
Visual Comput (2008) 24: 397–409
DOI 10.1007/s00371-008-0221-4 O R I G I N A L A R T I C L E

Manuel N. Gamito
Steve C. Maddock

Topological correction of hypertextured
implicit surfaces for ray casting∗

Published online: 15 April 2008
© Springer-Verlag 2008

M.N. Gamito (�) · S.C. Maddock
Department of Computer Science
The University of Sheffield
211 Portobello
Sheffield S1 4DP, UK
{M.Gamito, S.Maddock}@dcs.shef.ac.uk

Abstract Hypertextures are a useful
modelling tool in that they can
add three-dimensional detail to the
surface of otherwise smooth objects.
Hypertextures can be rendered as
implicit surfaces, resulting in objects
with a complex but well defined
boundary. However, representing
a hypertexture as an implicit sur-
face often results in many small
parts being detached from the main
surface, turning an object into a dis-
connected set. Depending on the
context, this can detract from the
realism in a scene, where one usually
does not expect a solid object to have
clouds of smaller objects floating
around it. We present a topology cor-
rection technique, integrated in a ray
casting algorithm for hypertextured
implicit surfaces, that detects and
removes all the surface components
that have become disconnected from

the main surface. Our method works
with implicit surfaces that are C2

continuous and uses Morse theory to
find the critical points of the surface.
The method follows the separatrix
lines joining the critical points to
isolate disconnected components.

Keywords Morse theory · Implicit
surface · Hypertexturing · Ray casting

1 Introduction

Hypertexturing is a procedural technique proposed by Per-
lin and Hoffert to add three-dimensional small-scale de-
tail to the surface of smooth objects [18]. It can be used
to model a large collection of materials such as fur, fire,
glass, fluids and eroded rock. As a procedural modelling
and texturing tool, hypertexturing can be regarded as an
improvement over solid texturing [16]. Using hypertex-
tures, it becomes possible to actually deform the surface

∗The first author is supported by grant SFRH/BD/16249/2004 from the
Fundação para a Ciência e a Tecnologia, Portugal.

of an object instead of merely modifying its material shad-
ing properties. Hypertextures were initially presented as
a technique to model fuzzy objects rather than implicit sur-
faces, i.e. objects such as a cloud that are represented by
a density function and which do not have a well-defined
boundary. Hypertextures, however, can also be applied to
implicit surfaces.

In the original definition of hypertexture, an object is
defined in three-dimensional space with an object density
function f0 :R3 → [0, 1], which associates a density value
f0(x) with every point x in space. A density of 0 means
total transparency while a density of 1 means total opacity.
The shape of the object can then be deformed through the

398 M.N. Gamito, S.C. Maddock

composition of f0 with one or more density modulation
functions fi : [0, 1]×R3 → [0, 1], i = 1, . . . , n such that
the final object density f is given by:

f(f0(x), x) = fn(. . . f2(f1(f0(x), x), x), . . ., x). (1)

It is possible to apply Eq. 1 similarly to implicit sur-
faces by considering f0 : R3 → R to be a function such
that f0 = 0 signals the surface and f0 > 0 signals the in-
side of the surface. After this change, f(f0(x), x) also
becomes a function that generates a hypertextured implicit
surface. The restriction that density modulation functions
return opacity values in the range [0, 1] is no longer neces-
sary and we can define them as functions fi :R×R3 →R
for i = 1, . . . , n.

Compared to displacement mapping, hypertexturing is
a more flexible technique for adding geometric detail to
an otherwise smooth implicit surface [1, 20]. Hypertex-
tures can generate surface overhangs and arches, which
the displacement mapping technique is incapable of pro-
ducing. Figure 1 illustrates the difference between the two
techniques. Although it is not demonstrated here, any dis-
placement map can also be expressed as a particular form
of hypertexture. If f0 generates a sphere of unit radius,
for example, any hypertexture written as f(f0(x), x/‖x‖)
is equivalent to a displacement mapped sphere. Further-
more, it is possible to add hypertexturing details on top of
a displacement mapped surface, all within the framework
expressed by Eq. 1.

One drawback of the modelling flexibility provided
by hypertextures is that a surface can also become frag-
mented into several disconnected parts (this is illustrated
in Fig. 1). Depending on the context, this surface splitting
effect may be desirable or not. If one is using hyper-
textured implicit surfaces to model splashing fluids, for
example, then the surface splitting effect is actually bene-
ficial. If, on the other hand, one is trying to model a solid
object with a complex surface structure, e.g. a rock, the

Fig. 1. Comparison between the displacement map (top) and hyper-
texturing (bottom) techniques when adding detail to a horizontal
plane

disconnected state of the surface leads to physically non-
plausible results.

