tracing algorithm for rendering the
proposed convolution surfaces. Let

r(t) = a +bt (10)

be a parametrically defined ray that is anchored at a in
the direction of the unit vector b. Substituting r(t) into the
field function in Eq. 1 yields the following equation:
∑

Fi(r(t)) =
∑

Fi(a +bt) =
∑

fi(t) = f(t) = T. (11)

The solutions to Eq. 11 are the intersections of the ray
with the implicit surface. The challenge is how to solve the
above equation quickly and reliably. Rewriting Eq. 3, we
get
∑

i∈I\S

Fi(a+bt) = T (12)

where S denotes the set {i|Fi(a +bt) ≡ 0}.
We use a six-degree piecewise polynomial pi(t) to ap-

proximate the function Fi(a+bt), satisfying the following
equations:

pi(ci) = Fi(a +bci) = 0 (13)
pi(di) = Fi(a +bdi) = 0 (14)

p′
i(ci) = b•∇Fi(a +bci) = 0 (15)

p′(di) = b•∇Fi(a +bdi) = 0 (16)
pi(ci +∆t) = Fi(a +b(ci +∆t)) = f1 (17)
pi(ci +2∆t) = Fi(a +b(ci +2∆t)) = f2 (18)
pi(ci +3∆t) = Fi(a +b(ci +3∆t)) = f3. (19)

284 X. Jin et al.

From Eqs. 13–19, we obtain

pi(t) =

⎧⎪⎪⎨
⎪⎪⎩

(t − ci)
2(t −di)

2
(

f1+ f3
18∆t6 − f2

16∆t6

)
(t − ci −2∆t)2

+ f3− f1
18∆t5 (t − ci −2∆t)+ f2

16∆t4 , ci ≤ t ≤ di

0, otherwise

where [ci, di] denotes the i-th interval with a nonzero field
along the ray. The approximation error can be represented
by the following equation:

f (7)
i (ξ)

7! (t − ci)
2(t −di)

2(t − ci −∆t)

× (t − ci −2∆t)(x − ci −3∆t), ci < ξ < di .

Now the equation
∑

i∈S pi(t) = T is a six-degree
piecewise polynomial. We use the simple and effective
Bezier clipping [16] algorithm to solve the above equa-
tion. The normal vector at the ray/surface intersection

Fig. 5. An unsatisfactory repair result. The horse polygonal model
has two holes on a front leg. Our implicit surface fills the holes but
is not smooth. Using a larger effective radius can solve this problem

Model Triangles R = 0.00001 R = 1.0 R = 2.0 R = 5.0

Heptoroid 35 840 4.7 39.5 156.4 261.5
Jackolan 11 002 4.5 17.2 54.3 92.1
Hand 654 666 2.3 882.0 9751.0 25 734.9
Turtle 267 931 3.4 227.7 1326.4 3169.6
Armadillo 345 944 4.3 393.2 2218.3 4813.3
Dragon 118 793 4.3 108.1 501.9 1008.5
Buddha 160 182 2.8 165.6 1003.7 1905.1

Table 1. Rendering times in sec-
onds for models of different
sizes and using different effect-
ive radii, all ray-traced at 800×
600 resolution

Fig. 6. Results of convolving a triangular segment using the Cauchy
kernel (left) and using our method with R = 0.25 (right). Their
computation time is 32 311 ms, with 165 millions evaluations per
second. Our method has comparable performance: the number
of evaluations (in millions) per second are 223 (R = 0.25), 163
(R = 0.5), 150 (R = 0.75), 166 (R = 1.0), 210 (R = 1.25)

point is computed as

n =
(

− F(x +∆x, y, z)

∆x
, − F(x, y+∆y, z)

∆y
,

− F(x, y, z +∆z)

∆z

)
.

Octree partitioning is a popular technique to accel-
erate polygonization [4] and ray tracing of implicit sur-
faces [11]. We also use spatial partitioning to accelerate
the computation of the intervals [ci, di]. Each node of the
octree contains a list of triangles with nonzero contribu-
tion to the corresponding cell. One after another, the ray
traverses through each cell and compute the intersecting
intervals. Experiment results show that spatial partitioning
can substantially reduce the computation cost.

