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Abstract Despite the widespread
availability of color sensors for image
capture, the printing of documents
and books is still primarily done
in black-and-white for economic
reasons. In this case, the included
illustrations and photographs are
printed in grayscale, with the poten-
tial loss of important information
encoded in the chrominance chan-
nels of these images. We present
an efficient contrast enhancement
algorithm for color-to-grayscale
image conversion that uses both
luminance and chrominance infor-
mation. Our algorithm is about three
orders of magnitude faster than pre-
vious optimization-based methods,

while providing some guarantees on
important image properties. More
specifically, our approach preserves
gray values present in the color
image, ensures global consistency,
and locally enforces luminance con-
sistency. Our algorithm is completely
automatic, scales well with the
number of pixels in the image, and
can be efficiently implemented on
modern GPUs. We also introduce an
error metric for evaluating the quality
of color-to-grayscale transformations.

Keywords Color reduction ·
Color-to-grayscale · Image
processing · Error metric

1 Introduction

Multimegapixel digital cameras are commonplace and es-
sentially all pictures taken nowadays are in color, with
a few exceptions mostly for artistic purposes. On the other
hand, due to economic reasons, the printing of documents
and books is still primarily done in “black-and-white”,
causing the included photographs and illustrations to be
printed in shades of gray. Since the standard color-to-
grayscale conversion algorithm consists of computing the
luminance of the original image, all chrominance informa-
tion is lost in the process. As a result, clearly distinguish-
able regions containing isoluminant colors will be mapped
to a single gray shade (Fig. 1). As pointed out by Grund-
land and Dodgson [7], a similar situation happens with
some legacy pattern recognition algorithms and systems
that have been designed to operate on luminance infor-
mation only. By completely ignoring chrominance, such

methods cannot take advantage of a rich source of infor-
mation.

In order to address these limitations, a few techniques
have been recently proposed to convert color images
into grayscale ones with enhanced contrast by taking
both luminance and chrominance into account [5, 7, 10,
12]. The most popular of these techniques [5, 12] are
based on the optimization of objective functions. While
these two methods produce good results in general, they
present high computational costs, not scaling well with
the number of pixels in the image. Moreover, they do not
preserve the gray values present in the original image.
Grayscale preservation is a very desirable feature and is
satisfied by the traditional techniques that perform color-
to-grayscale conversion using luminance only. We present
an efficient approach for contrast enhancement during
color-to-grayscale conversion that addresses these limita-
tions.
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Fig. 1a–c. Color-to-grayscale mapping. a Isoluminant color image.
b Image obtained using the standard color-to-grayscale conversion
algorithm. c Grayscale image obtained from a using our algorithm

The contributions of this paper include:

– A new contrast enhancement algorithm for color-to-
grayscale image conversion that uses both luminance
and chrominance information (Sect. 3), and presents
several desirable features:
1. Preserves the gray values found in the color image
2. Ensures that any pixels with the same color in the

original image will be mapped to the same shade of
gray (global consistency)

3. Maintains local luminance consistency
4. Is completely automatic
5. Can be efficiently implemented on modern GPUs

– A new contrast error metric for evaluating the quality
of color-to-gray transformations (Sect. 4)

Figure 2d illustrates the result of our technique applied
to the color image shown in Fig. 3 and compares it to
a luminance image (Fig. 2a), and to the results produced
by the Color2Gray algorithm of Gooch et al. [5] (Fig. 2b)
and by the technique of Rasche et al. [12] (Fig. 2c). Fig-

Fig. 2a–i. Four grayscale renditions of Claude Monet’s Impressionist Sunrise (Fig. 3), with their respective error images obtained using our
metric. Images a–d are grayscale images with their corresponding per-pixel contrast error images e–h, respectively. a Luminance image.
b Grayscale image produced by the Gooch et al. method using its default parameters. c A grayscale image produced by the Rasche et al.
approach. d Grayscale image produced by our approach. RWMS error images: rwms = 0.582 (e), 0.535 (f), 0.443 (g), 0.365 (h). Error
scale is shown in i, where red indicates larger error

ure 2e–h show the per-pixel contrast errors associated with
the grayscale images on the top row. These errors were
computed comparing the inter-pixel contrasts in the color
and grayscale images (Sect. 4). The result produced by our
technique on this (839 ×602)-pixel image not only has
the smallest contrast error, but it is also the fastest. Our
GPU implementation performs the decoloring in 0.435 s.
This is three orders of magnitude faster than the Rasche
et al. approach and five orders of magnitude faster than the
Gooch et al. approach. Our CPU implementation is still
247× faster than Rasche et al. and 25 279× faster than
Gooch et al.