This paper presents a solution to the surface splitting
effect of hypertextures that are defined with C2 continuous
functions. Disconnected surface parts are detected in an
initial connectivity analysis step and then removed during
rendering. To achieve this goal we rely on Morse theory
to analyse the topology of the surface. The surface con-
nectivity, in particular, can be completely determined by
studying the critical points of the function f and the way
they are joined together. We apply our technique as part
of a ray casting algorithm for hypertextured implicit sur-
faces.

We make a distinction between global methods and
local methods for querying surface connectivity. Global
methods must analyse the entire surface as a pre-process-
ing step before they can determine the connectivity state
of any arbitrary surface point. Local methods, by contrast,
can perform a localised connectivity analysis for every
point. In this paper we concentrate on global methods.
Our proposed method is global because it needs to lo-
cate all the critical points of the surface as a first step. We
also give suggestions of how a local topology correction
method may be implemented and show initial results in
that direction.

Section 2 demonstrates the surface splitting effect and
shows why it is hard to control in a general way. Sec-
tion 3 presents two simple global methods that can be
used to solve the surface connectivity problem and ex-
plains their limitations. Section 4 explains the necessary
concepts from Morse theory that will be required in
Sect. 5, where we present our proposed algorithm. Sec-
tion 6 shows results and Sect. 7 presents our conclusions.
Section 8 suggests an extension of our algorithm that can
be applied to implicit surface polygonisers. Finally, Ap-
pendix A presents formulae for evaluating the gradient and
the Hessian of the procedural noise functions used in this
paper. Evaluation of these functions is a common task but
the same does not happen with their gradients or Hessians.
These, however, are essential if one wants to apply Morse
theory to noise functions.

2 The surface splitting effect

We illustrate the splitting effect of hypertextured surfaces
with an example. Figure 2 shows three implicit surfaces
that have been generated by adding increasing amounts of
hypertexture. The function that generates these surfaces is:

f(f0(x), x) = f0(x)+εn(4x), (2)

where f0(x) = 1 −‖x‖ defines an implicit sphere of unit
radius and n is Perlin’s improved gradient noise func-
tion [17]. The amplitude ε of the hypertexture takes values
of 0.1, 0.3 and 0.8 for the three surfaces in Fig. 2. The case

Topological correction of hypertextured implicit surfaces 399

Fig. 2. A sphere rendered with increasing amounts of hypertexture (ε = 0.1, 0.3 and 0.8)

ε = 0.1 shows a surface with a small amount of perturb-
ation relative to the initially smooth sphere. This type of
surface could more easily have been modelled as a proced-
ural displacement map [9]. The case ε = 0.3 generates an
object with more pronounced surface features but which,
from a topological point of view, is still homeomorphic to
a sphere. The case ε = 0.8 generates an object with the
interesting overhanging and arching features that only the
implicit surface approach can give. At the same time, it
also causes the surface to split, generating a cloud of small
objects that are seen floating at fixed locations around the
main object in the centre.

The splitting effect places an upper bound on the
amount of hypertexture that can be added to an object
while keeping it as a topologically connected set. It can
occur for any hypertexture and not just the additive hyper-
texture given by function 2. The only exceptions consist
of hypertextures that, by construction, are equivalent to
displacement maps. The maximum amount of hypertex-
ture depends on the particular function f that generates
the surface and, without recourse to the Morse theory used
in this paper, can only be found by trial and error. For solid
modelling purposes, one would often like to use stronger
hypertexturing effects than those allowed if a surface is
to remain simply connected. It is not an uncommon prac-
tice, when excessive hypertexturing has been applied over
a solid object, to digitally remove disconnected parts from
the final rendering as a post-processing step. This simple
trick can only be applied, however, provided that no dis-
connected component occludes the main surface.

3 Alternative approaches

A simple but inaccurate way to perform topological cor-
rection on hypertextured surfaces is to employ a voxel
grid, where the function f(f0(x), x) is sampled at the cor-
ners of the voxels. A voxel is known to straddle the surface
when the function changes sign at some of the voxel’s
eight corners. One can perform a discrete three dimen-

sional region growing process to segment the voxel space
into disjoint volumes, each enclosing a particular discon-
nected component of the surface. If the original data is
already discrete, e.g. a series of MRI scans, then this is
probably the best approach to take. When generating an
isosurface from the volume data, this voxel-based method
can be used to remove outlying surface components that
may be the result of measurement error. In our case, we are
interested in performing topological correction of proced-
urally defined surfaces. Sampling f(f0(x), x) onto a grid
implies loss of information unless the function happens to
be bandlimited and the sampling frequency is above the
Nyquist limit. This loss of information leads to incorrect
connectivity results, as shown in Fig. 3, which can occur
for surface components that are too small or too close to
the main surface, relative to the sampling distance.

