
Visual Comput (2008) 24: 787–796
DOI 10.1007/s00371-008-0260-x O R I G I N A L A R T I C L E

Guodong Rong
Yan Cao
Xiaohu Guo

Spectral mesh deformation

Published online: 29 May 2008
© Springer-Verlag 2008

Electronic supplementary material
The online version of this article
(doi:10.1007/s00371-008-0260-x) contains
supplementary material, which is available
to authorized users.

G. Rong (�) · X. Guo
Dept. of Computer Science, University of
Texas at Dallas, USA
{guodongrong, xguo}@utdallas.edu

Y. Cao
Dept. of Mathematical Sciences,
University of Texas at Dallas,
yan.cao@utdallas.edu

Abstract In this paper, we present
a novel spectral method for mesh
deformation based on manifold
harmonics transform. The eigen-
functions of the Laplace–Beltrami
operator give orthogonal bases for
parameterizing the space of func-
tions defined on the surfaces. The
geometry and motion of the original
irregular meshes can be compactly
encoded using the low-frequency
spectrum of the manifold harmonics.
Using the spectral method, the size
of the linear deformation system can
be significantly reduced to achieve
interactive computational speed for

manipulating large triangle meshes.
Our experimental results demonstrate
that only a small spectrum is needed
to achieve undistinguishable defor-
mations for large triangle meshes.
The spectral mesh deformation
approach shows great performance
improvement on computational speed
over its spatial counterparts.

Keywords Spectral geometry ·
Manifold harmonics · Mesh
deformation · Interactive
manipulation

1 Introduction

Geometric model deformation is a very important topic
in computer graphics and animation. The computation of
physically correct deformation is intrinsically non-linear,
and usually requires intensive computational load and
lengthy computing time, to carry out the algorithm on
regular PCs without any special hardware assistance (e.g.
GPU-acceleration [13, 27]). However, in many interactive
applications, e.g. model designing, physically correct de-
formation is not necessary. Instead, a physically “plau-
sible” deformation could be sufficient for many of the
interactive applications.

Linear approximations [5] have been adopted to ac-
celerate the computation and get results that are still
intuitively “correct”. Linear approximations are usually
achieved by simplifying the physical energy formula to
a quadratic form, and minimizing the energy, which leads
to solving a linear system. For triangle meshes, the un-
knowns of the linear system are typically the positions

(or displacements) of the vertices of the geometric model.
So for large meshes (e.g. the Armadillo model in Fig. 1),
solving such a linear system at run-time could be still pro-
hibitive for interactive applications.

From another viewpoint, model deformation usually
requires some non-linear operations, especially for the
fine surface details. For example, determining the required
local rotations from positional constraints is a non-linear
problem. Linear approximations will cause geometric de-
tails and protruding features to be distorted. A general
technique to overcome these difficulties is to comple-
ment the linear deformation with multiresolution ap-
proaches [13]. A geometric hierarchy of smoother and
smoother meshes can be built up by removing surface
details [19]. The linear deformation is applied on the
smoothed surface, and the details can be added back
afterwards to preserve the local details with consistent
orientations. A straightforward approach is to preserve
the mesh connectivity information between the original
and the smoothed meshes, in order for the details to be

788 G. Rong et al.

Fig. 1a–e. The spectral mesh deformation pipeline. a The original Armadillo model, b the manifold harmonics bases, c the smoothed
model reconstructed using the first m bases, d the deformed smoothed model, and e the deformed model with details added back

added back easily [6]. However, the size of the linear
system is not reduced since the number of unknowns
(vertex positions) remains the same for the smoothed sur-
faces. Another approach is to use topological hierarchies
of coarser and coarser meshes [8]. Subdivision surfaces
provide a nice coupling of the geometric and topological
hierarchy, and the number of unknowns in the coarse sub-
division mesh could be significantly smaller than the ori-
ginal mesh [2, 27]. However, automatically building sub-
division surfaces for arbitrary irregular meshes is a highly
non-trivial task, since the original irregular mesh may not
have coherent subdivision connectivity.

In this paper, we propose to use the spectrum of the
Laplace–Beltrami operator defined on manifold surfaces,
i.e. manifold harmonics, to compactly encode the defor-
mation functions. The manifold harmonics can be pre-
computed on arbitrary irregular meshes. Compared with
other subspace deformation techniques [9, 27], the com-
putation of manifold harmonics is fully automatic, and
these orthogonal bases provide a compact parametrization
for the space of functions defined on the surfaces. We
can use very small number (compared to the number of
vertices) of frequency components to represent the geom-
etry and motion of the smoothed model. So the number
of unknowns in the linear system for the deformation can
be greatly decreased, to allow interactive manipulation on
large triangle meshes. The process of our algorithm is de-
scribed as the following steps:

1. compute manifold harmonics bases for the original
model with n vertices (Fig. 1b);

2. perform the inverse manifold harmonics transform
using the first m (m � n) frequencies to get a smoothed
model (Fig. 1c);

3. perform the deformation on the smoothed model by
solving a linear system with m unknowns (Fig. 1d);

4. add the details back to the deformed smoothed model
to get the final result (Fig. 1e).