2 Related work

Mapping a color image to grayscale is a dimensional-
ity reduction problem. Traditional techniques use projec-
tions or weighted sums to map a three-dimensional color
space to a single dimension (e.g., the luminance value of
XYZ, YCbCr, L∗a∗b∗, or HSL color spaces). They are
the common methods implemented in commercial appli-
cations [1, 8]. These approaches, however, do not take into
account any chrominance information, mapping isolumi-
nant pixels to the same gray value, as shown in Fig. 1b.

A popular dimensionality reduction technique is prin-
cipal component analysis (PCA) [3]. However, as pointed
out by [5, 12] PCA fails to convert color images with
variations along many directions. Besides, PCA-based ap-
proaches would require an optimization technique to mix
the principal components. Grundland and Dogdson [7]
convert the original RGB colors to their YPQ color
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Fig. 3. Color image (Impressionist Sunrise by Claude Monet, cour-
tesy of Artcyclopedia.com)

space and perform dimensionality reduction using a tech-
nique they called predominant component analysis, which
is similar to PCA. In order to decrease the computa-
tional cost of this analysis, they use a local sampling by
a Gaussian pairing of pixels that limits the amount of color
differences processed and brings the total cost to convert
an N × N image to O(N2 log(N2)). This technique is very
fast, but its local analysis may not capture the differences
between spatially distant colors and, as a result, it may
map clearly distinct colors to the same shade of gray. This
situation is illustrated in Fig. 4.

Fig. 4a–d. USA time zone map. a Color image. b Luminance image. c Grayscale image produced by Grundland and Dogdson’s [7]
method. d Grayscale image obtained using our approach. Note in c how the color contrast between some spatially distant regions were
not preserved by Grundland and Dogdson’s approach (e.g., HST and AKST time zones, CST and EST time zones)

Neumann et al. [10] presented an empirical color-
to-grayscale transformation algorithm based on the Col-
oroid system [9]. Based on the results of a user-study,
they sorted the relative luminance differences between
pairs of seven hues, and interpolated between them to ob-
tain the relative luminance differences among all colors.
Their algorithm requires the specification of two param-
eters, and the reported running times are on the order
of five to ten seconds per megapixel (hardware specs
unknown).

Gooch et al. [5] find gray levels that best represent the
color difference between all pairs of colors by optimizing
an objective function. The ordering of the gray levels aris-
ing from the original colors with different hues is resolved
with a user-provided parameter. The cost to optimize an
N × N image is O(N4), causing the algorithm to scale
poorly with image resolution.

Rasche et al. [12] formulated the color-to-grayscale
transformation as an optimization problem in which the
perceptual color difference between any pair of colors
should be proportional to the perceived difference in their
corresponding shades of gray. In order to reduce its com-
putation cost, the authors perform the optimization on
a reduced set Q of quantized colors, and this result is
then used to optimize the gray levels of all pixels in
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the resulting image. The total cost of the algorithm is
O(‖Q‖2 +‖Q‖N2).

3 The contrast enhancing algorithm

Our contrast enhancing algorithm has three main steps.
The first step consists of obtaining a set Q of quantized
colors from the set of all colors C in the input image I .
This can be performed using any color quantization tech-
nique. The second step performs a constrained optimiza-
tion on the values of the luminance channel of the quant-
ized colors using a mass-spring system. At this stage, the
chrominance information is taken into account in the form
of constraints that specify how much each particle can
move (Sect. 3.1). The final gray values are reconstructed
from the set of gray shades produced by the mass-spring
optimization (Sect. 3.2). This final step guarantees local
luminance consistency preservation.

3.1 Modeling and optimizing the mass-spring system

Our approach for color-to-grayscale mapping is modeled
as a mass-spring system whose topology is a complete
graph, i.e., each particle Pi is connected to each other par-
ticle Pj by a spring Sij . Here, a particle Pi is associated
with a quantized color qi ∈ Q (represented in the almost
perceptually uniform CIE L∗a∗b∗ color space) containing
some mass mi . Such particles are only allowed to move
along the L∗-axis of the color space and have a gray level
initialized with the value of the luminance channel of qi .
Between each pair of particles (Pi, Pj), we create a spring
with rest length given by

lij = Grange

Qrange
‖qi −qj‖, (1)

where Qrange is the maximum difference between any pair
of quantized colors in Q, Grange is the maximum pos-
sible difference between any pair of luminance values, and
‖qi −qj‖ approximates the perceptual difference between
colors qi and qj . Note that since the luminance values are
constrained to the L∗-axis, Grange = 100.