Another possible approach is to first convert the im-
plicit surface into a polygonal mesh before performing
any topology correction. Stander and Hart have presented
a meshing algorithm for implicit surfaces that is guaran-
teed to preserve surface topology [24]. Once the polygonal
mesh has been generated, one can perform region growing
by jumping across the edges shared by neighbouring poly-
gons to obtain a set of disjoint polygonal objects. One of
these objects approximates the main implicit surface and

Fig. 3. Two surface components incorrectly determined to be part
of the main surface. The arrows show the region growing sequence,
starting from the voxel on the bottom left

400 M.N. Gamito, S.C. Maddock

the others represent the outliers that should be eliminated.
One objection against this approach is that it cannot be
used for direct rendering of implicit surfaces with ray cast-
ing – it is only meaningful for applications where implicit
surfaces are converted to polygonal meshes and subse-
quently rendered on a GPU board. Another objection is
that it is wasteful of CPU cycles since it takes time to cor-
rectly polygonise surface components that are later found
to be disconnected and which must then be removed. Top-
ology correction should occur before the meshing process
rather than after.

4 Morse theory and the CW-complex

Morse theory studies the behaviour of functions over
a manifold [13]. The theory was first introduced to com-
puter graphics by Shinagawa et al. and was later shown
by Hart to be relevant for the topological study of implicit
surfaces [6, 21]. When the theory is applied to implicit
surfaces, the manifold becomes the entire R3 space and
the function defined over this space is our function f that
generates the surface. Central to the Morse theory is the
notion of a critical point of f . A critical point xC is such
that:

∇ f(f0(xC), xC) = 0. (3)

A critical point can be further classified by studying the
eigenvalues of the Hessian matrix of f at xC . The Hessian
matrix H{ f } collects all the second partial derivatives of
the function f :

H{ f } =
[

∂ f 2

∂xi∂xj

]
i, j∈{1,2,3}

. (4)

If f is C2 continuous then we have that ∂ f 2/∂xi∂xj =
∂ f 2/∂xj∂xi and the Hessian is symmetric. The spec-
tral theorem then guarantees that all three eigenvalues
of H{ f } will be real. Depending on the signs of the eigen-
values λ1, λ2 and λ3, sorted in increasing order, a critical
point can be classified as shown in Table 1. The type of
a critical point gives an indication of the topology of the
surface around that point. For example, the maxima occur
near the local centroids of the surface while the 2-saddles
occur at points where two surface components are joined

Table 1. Distinct types of critical points are determined by combin-
ations of the signs of the eigenvalues of the Hessian matrix H{ f }

λ1 λ2 λ3 Type

− − − Maximum
− − + 2-Saddle
− + + 1-Saddle
+ + + Minimum

together. In this paper, we only need to be concerned with
the maxima and the 2-saddles in order to characterise the
connectivity of the surface.

The case where one or more of the eigenvalues is zero
leads to a degenerate critical point. Morse theory breaks
down in these circumstances. However, degenerate critical
points are unstable and can easily be removed by intro-
ducing a small perturbation in the parameters defining the
function. A function f that contains no degenerate critical
points is then said to be a Morse function. Morse func-
tions need to be C2 continuous, considering that both first
and second partial derivatives of f are required by the
Morse theory. It is possible to relax this restriction and
work with C1 functions, provided that second derivatives
are continuous at least over the critical points [8].

By taking the gradient ∇ f , one obtains a vector flow
field whose structure is intimately related to the topology
of the implicit surface. From Eq. 3, the critical points of
the surface are also the stagnation points of the flow field.
A streamline of this field is a path that is obtained by fol-
lowing the local gradient vector, according to the ordinary
differential equation:

dx
dt

= ∇ f(f0(x), x). (5)

A streamline is called a separatrix if it separates two
regions of the flow with different characteristics [10]. Sep-
aratrices are important as they also give information about
the topology of the surface. All the separatrices originate
and terminate at maxima of f . For every separatrix there
is always a 2-saddle somewhere along its path. The sep-
aratrix is locally tangent to the v3 eigenvector (associated
with the λ3 eigenvalue) at the 2-saddle.

Figure 4 shows a simple case of two implicit blobs con-
nected as a single surface. There are two maxima close to
the centroids of each blob and a 2-saddle at the junction
of the two blobs. The separatrix, in this simple case, is
a straight line segment joining the two maxima and pass-
ing through the 2-saddle. In a more general situation the
separatrix would be curvilinear. Knowing the position xS

Fig. 4. An implicit surface formed from two blobs. The “+” signs
mark the two maxima and the “×” sign marks the 2-saddle

Topological correction of hypertextured implicit surfaces 401

of the 2-saddle, it is possible to locate the two maxima
sharing this critical point by integrating Eq. 5 backwards
and forwards from xS, following a direction that is ini-
tially coincident with the v3 eigenvector of the 2-saddle. It
is also possible to determine the connectivity of the two
blobs by checking the sign of f(f0(xS), xS). If this sign
is positive, the blobs are connected and the separatrix is
known to travel exclusively through the interior of the sur-
face. If the sign is negative, the two blobs are disconnected
and the separatrix must exit and enter the surface again at
some points.