The rest of this paper is organized as follows: Sect. 2
reviews some previous work related to mesh deformation

and spectral methods. Section 3 introduces the concept of
manifold harmonics. The details of our new algorithm are
given in Sect. 4, and the experimental results are shown in
Sect. 5. Section 6 concludes the paper with some possible
directions of future work.

2 Related work

Mesh deformation is an active research area in computer
graphics. There are numerous previous papers on this topic.
Energy minimization has long been a general approach to
deform smooth surfaces [3, 22]. A variational approach is
introduced in [2] to deform subdivision surfaces. To pre-
serve surface details, they optimize the energy of a deforma-
tion vector field instead of the deformation energy of vertex
positions. Multiresolution mesh editing techniques [11, 28]
have been developed for detail-preserving deformations by
decomposing a mesh into several frequency bands. A de-
formed mesh is obtained by first manipulating the low-
frequency mesh and later adding back the high frequency
details as displacement vectors.

Yu et al. [23] apply the widely used Poisson equa-
tion on the 3D model deformation. They set the gradients
before and after the deformation to be equal to get a Pois-
son equation, which is a linear system. The solutions of
this equation give the deformed model. This class of al-
gorithm is called gradient domain deformation. Gradient
domain mesh deformation techniques [1, 9, 12, 17, 23, 24,
26, 27] have been intensively investigated for mesh edit-
ing. The main challenge is to handle nontrivial transform-
ations which include rotations (especially large rotations)
while preserving as much as possible the visual character-
istic of the shape at interactive rates. The most important
idea is to factor out the rotation from the deformation. For
shape editing, the factorization and shape definition have
to be solved simultaneously [17] since the target shape is
not explicitly given. Instead of factoring out the rotation,
a better solution is to represent the shape with rotation-
invariant coordinates [12]. Zayer et al. [24] use a harmonic

Spectral mesh deformation 789

scalar field to better propagate deformations to the entire
mesh from the constraints. Huang et al. [9] use a sub-
space domain to reduce the problem dimensionality via
mean value coordinates. Botsch et al. [4] introduce a local
shape representation based on prisms and used a hierar-
chial multi-grid solver to reduce the problem complexity.
A different research direction aims at preservation of the
volume of a shape. Zhou et al. [26] develop a mesh defor-
mation based on volumetric graph Laplacian to preserve
the local volume.

Another type of mesh deformation algorithms is
the deformation transfer introduced by Sumner and
Popović [18]. They use the deformation of a source model
to guide the deformation of a different target model. The
idea is to match the deformation gradients of the cor-
responding triangles of the source model and the target
model. By doing so, a linear system is generated, and
its solution gives the deformed target model. The defor-
mation transfer is shown as equivalent to gradient-based
deformation by Botsch et al. [6]. And the deformation
transfer method can be further improved by using the nor-
mal of every triangle, instead of an artificial fourth vertex,
to compute the deformation gradients. The size of the lin-
ear system is thus reduced accordingly.

Generally speaking, the mesh deformation techniques
can be classified into two categories: linear algorithms
and non-linear algorithms. Non-linear algorithms require
to solve a non-linear system, and thus are hard to achieve
interactive rates. On the contrary, linear algorithms are
usually much faster with some compromise in the qual-
ity of the results. A thorough survey on linear deformation
algorithms can be found in [5]. For large mesh deforma-
tions, the size of the linear system could be still prohibitive
for interactive manipulations. In this paper, we use mani-
fold harmonics to help to reduce the size of the linear
system.

Spectral geometry analysis is first used as a theoretical
tool to characterize the classical approximations of low-
pass filters [19]. This approach is based on the similarity
between the eigenvectors of the graph Laplacian and the
basis functions used in the discrete Fourier transform. Sev-
eral variants of this approach are then suggested, such as
combinatorial graph Laplacians [10], and a discrete Lapla-
cian operator [16, 21] using cotan weights. The basic idea
is to compute the eigenfunctions and eigenvalues of the
Laplacian on a general manifold surface, i.e. the manifold
harmonics.