The instantaneous force applied to a particle Pi is ob-
tained by summing the tensions of all springs connect-
ing Pi to its neighbors Pj , according to Hooke’s law:

Fi =
∑

j∈N

kij

(
1− lij

l′ij

)(
L∗

j − L∗
i

)
, (2)

where N is the set of neighbors linked to Pi , and L∗
i

and L∗
j are the current luminance values associated to par-

ticles Pi and Pj , respectively. The terms lij and l′ij are,
respectively, the rest length (Eq. 1) and current length of
the spring linking Pi and Pj , and kij = 1 is the fixed stiff-
ness of that spring.

Given a time step ∆t, the new luminance value of par-
ticle Pi is computed using Verlet’s integration [15] as:

L∗
i (t +∆t) = Fi(t)

mi
∆t2 +2L∗

i (t)− L∗
i (t −∆t), (3)

where L∗
i (t) is the luminance of particle Pi at time t,

and mi is the mass of Pi . At each step of the optimiza-
tion, we update l′ij as |L∗

i − L∗
j |, and the new luminance

value L∗ according to Eq. 3. The resulting system tends
to reach an equilibrium when the perceptual differences
between the optimized gray levels are proportional to the
perceptual differences among the quantized colors in Q.

In order to enforce grayscale preservation, we set the
mass mi of particle Pi as the reciprocal of the magnitude
of qi’s chrominance vector (Fig. 5):

mi = 1∥∥(
a∗

i , b∗
i

)∥∥ . (4)

Note that d = ‖(a∗
i , b∗

i )‖ is the distance from color qi to
the luminance axis L∗. Thus, less saturated colors present
bigger masses and tend to move less. For achromatic
colors, whose mass should be infinity, we avoid the divi-
sion by zero simply by setting Fi = 0 (Eq. 2). This keeps
achromatic colors stationary.

3.2 Interpolating the final gray image

The last step of the algorithm consists of obtaining the
gray values for all pixels of the resulting image. For
this task, we have developed two distinct approaches:
per-cluster interpolation and per-pixel interpolation. The
choice for one interpolation method depends on the appli-
cation requirements.

Per-cluster interpolation. Consider the set qk ∈ Q of
quantized colors and the respective associated set gk ∈ G
of optimized gray levels. Let Ck ⊂ C be a cluster com-
posed of all colors in C that in the optimization are
represented by the quantized color qk. The final gray level

Fig. 5. The mass of a particle associated with a quantized color qi
is computed as the reciprocal of its distance d to the luminance
axis L∗: mi = 1/(‖(a∗

i , b∗
i )‖). This enforces grayscale preservation,

as achromatic colors will remain stationary
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associated to the mth color ck
m ∈ Ck is then obtained as

gray
(
ck

m

) =
{

gk + sk
∥∥qk − ck

m

∥∥ lum
(
ck

m

) ≥ lum(qk)

gk − sk
∥∥qk − ck

m

∥∥ otherwise,
(5)

where lum is the function that returns the coordinate L∗ of
a color in the L∗a∗b∗ color space, and sk is Shepard’s [13]
interpolation of ratios computed as

sk =
∑‖Q‖

i=1 wki
|gk−gi |‖qk−qi‖∑‖Q‖

i=1 wki

, for i �= k. (6)

The term sk indicates how close the gray value gk is to the
optimal solution, and wki = 1/‖qk −qi‖2 is the distance-
weighted term. For the quantized color qk that represents
the cluster, all gray values inside the kth cluster are com-
puted with respect to the optimized gray level gk. There-
fore, this transformation ensures local luminance consis-
tency.

Given the set Q of quantized colors, the cost of
computing all cluster ratios using Eq. 6 on the CPU is
O(‖Q‖2), while the cost of interpolating each pixel of an
image with N × N pixels is O(N2).