5 Results and discussion

We have implemented the proposed algorithm on a Pen-
tium 4 CPU 3.0 GHZ with 1 GB main memory. Fig-
ure 7 shows some examples of convolution surfaces con-
structed from a variety of polygon models using differ-
ent effective radii (R = 0.00001, 1.0, 2.0, 5.0). Instead
of normalizing the effective radius using the average tri-
angle size, in these experiments, we simply scale all in-
put models to a (−200, −200, −200)× (200, 200, 200)
volume. For simplicity, we also use the same number

Implicit modeling from polygon soup using convolution 285

Fig. 7. Leftmost column shows Phong-shaded polygonal models, each containing 12 400 triangles. The remaining four columns are ray-
traced implicit surfaces created with different effective radius (0.00001, 1.0, 2.0, 5.0)

286 X. Jin et al.

Fig. 8. The happy Buddha polygon model (left), which has two holes in a local area (middle left), rendered using Phong shading. The
ray-traced convolution surface (right) with the holes repaired (middle right)

Fig. 9. Result using Sherstyuk method showing noticeable discontinuities due to truncation error (left) and smooth result using our method
(right)

of triangles (i.e., 12 400) for all the models. Small ef-
fective radii (relative to the size of triangles) produce
implicit surfaces that are closer to the polygon models.
Larger radii produce blobby implicit surfaces. Table 1 lists
the rendering times for different sizes of input models
and effective radius values, with all the resulting surfaces
ray-traced at 800 ×600 resolution. Note that the render-
ing time increases as the effective radius increases since

evaluating at each point requires integrating over more
triangles.

Like other implicit-surface construction algorithms,
our algorithm can repair defects in polygonal models. Fig-
ure 8 shows a happy-Buddha model containing holes, self-
intersections, and non-manifold structures. The resulting
convolution surface is smooth, without these defects. To
successfully repair a hole or a defective region, the effect-

Implicit modeling from polygon soup using convolution 287

ive radius needs to be sufficiently big, taking into account
the size of the hole. Figure 5 shows an unsatisfactory
repair result which can be overcome by increasing the ef-
fective radius.

McCormack and Sherstyuk [13] introduced the Cauchy
kernel function h(r) = 1/(1 + s2r2)2 that also leads to
a closed-form solution for convolving with triangles. We
compare our method with their method and find that the
two computation costs are similar when evaluating at
a specific point, as shown in Fig. 6. Their kernel has infin-
ite support, to make the method computationally feasible,
they introduce a bounding box for each skeletal primi-
tive and consider its field value as zero when an evaluated
point is outside the bounding box. However, such trun-
cation errors may cause noticeable discontinuities in the
implicit surfaces. This effect is evident in Fig. 9 as well as
in [21]. Comparing with their method, our method has two
merits. First, our method has no truncated errors, produc-
ing smoother results. Second, although both methods use
a polynomial function to approximate the field function
Fi(a +bt) during rendering, we use a six-degree piece-
wise polynomial instead of a Hermite cubic polynomial,
leading to more accurate results.

6 Conclusion

We present an efficient method to construct implicit sur-
faces from polygon data through deriving a closed-form
solution for convolving a quartic polynomial kernel func-
tion with triangles. The finite support of the kernel func-
tion leads to a smaller computational cost as well as better
visual results than previous formulation for convolving
with triangles. Compared to previous implicit modeling
approaches from polygon data, our method is computa-
tionally efficient, does not require building special data
structure for the evaluation, and can be ray-traced effi-
ciently. The method has potential in applications such as
sketch-based modeling and cut-and-paste editing.

Acknowledgement We would like to thank Hui Zhao for his
help in making the examples in Fig. 5 and reporting the render-
ing times in Table 1. This work is supported in part by grants from
the Natural Science Foundation of Zhejiang Province (R105431),
the National Natural Science Foundation of China (60573153),
the China 863 Program (2006AA01Z314) and the Research Grant
Council of the Hong Kong Special Administrative Region, China
(HKUST6295/04E).

References
1. Blinn, J.F.: A Generalization of algebraic

surface drawing. ACM Trans. Graph. 1(3),
235–256 (1982)

2. Bloomenthal, J., Shoemake, K.:
Convolution Surfaces. In: Proceedings of
SIGGRAPH ’91, pp. 251–256. ACM, New
York (1991)

3. Bloomenthal, J., Bajaj, C., Blinn, J.,
Cani, M., Rockwood, A., Wyvilland, B.G.:
An Introduction to Implicit Surfaces.
Morgan Kaufmann Publishers, Los Altos,
CA (1997)

4. Bloomenthal, J.: Polygonization of implicit
surfaces. Comput. Aided Geom. Des. 5(4),
341–355 (1988)

5. Bloomenthal, J.: Bulge elimination in
convolution surfaces. Comput. Graph.
Forum 16(1), 31–41 (1997)

6. Cani, M.P., Desbrun, M.: Animation of
deformable models using implicit surfaces.
IEEE Trans. Vis. Comput. Graph. 3(1),
39–50 (1997)

7. Carr, J., Beatson, R., Cherrie, J.,
Mitchell, T., Fright, W., McCallum, B.:
Reconstruction and representation of 3D
objects with radial basis functions. In:
Proceedings of SIGGRAPH ’01, pp. 67–76.
ACM, New York (2001)