3 Manifold harmonics

In this section, we briefly review the concept of mani-
fold harmonics, and how to use it to convert the functions
defined on a manifold surface from space domain to fre-
quency domain, and vice versa. A more detailed introduc-
tion can be found in [10, 16, 19, 21, 25].

In Euclidean domain Rn , the Laplace operator is de-
fined as the divergence of the gradient:

∆ = div grad = ∇ ·∇ =
∑

i

∂2

∂x2
i

. (1)

By using the exterior calculus (EC), the definition of
the Laplacian can be generalized to functions defined
over a manifold M with metric g, and is then called the
Laplace–Beltrami operator:

∆ = div grad =
∑

i

1√|g|
∂

∂xi

(√|g|
∑

j

gij ∂

∂xj

)
, (2)

where |g| denotes the determinant of g and gij denote
the components of the inverse of the metric tensor g.
Hence we can define the eigenfunctions and eigenvalues
of the Laplacian on a manifold surface M as all the pairs
(Hk, λk) that satisfy :

−∆Hk = λk Hk. (3)

The eigenfunctions of the continuous Laplace–Beltrami
operator give orthogonal bases for the space of functions
defined on the surface. The spectrum of this operator is
isometry invariant, and continuous deformations of the
manifold’s geometry result in continuous changes of the
spectrum. Smaller eigenvalues of the spectrum are cor-
related to coarser features of the manifold while higher
eigenvalues represent finer structures. Hence the expan-
sion coefficients provide a canonical parametrization of
functions defined on the surface, and we can perform the
deformation process in this coefficient domain.

Similar to [16, 21], we employ the finite element
method (FEM) to discretize the above formula on a mani-
fold surface with n vertices. By using the piecewise linear
“hat” function φi (i = 1, . . . , n) which is associated with
each of the n vertices, and φi(vj) = δij , solving the above
formula becomes finding Hk = ∑n

i=1 Hk
i φi that satisfy:

∀ j ∈ {1, . . . n}, 〈−∆Hk, φj
〉 = λk

〈
Hk, φj

〉
, (4)

by projecting Eq. 3 onto each φi . Or we can write it in
matrix form:

−Qhk = λk Bhk, (5)

where

hk = [Hk
1 , Hk

2 , . . . Hk
n]T ,

⎧
⎪⎨

⎪⎩

Qij = (cotβij + cot β′
ij)/2

Qii =
∑

j

Qij,

790 G. Rong et al.

Fig. 2a–f. The inverse manifold harmonics transform for models of different numbers of bases. a is the original dragon model, and
b–f are the results of the inverse manifold harmonics transform using m = 100, 200, 300, 500 and 900 bases, respectively

⎧
⎪⎨

⎪⎩

Bij = (|t|+ |t′|)/2

Bii =
(∑

t∈St(i)

|t|
)
/6.

t, t′ are the two triangles that share the edge (i, j),
|t| and |t′| are their areas, βi, j , β′

i, j are the two angles op-
posite to the edge (i, j), and St(i) is the set of triangles
incident to vertex i .

The above formulation can be further simplified into:

−D−1 Qhk = λkhk, (6)

where D is a diagonal matrix defined as follows:

Dii =
∑

j

Bij =
(∑

t∈St(i)

|t|
)
/3.

The solution to this eigenproblem yields a series of
eigenpairs (Hk, λk) called the manifold harmonics bases
(MHB). These bases are orthogonal, i.e. the functional in-
ner product 〈Hi, H j〉 = 0 if i 	= j. We also ensure that the
MHB is orthonormal, by dividing each basis vector Hk by
its functional norm 〈Hk, Hk〉. By using the Arnoldi method,
it is possible to compute eigenvectors band-by-band utiliz-
ing the shift-invert spectral transform. A detailed derivation
of these formulae can be found in [21].

Using the MHB, we can define the manifold harmonics
transform (MHT) to convert the geometry of the mani-
fold surface M into the spectral domain. The geometry x
(resp. y, z) of the triangulated surface can be considered
as a piecewise linear function defined over the hat func-
tions φi : x = ∑n

i=1 xiφi where xi denotes the x coordinate
at vertex i . The MHT is the projection of x onto the or-
thonormal MHB via the functional inner product, and the

result is a vector [x̃1, x̃2, . . . x̃m], with each item x̃k corres-
ponding to each frequency basis Hk:

x̃k = 〈x, Hk〉 =
n∑

i=1

xi Dii Hk
i . (7)

The inverse MHT maps the descriptor from frequency do-
main onto space domain by reconstructing x at vertex i
using the first m frequencies:

xi =
m∑

k=1

x̃k Hk
i . (8)

Figure 2 shows the inverse MHT for the Dragon model
using 100, 200, 300, 500, and 900 bases, respectively.