Per-pixel interpolation. In this approach, each pixel’s
final shading is computed by optimizing it against the
set gk ∈ G of previously optimized gray levels. This is
achieved by using a mass-spring system, with springs con-
necting the current pixel (which is treated as a particle
initialized with the pixel’s luminance value) and all opti-
mized gray levels gk. In this refined optimization stage,
the particles associated with the optimized gray levels are
kept stationary by setting the forces that act on them to
zero (Fi in Eq. 2). Equation 4 is then used to obtain the
mass of the pixel being optimized. In this stage, all pixels
with achromatic colors end up having infinite masses, re-
maining stationary. This ensures that all gray shades in
the original color image will be preserved in the resulting
grayscale image.

For an N × N image, the cost of this optimization pro-
cedure (O(‖Q‖N2)) is higher than the mapping defined
by Eq. 5. However, as the final gray level of each pixel
can be obtained independently from all other pixels, the
computation can be efficiently implemented in a fragment
program.

4 Error metric for color-to-grayscale mappings

We introduce an error metric to evaluate the quality of
color-to-grayscale transformations. Note that the proposed
error metric is not a perceptual one. It measures whether
the difference between any pairs of colors (ci, cj) in the
original color image has been mapped to the correspond-
ing proper target difference in the grayscale image. For

this purpose, we defined an error function using the root
weighted mean square (RWMS):

rwms(i) =
√√√√ 1

‖K‖
∑

j∈K

1

δ2
ij

(δij −|lum(ci)− lum(cj)|)2,

(7)

where, rwms(i) is the error computed for the ith pixel of
the input color image I , K is the set of all pixels in I , ‖K‖
is the number of pixels in I , δij = (Grange/Crange)‖ci −cj‖
is the target difference in gray levels for a pair of colors ci
and cj , and lum is the function that returns the compo-
nent L∗ of a color. Since the differences are computed in
the CIE L∗a∗b∗ color space, Grange = 100 and Crange is
the maximum distance between any two colors in the color
image I . The weight (1/δ2

ij) is used to suppress the bias
toward large values of δij . For an N × N image, evaluat-
ing Eq. 7 for every pixel of I would take O(N4), which
becomes impractical for large values of N. We can ob-
tain a very good approximation to this error function by
restricting the computation to the set qj ∈ Q of quantized
colors, as shown in Eq. 8:

rwmsq(i) =
√√√√ 1

‖K‖
∑

j∈Q

‖Kj‖
δ

q
ij

2

(
δ

q
ij −|lum(ci)− lum(qj)|

)2
.

(8)

Kj ⊂ K is the cluster of pixels represented by the quan-
tized color qj , δ

q
ij = (Grange/Qrange)‖ci − qj‖, ci is the

color of the ith pixel, and Qrange is the maximum dis-
tance between any two quantized colors in Q. We have
compared the RWMS values produced by Eqs. 7 and 8
for a set of 50 images. From this study, we found that
the average relative difference between the two results
was only 1.47%. Given its significantly smaller cost
O(‖Q‖N2), all contrast errors shown in the paper were
computed using the metric represented by Eq. 8. Also,
in all error images shown in this paper, the green shade
shown at the bottom of the error color ramp indicates
rwms = 0.0, while the red shade at the top represents
rwms = 1.2.

Fig. 6a–c. Example of our contrast error metric. a Color image.
b Luminance image of a. c Error image computed using Eq. 8. The
largest contrast errors concentrate on the berry pixels
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Figure 6 illustrates the use of our contrast error met-
ric. Figure 6c is the error image for the pair of color and
grayscale images shown on Fig. 6a and Fig. 6b, respec-
tively, using a set of 64 quantized colors. The grayscale
image was obtained as the luminance of Fig. 6(a). As ex-
pected, the largest errors concentrate on the berry pixels,
since these present the biggest contrast lost. Smaller errors
are spread over the several green shades of the leaves.

5 Results

Per-cluster interpolation can be implemented quite effi-
ciently on a CPU due to its lower computational cost. The
quality of the results depends directly on the quality of
the quantization algorithm used. According to our experi-
ence, per-cluster interpolation produces excellent results
in combination with k-means. On the other hand, per-pixel
interpolation has a higher computation cost, since it op-
timizes all pixels with respect to the set Q of quantized
colors. Fortunately, its computation can be efficiently im-

Fig. 7. Performance comparison of various algorithms on a 2.2 GHz PC with 2 GB of memory and on a GeForce 8800 GTX GPU using
images of different resolutions. Gooch et al. performed in 12 276 and 30 372 s for (640×480) and (800×600)-pixel images, respectively.
Except for Gooch et al., all other techniques used a set of 128 quantized colors. Our mass-spring (MS) approaches optimized the set of
quantized colors using 1000 iterations. The GPU version obtained the final gray levels by optimizing each pixel with 100 iterations. Its
results are detailed for better visualization. Note how the proposed approach scales well with the size of the input images

plemented on a GPU. Due to its refined optimization pro-
cedure, per-pixel interpolation can be used in combination
with a less expensive and faster quantization algorithm,
like uniform quantization.