The separatrices defined by f form a network of lines
that partition the R3 space into a topological entity called
the CW-complex [7]. The CW-complex is a data structure
that encodes all the topology of the implicit surface. It
consists of a disjoint partitioning of the space into curved
cells. The maxima are located at the corners of these cells
and the separatrices form the edges of the same cells. Con-
nectivity information can be obtained by following only
the network of separatrices that are interior to the surface.
This process will partition the maxima into a number of
separate sets, which reflects the number of disconnected
components of the surface.

5 The topology correction method

The method for correcting the topology of hypertex-
tured implicit surfaces proceeds by identifying all dis-
connected components of the surface. Of all the com-
ponents detected, the larger one is considered to be the
main surface, which is rendered as part of the ray cast-
ing algorithm. The remaining surface components are
ignored during ray-surface intersection tests. The detec-
tion of disconnected surface components proceeds in two
steps:

1. Build a set of all maxima and 2-saddles that are located
inside the surface.

2. Segment the previous set into disjoint subsets by fol-
lowing the separatrices from the 2-saddles towards the
maxima.

Steps 1 and 2 are performed before any surface ren-
dering occurs. The outcome of Step 2 is a sequence of
sets Si, with i = 1, 2, . . . , N, where each set contains all
the maxima that exist inside some particular component.
The number N of sets is equal to the total number of
surface components. One of these sets is the main set,
corresponding to the main surface to be rendered. Dur-
ing a ray-surface intersection test, the set Si that corres-
ponds to the surface component to which the intersec-
tion point belongs is identified. If this is not the main
set, the intersection point is ignored and another point
is searched further along the ray. The following sections
describe the relevant steps of the topology correction
method.

5.1 Locating critical points

Location of critical points is made by recursive subdiv-
ision of an initial bounding box that surrounds the sur-
face. We employ the technique that was first proposed by
Stander and Hart and later improved by Hart et al. [8, 24].
For every cubical voxel resulting from the subdivision,
a series of tests is made to determine, first, if the voxel
contains part of the surface and, second, if a critical point
may be contained within it. If these tests pass, the voxel
is subdivided and the children are tested in turn, down to
a minimum specified voxel size.

Interval arithmetic is used to check if a voxel is part of
any of the components of the surface [14, 22]. An interval
estimate for the variation of F inside the voxel is used in
the following test to determine if the voxel lies completely
outside the surface:

f(f0(XV), XV) < 0, (6)

where XV is an interval vector that spans the spatial extent
of the voxel. Because interval arithmetic is a conservative
range estimation technique, this test is always guaranteed
to return a correct result for outside voxels.

A voxel is checked for the existence of critical points
once it is known from test Eq. 6 that it may be either in-
side or straddling the surface. The test for the existence
of critical points is achieved by obtaining an interval vec-
tor estimate of the function gradient, using again the XV
interval extent:

∇ f(f0(XV), XV) � 0. (7)

If the null vector 0 is contained inside the interval vec-
tor for ∇F, there is the possibility that one or more critical
points may be contained in the voxel. The voxel is then
either subdivided or an explicit test is made for the pres-
ence of maxima and 2-saddles, once a minimum voxel
size has been reached. Figure 5 shows in pseudo-code

Fig. 5. The Subdivision algorithm

402 M.N. Gamito, S.C. Maddock

the Subdivision algorithm that implements the se-
quence of tests for each voxel. The voxels are kept in
a stack, which is initialised with the bounding box V0 for
the object.

Due to the conservative properties of interval arith-
metic, it often happens that voxels neighbouring a voxel
that contains critical points are also incorrectly flagged
by the interval arithmetic tests to contain such points.
The Test routine, that is invoked in the listing of Fig. 5,
performs the final stage in the search for critical points,
weeding out the false positives output by the interval tests.
We assume at this stage that a voxel is small enough to
contain only one critical point. This should be true pro-
vided that the threshold ε for the minimum voxel size is
appropriately chosen. Starting from the voxel centre xV ,
the following sequence of Newton iterations is performed
towards the critical point:

H{ f }δxi = −∇ f,
xi+1 = xi + δxi . (8)

Both the Hessian matrix H{ f } and the gradient ∇ f
are evaluated at the point xi to solve for δxi . The iter-
ation is stopped if the sequence of points xi goes outside
the voxel. Otherwise, the sequence will converge to some
point xC inside the voxel where a critical point is known
to exist. If the critical point is inside the surface such that
f(f0(xC), xC) > 0, and if it is a maximum or a 2-saddle
(which is found after the eigenvalues of H{ f } at xC have
been computed), the point is added to a set S of critical
points interior to the surface. Each element in S stores the
following information regarding a critical point:

– The position xC
– The value f(f0(xC), xC), which must be positive
– A flag indicating if xC is a maximum or a 2-saddle
– The eigenvector v3 if xC is a 2-saddle

When the Subdivision algorithm completes, the
set S will contain all the maxima and 2-saddles that were
found inside every disconnected component of the surface.