4 Deformation process

The manifold harmonics transform can help us to trans-
fer the geometric representation of a surface model and
its deformation functions from the space domain to the
frequency domain. When reconstructing geometric and
deformation information using only the first m frequen-
cies, we are in fact conducting a low-pass signal filter-
ing. The high frequencies (details) are filtered, and we
get a smoother approximation of the original model. In
this paper we use a linear Laplacian-based variational al-
gorithm for mesh deformation. It is well known that the
gradient-based transformation cannot handle the local ro-
tation of details [5]. We can overcome this problem by
using a spectral multi-resolution approach. The multi-
resolution here means different levels of resolution in

Spectral mesh deformation 791

the frequency domain, which is different from the tradi-
tional level-of-detail technique in the space domain. The
Laplacian-based deformation will be solved over the spec-
trum of m frequencies. Geometric details can be added
back to the spectral reconstructed mesh after deforma-
tion using the deformation transfer technique [6, 18]. By
using only the first m frequencies for solving the linear
variational system, significant improvement on the com-
putational speed can be achieved to allow interactive mesh
manipulation for large mesh models. To make our pa-
per self-contained, we briefly review the linear Laplacian-
based variational algorithm for mesh deformation in the
following section. For a more detailed survey in this field,
please refer to [5].

4.1 Minimizing deformation energy

The 2-manifold surfaces can be considered as thin-
shells [7] having elastic energy of stretching and bending
terms. To perform the deformation on the smoothed sur-
faces, we minimize their elastic energy caused by the
deformation process. Suppose S and S′ are the manifold
surfaces before and after the deformation. The elastic en-
ergy is defined as follows [20]:

E(S′) =
∫

Ω

ks‖I′ − I‖2
F + kb‖II′ − II‖2

F du dv, (9)

where Ω is the parameterizing domain of the surface S,
I and II (resp. I′ and II′) are the first and the second fun-
damental forms of the surface S (resp. S′), ‖ · ‖F denotes
a Frobenius norm, and ks and kb are parameters to control
the resistance of stretching and bending.

Denote p a point on S, and p′ the corresponding point
on S′, the displacement vector is then d = p′ − p. Using
the first-order and second-order partial derivatives with re-
spect to the surface parametrization (u, v), to approximate
the first and second fundamental forms, the energy can be
simplified into a quadratic form [22]:

E(S′) =
∫

Ω

ks
(‖du‖2 +‖dv‖2)

+ kb
(‖duu‖2 +2‖duv‖2 +‖dvv‖2)du dv. (10)

The minimization of this energy can be achieved
by using variational calculus, which yields the Euler–
Lagrange partial differential equation:

−ks∆d + kb∆
2d = 0, (11)

where ∆ and ∆2 are the Laplacian and bi-Laplacian oper-
ators:

∆d = div∇d = duu +dvv,

∆2d = ∆(∆d) = duuuu +2duuvv +dvvvv.

On the manifold surface S, the Laplacian operator ∆
becomes the Laplace–Beltrami operator ∆S , and Eq. 11
becomes:

−ks∆Sd + kb∆
2
Sd = 0. (12)

A discretization based on finite differences leads to
a discrete Laplace–Beltrami operator at a vertex vi as:

∆S f(vi) = wi

∑

vj∈St(i)

wij(f(vj)− f(vi)).

Here, the weights for every vertex (wi) and every edge (wij)
are defined using the cotangent weights [14]:

wi = 1

Ai
, wij = (cotβij + cot β′

ij)/2,

where Ai is the Voronoi area around vertex vi [14], and βij
and β′

ij are the two angles opposite to edge (vi, vj), the
same as those defined for Qij in Eq. 5. With the discretiza-
tion of the Laplace–Beltrami operator, the Euler–Lagrange
equation 12 is then discretized to a sparse n ×n linear sys-
tem:
(− ks L + kb L2)d = 0, (13)

where L = M−1Ls, M is a diagonal matrix with Mii = Ai ,
and Ls is a symmetric matrix defined as the following:

Sij =
⎧
⎨

⎩

− ∑
vk∈St(i) wik, i = j;

wij , i 	= j, vj ∈ St(i);
0, otherwise.

4.2 Adding constraints

In an interactive mesh manipulation system, the user se-
lects the constrained vertices and specifies their final pos-
itions explicitly. We use the Lagrange multiplier to inte-
grate the constraints into our linear system Eq. 13. We set
the target function as the energy E defined in Eq. 10. The
minimum value of E occurs when Eq. 12 is satisfied. So
we can convert the linear system of Eq. 12 to a minimizing
problem with constraints.