We implemented the described algorithms in C++ and
GLSL, and used them to decolorize a very large num-
ber of images. The reported times were measured using
a 2.2 GHz PC with 2 GB of memory and on a GeForce
8800 GTX with 768 MB of memory. One should note that
ours is not the first mass-spring implementation on a GPU.
This has been done before by other researchers [2, 4, 14],
but the specific needs and topology of our application
lends itself to a more efficient GPU implementation.

Figure 7 compares the times for quantization and de-
colorizing images with various resolutions using differ-
ent algorithms. MS-PC CPU is our mass-spring algo-
rithm using per-cluster interpolation in combination with
k-means, and MS-PP GPU is our mass-spring algorithm
using per-pixel interpolation with uniform quantization.
In the case of k-means, we used a set of 128 colors. In
the case of uniform quantization, we discretized the RGB
space using a uniform 10 ×10 ×10 grid. Figure 7 shows
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that in all of its variations, our approach is a few orders
of magnitude faster than both Gooch et al. and Rasche
et al. approaches. All images and execution times shown
in this paper regarding the techniques of Gooch et al. [5]
and Rasche et al. [12] were obtained using software pro-
vided by these authors at [6] and [11], respectively.

Figure 8 compares the results produced by various
techniques with respect to grayscale preservation. One
should note that only the luminance image (Fig. 8b) and
the result produced by our method (Fig. 8f) are capable
of preserving the original shades of gray. The luminance
image, however, failed to distinguish the shades of the var-
ious isoluminant circles. Gooch et al. (Fig. 8c) and Rasche
et al. (Fig. 8d, e) techniques changed the original gray
shades in the resulting images.

Figures 2, 9–11 compare the results, performance,
and the overall contrast errors produced by the various

Fig. 8a–f. Example of grayscale preservation. a Original color image with isoluminant circles. b Luminance image obtained from a. Note
it maps all isoluminant circles to the same shade of gray. c Result produced by the Gooch et al. technique. Note that the two shades
of green and the shade of orange turned into white in the resulting image; d and e are two results produced by the Rasche et al. ap-
proach. f Grayscale image produced by our approach. Note that only the luminance image (b) and the result produced by our approach (f)
preserved the original gray shades. The results shown in d–f took a set of seven uniformly quantized colors as input

Fig. 9a–j. Pablo Picasso’s Lovers. a Color image (courtesy of Artcyclopedia.com). b–e Grayscale images with their per-pixel contrast
RWMS error images g–j, respectively. b Luminance image. c Grayscale image produced by the Gooch et al. method using its default
parameters. d A grayscale image produced by the Rasche et al. approach. Note that it is hard to distinguish between the lady’s yellow
skirt and the man’s red clothes. e Grayscale image produced by our approach. f Error scale, where red indicates a larger error

algorithms. Table 1 summarizes these data. Following
the authors comments on image quality, we did not use
any quantization with the approach from Gooch and co-
workers. For the Rasche et al. and our approach, the input
images were quantized as shown in the second column
of Table 1.

Table 1 also shows that our approach simultaneously
presents the smallest RWMS error and is by far faster than
the Gooch and Rasche techniques. The luminance image,
on the other hand, presents the biggest overall contrast er-
rors, which is something that was already expected, since
the color-to-luminance mapping completely ignores the
chrominance information of the original image.