Fig. 6. The Segmentation algorithm

5.2 Locating disconnected components

The set S is segmented into the sequence Si , where each
set Si contains the maxima for one surface component.
The algorithm Segmentation is shown in Fig. 6. Each
critical point xC of S is considered at a time, by decreas-
ing order of f(f0(xC), xC). If xC is a maximum then a new
set Si = {xC} is created. If, on the other hand, xC is
a 2-saddle, the two maxima xi and xj connected to it are
determined by integrating the separatrix backwards and
forwards with Eq. 5, starting from xC and going initially
along the direction of the v3 eigenvector for the 2-saddle.
Because the critical points are evaluated by decreasing
order of f , it is certain that by the time a 2-saddle is con-
sidered, the two maxima xi and xj to which it connects
will already have been processed by the algorithm. The
sets Si and Sj that contain xi and xj , respectively, are then
joined together to form a new set. The 2-saddle is ignored,
however, if both xi and xj are found to be part of the same
set already.

Once Segmentation completes, all disconnected
surface components will have been identified through
the Si sets. The main surface is identified by the set Sm that
contains the largest number of maxima, where the index m
is:

m = max
i

#Si. (9)

This criterion for selecting the main surface that is to
be rendered may fail for objects with an excessively large
amount of hypertexture. If there is too much hypertex-
ture, the object will break into a cloud of many smaller
objects of approximately equal size. It is not clear in these
conditions which of these smaller objects should be se-
lected for rendering. Our purpose is to study hypertextured
functions f(f0(x), x) where the geometry of the original
object D(x) is still discernible after the hypertexture has
been applied. The criterion Eq. 9 will then identify the cor-
rect surface component for rendering since the majority
of the maxima will be contained inside the main sur-
face – only a smaller number of maxima will exist outside
the main surface, being responsible for the disconnected
fragments.

5.3 Computing ray intersections

The computation of ray intersections with the implicit
surface is performed with an affine arithmetic range es-
timation algorithm [4]. Affine arithmetic is an extension
of the simpler interval arithmetic and provides tighter
bounds for the estimation of unknown quantities [2]. This
affine arithmetic intersection algorithm, like all interval
based intersection algorithms, is capable of finding every
intersection point between the ray and the surface, sorted
by increasing distance along the ray. The sphere tracing
method, by comparison, can only find the first intersection

Topological correction of hypertextured implicit surfaces 403

Fig. 7. The intersection between a ray and the surface. The stream-
line originating at the intersection point is shown as a dotted line

point with reliability [5]. Once an intersection point xI
has been found along a ray, a test is performed to deter-
mine if it belongs to the main surface or not. To that ef-
fect, a streamline is followed with Eq. 5, starting from xI ,
which will converge towards some maximum xM interior
to the surface.

Figure 7 shows an example. The streamline starts off
along a direction that is initially orthogonal to the implicit
surface and converges towards the point xM . Having found
the maximum xM , the set Si to which it belongs is re-
trieved. If this is the main set Sm , the intersection point xI
is rendered, otherwise intersection testing continues along
the ray to try to find another intersection point further
along. Following every intersection that is found not to be
part of the main surface, the connectivity test need not be
performed again for the next intersection point, given that
this will be the exit point of the ray from a disconnected
component.

5.4 Tracking streamlines

The path of a streamline needs to be tracked as part of the
ray-surface intersection procedure of Sect. 5.3 and as part
of the Segmentation algorithm of Sect. 5.2 where, in
the latter case, the streamline is also a separatrix of the
surface. Special care needs to be taken when performing
this path tracking procedure because the endpoint of the
streamline (and also the starting point, in the case of a sep-
aratrix) is a critical point where ∇ f = 0 occurs.

When tracking a separatrix, the path originates from a
2-saddle located at some point xS. If one were to integrate
Eq. 5 with the initial condition x(0) = xS, the path would
never leave xS since this is a stagnation point of the flow.
To start off the integration from a 2-saddle, the following
initial condition must be used instead:

x(0) = xS ± εv3, (10)

where ε is a small displacement. The displacements of ±ε
along the v3 eigenvector will enable the integrator to move
away from xS and to converge towards the two maxima

that connect with the 2-saddle through the separatrix. The
maxima, however, are also stagnation points and path
tracking would have to proceed from t = 0 up to t = ±∞
if the two maxima were to be reached exactly. In practice,
one proceeds with the integration for as long as possible
and then finds the maxima that are nearest to the points
where the integrator left off.