Suppose we have n′ constrained vertices, and denote
by C the set of these vertices (|C| = n′). For vertex vi ∈ C,
its positions before the deformation (pi) and after the
deformation (p′

i) are both known. So the displacement
constraint on the vertex vi : d′

i = p′
i − pi is also known.

The n′ constraints can be written as: di − d′
i = 0, vi ∈

C. We denote these constraints by gk, 0 ≤ k < n′. Fi-
nally, the constrained minimizing problem corresponding
to Eq. 13 is:

min E, s.t. gk = 0, 0 ≤ k < n′.

792 G. Rong et al.

Using the Lagrange multiplier method, we can build a new
target function:

F = E +
n′−1∑

k=0

γkgk,

where γ0, . . . γn′−1 are the unknown scalars associated
with each constraint. Minimizing F is equivalent to solv-
ing the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F/∂d0 = 0

· · ·
∂F/∂dn−1 = 0

∂F/∂γ0 = 0

· · ·
∂F/∂γn′−1 = 0

or in matrix mode:
(

A B
BT 0

)(
d
γ

)
=

(
0
d′

)
, (14)

where γ = [γ0, . . . γn′−1]T, and d′ is the vector com-
posed by all the displacement constraints d′

i . The coeffi-
cient matrix A = −ks L + kb L2, and the coefficient matrix
B ⊂ Rn×n′

with value 1 at Bij if gj is the constraint for
vertex vi , and value 0 otherwise.

By solving Eq. 14, we can get the deformed model
which satisfy all the specified constraints. This equation is
a linear system with the size of (n +n′)× (n +n′). When
the number of vertices n is large, it is still very challenging
to solve Eq. 14 at interactive speed.

Fig. 3a,b. The frequency coefficients before (a) and after (b) deformation

4.3 Converting to frequency domain

We employ manifold harmonics to reduce the size of the
above linear system, and thus achieve higher computa-
tional speed. As explained in Sect. 3, for every model, we
can pre-compute the manifold harmonic bases (MHB) and
get the first m frequency components. After having the
MHB, we can convert the positions pi into frequency do-
main using MHT (Eq. 7). So the displacements di can also
be expanded in frequency domain as the following:

di = pi − p′
i =

m∑

k=1

d̃k Hk
i .

Substituting di into Eq. 14, we can have:
(

HT AH B̃

B̃T 0

)(
d̃
γ

)
=

(
0
d′

)
, (15)

where d̃ is the vector of [d̃0, . . . d̃m−1]T, H is the n ×m
matrix [H0, . . . Hm−1], and B̃ is an m ×n′ matrix with
B̃k j = Hk

i if gj is the constraint for vertex vi .
After this substitution, the size of the linear system is

reduced to (m +n′)× (m +n′), which is far less than the
original (n +n′)× (n +n′) if we select a small number
of frequencies. Actually in most of our experiments we
choose m = 100, while the number of vertices could be
n > 100 000 for the models in our interactive system.

After solving this linear system, we can use an inverse
MHT (Eq. 8) to convert the spectral displacements d̃ back
to space domain to get d, and thus p′ = p +d. Figure 3
plots the first 50 frequency coefficients (x̃, ỹ, z̃) of the Di-
nosaur model before and after the deformation, together

Spectral mesh deformation 793

Fig. 4a,b. The comparison between different detail-adding approaches. Details are added back using a local frame approach and b defor-
mation transfer approach. Some triangles in a erroneously intersect with each other, while no such problem happens in b

with the smoothed models rebuilt using the first 300 fre-
quency coefficients by the inverse MHT.

By using only the first m frequencies to construct the
model, we are in fact conducting a low-pass filtering on
the model. So the deformation is applied on the smoothed
model, instead of the original one. In this way, we can par-
tially overcome the shortcoming of the linear system that
cannot handle the intrinsic rotations of the local details,
and focus on the deformation of the general shape of the
model. After the deformation, we need to add the lost high-
frequency details back to get the final deformation result.

4.4 Adding details

There are some different approaches to add the high-
frequency details back to the smoothed model. The sim-
plest way is to record the differences between the corres-
ponding vertices of the original model and the smoothed
model before the deformation, and directly add the dif-
ferences back after the deformation. However, this naive
approach cannot handle the local rotational effects.