8. Dobashi, Y., Kaneda, K., Yamashita, H.,
Okita, T., Nishita, T.: A simple, efficient
method for realistic animation of clouds.
In: Proceedings of SIGGRAPH ’00,
pp. 19–28. ACM, New York (2000)

9. Hornus, S., Angelidis, A., Cani, M.P.:
Implicit modeling using subdivision curves.
Visual Comput. 19(2–3), 94–104 (2003)

10. Jin, X., Tai, C.L.: Convolution surfaces for
arcs and quadratic curves with a varying
kernel. Visual Comput. 18(8), 530–546
(2002)

11. Kalra, D., Barr, A.H.: Guaranteed ray
intersections with implicit surfaces. In:
Proceedings of SIGGRAPH ’89,
pp. 297–306. ACM, New York, NY (1989)

12. Kanai, T., Ohtake, Y., Kase, K.:
Hierarchical error-driven approximation of
implicit surfaces from polygonal meshes.
In: Proceedings of Eurographics
Symposium on Geometry Processing,
pp. 21-30. Eurographics Association,
Aire-la-Ville (2006)

13. McCormack, J., Sherstyuk, A.: Creating
and rendering convolution surfaces.
Comput. Graph. Forum 17(2), 113–120
(1998)

14. Museth, K., Breen, D., Whitaker, R.,
Barr, A.: Level set surface editing
operators. ACM Trans. Graph. 21(3),
330–338 (2002)

15. Nishimura, H., Hirai, M., Kawai, T.: Object
modeling by distribution function and
a method of image generation. Image
Generation Trans. IECE 68(4), 718–725
(1985)

16. Nishita, T., Nakamae, E.: A method for
displaying metaballs by using Bézier
clipping. Comput. Graph. Forum 13(3),
271–280 (1994)

17. Oeltze, S., Preim, B.: Visualization of
vasculature with convolution surfaces:
method, validation and evaluation. IEEE

Trans. Med. Imaging 24(4), 540–548
(2005)

18. Ohtake, Y., Belyaev, A., Seidel, H.P.:
A multiscale approach to 3D scattered data
interpolation with compactly supported
basis functions. In: Proceedings of Shape
Modeling International, pp. 292–300. IEEE
Computer Society, Washington, DC (2003)

19. Sederberg, T.W., Zundel, A.K.: Scan line
display of algebraic surfaces. In:
Proceedings of SIGGRAPH ’89,
pp. 145–156. ACM, New York, NY (1989)

20. Shen, C., O’Brien, J.F., Shewchuk, J.R.:
Interpolating and approximating implicit
surfaces from polygon soup. ACM Trans.
Graph. 23(3), 896–904 (2004)

21. Sherstyuk, A.: Kernel functions in
convolution surfaces: a comparative
analysis. Visual Comput. 15(4), 171–182
(1999)

22. Turk, G., O’Brien, J.F.: Modeling with
implicit surfaces that interpolate. ACM
Trans. Graph. 21(4), 855–873 (2002)

23. Wyvill, B., Wyvill, G.: Field functions for
implicit surfaces. Visual Comput. 5(1–2),
75–82 (1989)

24. Wyvill, G., McPheeters, C., Wyvill, B.:
Data structure for oft objects. Visual
Comput. 2(4), 227–234 (1986)

25. Yngve, G., Turk, G.: Robust creation of
implicit surfaces from polygonal meshes.
IEEE Trans. Vis. Comput. Graph. 21(4),
346–355 (2002)

288 X. Jin et al.

XIAOGANG JIN is a professor of the State Key
Lab of CAD&CG, Zhejiang University. He
received his B.Sc. degree in computer science in
1989, M.Sc. and Ph.D. degrees in applied math-
ematics in 1992 and 1995, all from Zhejiang
University. His current research interests include
implicit surface computing, special effects simu-
lation, mesh fusion, texture synthesis, crowd
animation, cloth animation and facial animation.

CHIEW-LAN TAI is currently an associate pro-
fessor at the Department of Computer Science
& Engineering, Hong Kong University of Sci-
ence & Technology. She received her B.Sc. and
M.Sc. in mathematics from the University of
Malaya, M.Sc. in computer and information
sciences from the National University of Singa-
pore, and D.Sc. in information science from the
University of Tokyo. Her research interests in-
clude digital geometry processing and computer
graphics.

HAILIN ZHANG is a software engineer at ATI
Technologies Inc., Shanghai. He has an M.Sc.
in applied mathematics from Zhejiang Uni-
versity. His research interests include implicit
surface modeling and animation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