We use the lsodar ordinary differential equation
solver from the ODEPACK Fortran package to perform
path integration [11]. The lsodar solver is able to select
between a stiff and a non-stiff integration method, depend-
ing on the local conditions of the flow. When given an
upper limit of +∞ or −∞, lsodar inevitably finishes
with an error status as it tries to get close to one of the
maxima. It also returns the farthest point x(t) that could
be computed along the path. By controlling the numerical
precision requested from lsodar, it is possible for x(t)
to be as close to the correct maximum point as desired.
We then search among all the maxima of all the Si sets
for the one that is closest to x(t), thus identifying the par-
ticular set Si to which the separatrix has converged. The
procedure is similar when tracking streamlines as part
of the ray-surface intersection tests except that we are
now only interested in following the path from t = 0 to
t = +∞ and the starting condition x(0) = xI is used, in-
stead of Eq. 10.

Currently, the search for the maximum point near-
est to x(t) is performed exhaustively by computing the
squared distance to every possible maximum. This search
method has linear time complexity and can become slow
for a surface with a large number of maxima inside. Al-
though we have not implemented it for this paper, it is
possible to perform the search for a maximum in average
logarithmic time with the help of a kd-tree [3, 23].

6 Results

We demonstrate the application of the topology correc-
tion algorithm with hypertextures that are generated from
scaled sums of a basis procedural noise function. The
hypertexture function is:

f(f0(x), x) = f0(x)+0.8
L−1∑
i=0

2−0.8in(2i+2x). (11)

The function f0 generates a sphere of unit radius, as in
the example of Fig. 2, and n is a sparse convolution noise
function [12]. The summation in Eq. 11 models a frac-
tional Brownian motion process with a Hurst parameter
given by H = 0.8 [19]. The number of layers of noise that
are added to the sphere is given by L. As this number in-
creases, the surface of the sphere becomes increasingly
more irregular and, in the limit, attains a fractal dimension
of 3− H = 2.2.

404 M.N. Gamito, S.C. Maddock

Fig. 8. The network of separatrices and maxima interior to a hyper-
textured surface

Figure 8 shows the network of separatrices for a hyper-
textured object computed from Eq. 11, with L = 1,
after the Subdivision and Segmentation algo-
rithms have been applied. The network is shown super-
imposed over an image of the object. This network rep-
resents a partial visualisation of the CW-complex for the
object’s surface since only the separatrices that are in-
side the surface are shown. Maximum points are also
shown as dots and are located at the endpoints of one
or more separatrices. Several of these points, however,
are isolated and correspond to small disconnected sur-
face components that can be seen surrounding the main
surface.

Table 2 lists the number of maxima, 2-saddles and
disconnected components of the surface as the num-
ber of noise layers increases. These numbers follow
a roughly geometrical progression with L, which causes
the Subdivision algorithm to become increasingly
less efficient as it needs to identify an ever denser cloud of
critical points. The application of the topology correction
method to a fractal hypertexture is, therefore, impracti-
cal since a surface needs to have five or more layers of
noise to become recognisably fractal. Figure 9 shows the
cases L = 1 and L = 3 of the hypertexture generated
from Eq. 11. The original surface is first shown, with-
out any topological correction. The disconnected compo-
nents are then identified and visualised in red. Finally,

Table 2. Statistics for a hypertextured sphere with an increasing
number of layers of noise

L Maxima 2-Saddles Components

1 214 304 58
2 1006 1585 182
3 8408 4567 418

the same disconnected components are ignored during the
ray-surface intersection procedure.

A more efficient method than spatial subdivision for
the localisation of critical points was proposed for im-
plicit surfaces that are made from sums of radial basis
functions by Wu and de Gomensoro Malheiros [25]. With
their method, simple heuristics are used to estimate the
position of the critical points. The application of several
relaxation steps then causes the critical points to converge
towards their correct positions. Sparse convolution noise
is an example of a hypertexturing function that could use
the improved localisation method by Wu and de Gomen-
soro Malheiros since it consists of the sum of an infinite
number of radial basis functions that follow a Poisson dis-
tribution in space. The same method, however, cannot be
applied to Perlin noise functions. For that reason, we have
adopted spatial subdivision as our critical point localisa-
tion method, which, although being less efficient, is quite
general and can be applied to any C2 or even C1 function.
Spatial subdivision is also an easily parallelisable algo-
rithm where disjoint regions of space can be assigned to
different CPUs.

A minimum voxel size ε = 10−8 was used as part of
the Subdivision algorithm to obtain the results shown
in Fig. 9. The iterations in Eq. 8 for the multi-dimensional
Newton root finder were stopped when ‖xi+1 − xi‖ <
10−12. The numerical precision requested from the
lsodar ODE solver was also equal to 10−12. After
determining the connectivity information, the compo-
nent sets Si, with i = 1, . . . , N, were stored to a file so
that they could be reused for different renderings of the
same surface. This is especially helpful when perform-
ing computer animation as the Subdivision and the
Segmentation algorithms need to be run only once for
each surface.