Another efficient approach is to build a local coordi-
nate system at every vertex. We use the normal (n) of the
vertex as the local z-axis (z), and select the first edge of
the first triangle incident to this vertex, normalize its direc-
tion as e. Then, we have the local x- and y-axis: x = e× z,
and y = z × x. A simple matrix multiplication can convert
the difference vector between the corresponding vertices
of the original model and the smoothed model into this
local coordinate system. After the deformation, we rebuild
such a local coordinate system at every vertex, and recon-
struct the deformed shape by adding the difference vectors
back to the deformed local coordinate systems. In this way
the local rotation effects will be automatically achieved.
However, this local-frame approach also has its own prob-

lem: under local bending deformations, some parts of the
model may intersect with the other parts nearby.

A more elegant (yet less efficient) approach is intro-
duced by Botsch et al. [6], by drawing ideas from the
deformation transfer technique [18]. Using the smoothed
model (spectral reconstructed) as the source model, and
the original one with details as the target model, we can
transfer the deformation gradient from the source model
to the target model. When we deform each triangle using
the spectral approach mentioned in Sect. 4.3, we compute
the deformation gradient associated with the triangle. In
practice, we follow Botsch et al.’s idea, which discard the
fourth vertex in [18], and use the normal of every triangle
instead. The deformation gradients can be applied back to
the triangles in the original model, such that the original
detailed mesh can be deformed consistently. This leads
to a linear system with the size of n ×n. Fortunately the
left part of the linear system is independent of the users’
manipulation constraints, and can be pre-factorized when
the model is loaded together with its manifold harmon-
ics bases. During users’ interactive manipulation process,
only back-substitutions need to be performed for each
frame. By solving this linear system, we can get the de-
formed model with details added back to the spectral re-
constructed one.

A comparison of the results using local frame and de-
formation transfer is shown in Fig. 4. The local frame
approach may erroneously generate some intersecting tri-
angles for the parts with lots of details.

5 Experimental results

We implement our algorithm on a Windows XP PC with
Intel Core2 Duo 2.93 GHz CPU and 2 GB DDR2 RAM.

794 G. Rong et al.

Table 1. The computing time of different steps in our algorithm. In the pre-computing time, PT1 is for computing manifold harmonics
bases, PT2 is for computing the left-hand matrix for the deformation of the smoothed model (HT AH in Eq. 15), and PT3 is for computing
the left-hand matrix for adding details and factorizing it. In the running time, RT1 is for the deformation of the smoothed model, and RT2
is for adding details. The last column is for the running time without spectral transform

Model Model details Pre-computing time (s) Running time (s) Running time
#Vertex #Triangle PT1 PT2 PT3 RT1 RT2 w/o spectrum (s)

Lion 5000 9996 1.718058 0.228635 0.289104 0.000235 0.013313 12.203043
Dinosaur 28 098 56 192 19.680900 2.059899 7.115392 0.001208 0.076424 102.952112
Dragon 50 000 100 000 25.961076 4.495551 21.211791 0.002068 0.139505 396.493329
Armadillo 75 002 150 000 60.122655 7.692200 48.596778 0.003041 0.241282 1135.150139

Fig. 5. The comparison of deformation timing using different numbers of frequency components

Fig. 6. The comparison of deformation results using different numbers of frequency components. From left to right, the number of fre-
quencies used are 100, 200, 300, 500 and 900. The top row shows the results before the details are added back. The original pose of the
dragon is shown in Fig. 2

Spectral mesh deformation 795

The program is developed using Visual C++.NET 2005.
For solving the dense linear system in Eq. 15, we use the
LU-solver from Numerical Recipe [15]. For solving the
sparse linear system of adding details, we use the CSparse
library, which is good enough for our algorithm since the
factorization can be pre-computed, and what we need is
just a simple back substitution for adding details at the
run-time.

Table 1 lists the details of the models we use in our
experiments, and the timing of different steps in our
algorithm, including both the pre-computation and the
run-time deformation steps. For comparison, we also list
the timing of the deformation without using MHT, i.e.
by solving Eq. 14 directly. We use the bi-conjugate gra-
dient solver in Numerical Recipe to solve this sparse
linear system. It is evident that our new algorithm is
orders of magnitude faster than the approach without
using MHT.

The number of the frequencies (m) used to build the
smoothed model is the key factor in our algorithm. It de-
termines the speed of our algorithm. Figure 5 shows the
speeds with different m for the Lion model. It is evi-
dent that with the increase of m, the deformation time
of our algorithm increases accordingly. However, from
our experiments, the difference between the deforma-
tion results of different m (m ≥ 100) is indistinguishable
(see Fig. 6 for the examples of the Dragon model). So
a small m (m = 100) can be enough for most of our experi-
ments.