Figure 2 shows four grayscale renditions of Claude
Monet’s Impressionist sunrise (Fig. 3), with their respect-
ive contrast error images obtained using our metric. This
example illustrates the robustness of our technique to han-
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Fig. 10a–j. Photograph of a natural scene. a Color image. b–e Grayscale images with their per-pixel contrast RWMS error images g–j,
respectively. b Luminance image. c Grayscale image produced by the Gooch method using its default parameters. d A grayscale image
produced by the Rasche approach. e Grayscale image produced by our approach. f Error scale, where red indicates a larger error

Fig. 11a–j. Claude Monet’s Midday Rest. a Color image (courtesy of Artcyclopedia.com). b–e Grayscale images with their per-pixel con-
trast RWMS error images g–j, respectively. b Luminance image. c Grayscale image produced by the Gooch method using its default
parameters. d A grayscale image produced by the Rasche approach. e Grayscale image produced by our approach. f Error scale, where
red indicates a larger error

dle large images. The Sunrise has (839×602) pixels and
our GPU implementation performs the decolorization in
0.435 s. This is 751× faster than the Rasche approach and
77 910× faster than the Gooch approach. Our CPU imple-
mentation is still 247× faster than the Rasche approach
and 25 379× faster than the one by Gooch et al.

Picasso’s Lovers provides an example for which the
result produced by the Gooch technique presents a large

contrast error (Fig. 9h). For this same image, the Rasche
approach produced a relatively small contrast error, but
in the resulting grayscale image it is hard to distin-
guish between the lady’s yellow skirt and the man’s
red clothes. For the photograph shown in Fig. 10, the
overall contrast error produced by Gooch (Fig. 10h) is
about the same as the one found in the luminance image
(Fig. 10g).
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Table 1. Summary of the performance and overall contrast error produced by the various techniques when applied to the various images.
Time measured in seconds. Our approach presents the smallest RWMS error for all examples and is significantly faster than the other
techniques. The speedups increase with the image sizes. For the Sunrise image, with (839×602) pixels, our GPU implementation is 751×
faster than the Rasche (CPU) approach and 77 910× faster than the Gooch approach (CPU)

Lum. Gooch et al. Rasche et al. MS-PC CPU MS-PP GPU
Image (size) Quant. (No. of colors) RWMS Time RWMS Time RWMS Time RWMS Time RWMS

Sunrise (839×602) Uniform (264) 0.707 33 501.4 0.557 326.78 0.564 1.32 0.429 0.43 0.425
Lovers (301×407) K-means (255) 0.690 1882.5 0.699 87.36 0.498 0.96 0.486 0.36 0.477
Boats (193×282) Uniform (141) 0.634 328.3 0.624 20.10 0.513 0.35 0.432 0.17 0.428
Midday (275×216) K-means (128) 0.641 1383.0 0.649 41.71 0.521 0.38 0.520 0.18 0.517

Figure 11 shows an example for which, according to
the proposed metric, the result produced by the Gooch
technique (Fig. 11h) is similar to the luminance image
(Fig. 11g). For this example, the overall errors produced
by Rasche et al. (Fig. 11i) and by our technique (Fig. 11j)
are the smallest ones. However, our GPU approach prod-
uced its result 232× faster than Rasche et al. and our CPU
implementation was still 110× faster than Rasche et al.

6 Conclusions

We presented an efficient mass-spring-based approach
for contrast enhancement during color-to-grayscale image
conversion. Our method is more than three orders of magni-
tude faster than previous optimization-based techniques [5,
12], while producing superior results both in terms of con-
trast preservation and image guarantees. Our algorithm
satisfies a global consistency property, preserves grayscale
values present in the color image, maintains local lumi-
nance consistency, is completely automatic, and can be
efficiently implemented on modern GPUs.

We have also introduced an error metric for evaluat-
ing the quality of color-to-grayscale transformations. Our
metric is based on a RWMS error that measures whether
the difference between any pairs of colors in the original
image have been mapped to the corresponding target dif-
ference in the grayscale image.

Although our algorithms guarantee a continuous map-
ping among gray shades in any cluster, it does not deal
with discontinuity across different clusters. However, after
extensive tests on a great variety of images, we were un-
able to notice any visual artifacts caused by this limitation.

The proposed approach was designed to deal with
static images. We are exploring ways to extend our tech-
nique to perform video sequences decolorization. Prelim-
inary results show that we can enforce temporal coherence
by initializing the mass-spring optimization with particles
computed for previous frames, and by keeping those par-
ticles stationary. Temporal coherence is not preserved by
related techniques [5, 7, 10, 12].

The unique combination of high-fidelity capture of
color differences, grayscale preservation, global consist-
ency, local luminance consistency, and speed makes
our technique a good candidate for replacing standard
luminance-based color-to-grayscale algorithms in printing
and pattern recognition applications.
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