Figure 10 shows results that we have recently achieved
and is a rendering of the surface of a procedural planet
with overhangs and arches, represented as an implicit
surface. Although the terrain appears to be defined over
a flat surface, it is actually a sphere seen from a very close
range. Procedural planet modelling is a powerful tech-
nique that can generate terrain details over the entire sur-
face of a planet, with a range of scales similar to the one
that exists on Earth [15]. A function similar to Eq. 11 was
used that combines two procedural noise functions. A Per-
lin noise function provides the basic terrain pattern and

Topological correction of hypertextured implicit surfaces 405

Fig. 9. A hypertextured sphere with one layer (left) and three layers (right) of a sparse convolution noise function. Top row shows original
surfaces. Middle row shows disconnected components in red. Bottom row shows surfaces after topological correction

is then modulated by a sparse convolution noise function
to create the appearance of rocky outcrops over an other-
wise smooth terrain. The evaluation of the gradient and
Hessian of these two noise functions is presented in Ap-
pendix A. The detection of surface connectivity is shown

in the middle image of Fig. 10 with the disconnected sur-
face components coloured in green. The removal of these
components is then shown in the bottom image. It is pos-
sible to see that the shadows cast on the ground by dis-
connected components, which are visible in the lower left

406 M.N. Gamito, S.C. Maddock

Fig. 10. A hypertextured planet featuring terrain overhangs and
arches. The top image shows the original surface. The middle
image shows disconnected components in green. The bottom image
shows the terrain after topological correction

corner of the top and middle images, have disappeared in
the bottom image due to those surface components having
been removed. This effect is easily achieved by perform-
ing connectivity testing for shadow rays, similar to what is
done for view rays. Disconnected components are ignored
for shadow rays and a point is only in shadow if its shadow
ray intersects with the main surface.

The results of Fig. 10, when compared with the re-
sults of Fig. 9, illustrate the difference between a global
method and a local method for the determination of sur-
face connectivity. The method presented in this paper

is global because it must first locate all surface critical
points as a first step. Clearly, this method, when applied
to the surface of Fig. 10, would be intractable, given the
extreme range of scales that is present and the conse-
quently large number of critical points that would have
to be located. A Morse-based local method finds critical
points on demand and only inside a small neighbourhood
centred at the ray-surface intersection point for which
a query is made about surface connectivity. The size of
the neighbourhood is progressively enlarged, and more
critical points are located, until a definite answer can be
given about the connectivity state of the intersection point.
Critical points can then be cached and reused for nearby
ray intersection points on the surface. The local method
for topological correction is more flexible but the global
method is simpler to implement. Research efforts to fi-
nalise a local topology correction method are ongoing.
Figure 10 was obtained with our current implementation
of this local method.

7 Conclusions

Morse theory provides all the connectivity information
about an implicit surface that is necessary to determine
how many components it is split into. This property of
Morse theory finds application in the hypertexturing of
implicit surfaces as it enables disconnected components
other than the desired main surface to be detected and re-
moved during rendering. In this way, one can add much
greater amounts of hypertexture than previously possible
to a solid object without the inconvenience of fractur-
ing it into many smaller objects. Our technique can be
applied to C2 continuous hypertextured surfaces gener-
ated from Eq. 1. In the most general situation, our tech-
nique can be applied to any C2 continuous implicit surface
whenever it may be desirable to identify and isolate dis-
connected components of the surface.

The topological correction method is robust and will
detect any disconnected component, no matter how small
or how close it may be to the main surface. This robustness
is again a consequence of the application of Morse theory.
The accuracy of the method is only limited by the numer-
ical tolerance factors and threshold values that are chosen
for the algorithms described in the paper. We have used
values that are equal to or smaller than 10−8, giving the
topology correction method an overall accuracy similar to
that of single precision floating point arithmetic.

The method represents a global approach to topologic-
al correction where all the surface critical points must
first be located in order for connectivity testing to be per-
formed. This method is suitable for hypertextured surfaces
where the ratio between the size of the hypertexture details
and the size of the original surface is large. When this ratio
is small, as is the case of procedural planets defined as

Topological correction of hypertextured implicit surfaces 407

hypertextures, a local topological correction method needs
to be used instead.

Although the proposed method can guarantee that
a hypertextured implicit surface is topologically con-
nected, it cannot guarantee that it is physically stable.
Consider the case of a surface component that is attached
to the main surface by a very thin bridge of material. If
the rigidity of the material is not sufficient, the applica-
tion of even the smallest force to the component will cause
it to break at the junction point. This has consequences if
one tries to use hypertextures to model terrain landscapes,
for example, as some of the terrain features, although con-
nected, may be unstable under the action of gravity. The
modelling of hypertextured surfaces that are both topolog-
ically connected and physically stable would require stress
analysis tools and goes beyond the scope of this paper.