6 Conclusion and future work

In this paper, we introduce a new spectral algorithm for
geometric model deformation. The eigenfunctions of the
Laplace–Beltrami operator give orthogonal bases for pa-
rameterizing the space of functions defined on the surface.
Continuous deformations on the surfaces result in continu-
ous changes of the spectrum. This algorithm uses the low-
frequency components of the manifold surfaces to deform
the smoothed model and add the high-frequency details
back using deformation transfer techniques. With the help
of manifold harmonics, we transfer the model deformation
problem from space domain to frequency domain, and thus
greatly reduce the size of the linear system to only hun-
dreds of low-frequency components. So the computational
speed is significantly enhanced over its spatial counterparts,
to allow interactive manipulation of large triangle meshes
on desktop PCs without any special hardware acceleration.

The graphics processing unit (GPU) is developing fast.
The parallel architecture of the GPU suits the linear sys-
tem very well. Some researchers have already utilized
GPU-acceleration for model deformations [13, 27]. Cur-
rently, our algorithm is implemented on the CPU only.
A part of our future work is to fit our spectral algorithms
into the GPU pipeline to achieve even higher speed for
deforming larger meshes.

Acknowledgement This research is supported by the National Sci-
ence Foundation under Grant No. CCF-0727098.

References
1. Au, O.K.C., Tai, C.L., Liu, L., Fu, H.: Dual

laplacian editing for meshes. IEEE Trans.
Vis. Comput. Graph. 12(3), 386–395 (2006)

2. Boier-Martin, I., Ronfard, R., Bernardini, F.:
Detail-preserving variational surface design
with multiresolution constraints. In:
Proceedings of the 2004 Shape Modeling
International, pp. 119–128. IEEE Computer
Society, Washington, DC (2004)

3. Botsch, M., Kobbelt, L.: An intuitive
framework for real-time freeform modeling.
ACM Trans. Graph. 23(3), 630–634 (2004)

4. Botsch, M., Pauly, M., Gross, M.,
Kobbelt, L.: PriMo: coupled prisms for
intuitive surface modeling. In: Proceedings
of the 4th Eurographics Symposium on
Geometry processing, pp. 11–20.
Eurographics Association, Aire-la-Ville,
Switzerland (2006)

5. Botsch, M., Sorkine, O.: On linear
variational surface deformation methods.
IEEE Trans. Vis. Comput. Graph. 14(1),
213–230 (2008)

6. Botsch, M., Sumner, R., Pauly, M.,
Gross, M.: Deformation transfer for
detail-preserving surface editing. In:
Proceedings of 11th International Fall
Workshop Vision, Modeling &

Visualization, pp. 357–364. Akademische
Verlagsgesellschaft Aka, Aachen (2006)

7. Guo, X., Li, X., Bao, Y., Gu, X., Qin, H.:
Meshless thin-shell simulation based on
global conformal parameterization. IEEE
Trans. Vis. Comput. Graph. 12(3), 375–385
(2006)

8. Guskov, I., Sweldens, W., Schröder, P.:
Multiresolution signal processing for
meshes. In: Proceedings of ACM
SIGGRAPH 99, pp. 325–334. ACM
Press/Addison-Wesley Publishing Co.,
New York, NY (1999)

9. Huang, J., Shi, X., Liu, X., Zhou, K.,
Wei, L.Y., Teng, S.H., Bao, H., Guo, B.,
Shum, H.Y.: Subspace gradient domain
mesh deformation. ACM Trans. Graph.
25(3), 1126–1134 (2006)

10. Karni, Z., Gotsman, C.: Spectral
compression of mesh geometry. In:
Proceedings of ACM SIGGRAPH 2000,
pp. 279–286. ACM Press/Addison-Wesley
Publishing Co., New York, NY
(2000)

11. Kobbelt, L., Campagna, S., Vorsatz, J.,
Seidel, H.P.: Interactive multi-resolution
modeling on arbitrary meshes. In:
Proceedings of ACM SIGGRAPH 98,

pp. 105–114. ACM Press/Addison-Wesley
Publishing Co., New York, NY (1998)

12. Lipman, Y., Sorkine, O., Levin, D.,
Cohen-Or, D.: Linear rotation-invariant
coordinates for meshes. ACM Trans.
Graph. 24(3), 479–487 (2005)

13. Marinov, M., Botsch, M., Kobbelt, L.:
GPU-based multiresolution deformation
using approximate normal field
reconstruction. J. Graph. Tools 12(1),
27–46 (2007)

14. Meyer, M., Desbrun, M., Schröder, P.,
Barr, A.H.: Discrete differential geometry
operators for triangulated 2-manifolds. In:
Hege, H.C., Polthier, K. (eds.) Visualization
and Mathematics III, pp. 35–57. Springer,
Heidelberg (2002)

15. Press, W.H., Teukolsky, S.A.,
Vetterling, W.T., Flannery, B.P.: Numerical
Recipes – The Art of Scientific Computing,
3rd edn. Cambridge University Press, New
York, NY (2007)

16. Reuter, M., Wolter, F.E., Peinecke, N.:
Laplace–Beltrami spectra as shape-DNA of
surfaces and solids. Comput.-Aided Des.
38(4), 342–366 (2006)

17. Sorkine, O., Cohen-Or, D., Lipman, Y.,
Alexa, M., Rössl, C., Seidel, H.P.:

796 G. Rong et al.

Laplacian surface editing. In: Proceedings
of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry
Processing, pp. 175–184. ACM Press, New
York, NY (2004)

18. Sumner, R.W., Popović, J.: Deformation
transfer for triangle meshes. ACM Trans.
Graph. 23(3), 399–405 (2004)

19. Taubin, G.: A signal processing approach to
fair surface design. In: Proceedings of
ACM SIGGRAPH 95, pp. 351–358. ACM
Press/Addison-Wesley Publishing Co.,
New York, NY (1995)

20. Terzopoulos, D., Platt, J., Barr, A.,
Fleischer, K.: Elastically deformable
models. Comput. Graph. (Proceedings of
ACM SIGGRAPH 90) 21(4), 205–214
(1987)

21. Vallet, B., Lévy, B.: Spectral geometry
processing with manifold harmonics.
Technical report, ALICE – INRIA
Lorraine, Nancy, France (2007)

22. Welch, W., Witkin, A.: Variational surface
modeling. Comput. Graph. (Proceedings of
ACM SIGGRAPH 92) 26(2), 157–166
(1992)

23. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H.,
Guo, B., Shum, H.Y.: Mesh editing with
poisson-based gradient field manipulation.
ACM Trans. Graph. 23(3), 644–651 (2004)

24. Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.:
Harmonic guidance for surface
deformation. Comput. Graph. Forum 24(3),
601–609 (2005)

25. Zhang, H., van Kaick, O., Dyer, R.:
Spectral methods for mesh processing and

analysis. In: Proceedings of Eurographics
State-of-the-art Report, pp. 1–22.
Eurographics Association, Prague (2007)

26. Zhou, K., Huang, J., Snyder, J., Liu, X.,
Bao, H., Guo, B., Shum, H.Y.: Large mesh
deformation using the volumetric graph
laplacian. ACM Trans. Graph. 24(3),
496–503 (2005)

27. Zhou, K., Huang, X., Xu, W., Guo, B.,
Shum, H.Y.: Direct manipulation of
subdivision surfaces on GPUs. ACM Trans.
Graph. 26(3), 91 (2007)

28. Zorin, D., Schröder, P., Sweldens, W.:
Interactive multiresolution mesh editing. In:
Proceedings of ACM SIGGRAPH 97,
pp. 259–268. ACM Press/Addison-Wesley
Publishing Co., New York, NY (1997)

GUODONG RONG received his B.Eng. degree
and M.Eng. degree both in Computer Science
from Shandong University in 2000 and 2003
respectively, and his Ph.D. degree in Computer
Science from National University of Singapore
in 2007. Currently, he is a research scholar at
the Department of Computer Science, University
of Texas at Dallas. His research interests include
computer graphics, visualization and image
processing, especially general-purpose usage
of graphics hardware (GPGPU) and geometry
model processing. For more information, please
visit http://www.utdallas.edu/∼guodongrong.

YAN CAO received her B.S. in Computational
Mathematics from Peking University, China
in 1996, M.S. in Mathematics from the Uni-
versity of Iowa in 1997 and Ph.D. in Applied
Mathematics from Brown University in 2003.
Currently, she is an assistant professor in the
Department of Mathematical Sciences at the
University of Texas at Dallas. Her research
interests include computer vision and pattern
theory, especially shape analysis and shape
modeling.

XIAOHU GUO is an assistant professor of
computer science at the University of Texas
at Dallas. He received the Ph.D. degree in
Computer Science from the State University
of New York at Stony Brook in 2006. His
research interests include computer graphics,
animation and visualization, with an emphasis
on geometric and physics-based modeling.
Dr. Guo’s research is funded by the National
Science Foundation, and he is currently the
principal investigator for projects related both to
physical simulation of deformable models and
to geometric mapping of surface and volumetric
models. For more information, please visit
http://www.utdallas.edu/∼xguo.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