8 Further developments

The topology correction method that was here presented
in the context of a ray casting rendering algorithm for
implicit surfaces can, with little extra coding effort, be
adapted to work in the context of the topologically correct
polygonal meshing algorithm of Stander and Hart [24]. As
a preliminary step of that algorithm, all the critical points
of a surface are first located. The polygonal mesh that ap-
proximates the surface is then progressively inflated until
it reaches its correct position. Whenever the mesh passes
through one of the critical points, an appropriate mesh cor-
rection operation is performed to account for the topology
change that has just occurred.

To perform topology correction for hypertextures in
the context of the method by Stander and Hart, it is ne-
cessary to include all critical points in the component
sets Si as part of the Segmentation algorithm, together
with the maxima and the 2-saddles that are already in-
cluded by our approach. Just as before, all critical points
are considered in decreasing order of their f(f0(x), x)
values. To include a 1-saddle, a streamline is followed
towards one of the maxima. The streamline must be ini-
tially tangent to some arbitrary vector that is contained
in the plane formed by the v2 and v3 eigenvectors of the
1-saddle. The maximum that is found at the end of the
streamline then identifies the set Si to which the 1-saddle
belongs. To include a minimum, a streamline is followed,
which can be started along any desired direction around
the minimum.

Once all the component sets have been identified, the
main set Sm is chosen, according to any preferred criter-
ion, and passed to the meshing algorithm. In this way,
a polygonal mesh will only be computed for the main sur-
face component. No effort will be wasted polygonising
surface components that have already been found to be
disconnected.

A Derivatives of procedural noise functions

The application of Morse theory to hypertextured implicit
surfaces made with procedural noise functions requires
that formulae be available for the evaluation of the gradi-
ent vector and the Hessian matrix of such functions. The
two widely available procedural noise functions that are
known to be C2 continuous are gradient noise and sparse
convolution noise [12, 17]. This appendix provides ana-
lytic formulae to evaluate their gradient and Hessian at any
point in space.

The value of a procedural noise function n at some
point x in R3 depends on the position of x relative to
a discrete but infinite set S = {xi ∈R3 : i = 0, 1, 2, . . . } of
node points xi that are distributed throughout space. Be-
cause S has an infinite number of node points, the evalu-
ation of n(x) is feasible when n(x) is made to depend only
on a small subset S(x) of S. At each location x, the sub-
set S(x) is the finite set of node points in S that surround x
according to some specified criterion.

We can define the value of a procedural noise func-
tion n at x as a sum of translated copies of a kernel func-
tion φ that depend on the displacement vectors between x
and the node points in S(x):

n(x) =
∑

i∈S(x)

φ(x− xi). (12)

What distinguishes gradient noise and sparse convolution
noise is the shape of the kernel φ, the criterion used to de-
fine S(x) and the distribution of the xi in space to form S.
The gradient and Hessian are then given by:

∇n(x) =
∑

i∈S(x)

∇φ(x− xi), (13a)

H{n}(x) =
∑

i∈S(x)

H{φ}(x− xi). (13b)

A.1 Gradient noise

For gradient noise, the set of node points forms a cubic
integer lattice S = {(u, v, w) : u, v, w ∈ Z}. For each loca-
tion x, the set S(x) is made of the eight node points at the
vertices of the lattice cell in which x resides. The kernel is
given by:

φ(x) = φ(x1, x2, x3)

= (ξ1x1 + ξ2x2 + ξ3x3) h(x1)h(x2)h(x3), (14)

where ξ1, ξ2 and ξ3 are random variables. The degree
five polynomial h has support in [−1, +1] and is such that
h(0) = 1 and h(−1) = h(+1) = 0 [17]. For compactness,
we write the polynomial for coordinate x1 as h1 = h(x1),
the first derivative as h′

1 = h′(x1) and the second derivative
as h′′

1 = h′′(x1) and similarly for x2 and x3. The gradient

408 M.N. Gamito, S.C. Maddock

vector and Hessian matrix are given by:

∇φ(x1, x2, x3)

= h1h2h3

⎡
⎣ξ1

ξ2

ξ3

⎤
⎦+ (ξ1x1 + ξ2x2 + ξ3x3)

⎡
⎣h′

1h2h3

h1h′
2h3

h1h2h′
3

⎤
⎦,

(15a)

H{φ}(x1, x2, x3)

=
[

2ξ1h′
1h2h3 (ξ1h1h′

2 + ξ2h′
1h2)h3 (ξ1h1h′

3 + ξ3h′
1h3)h2

(ξ2h′
1h2 + ξ1h1h′

2)h3 2ξ2h1h′
2h3 (ξ2h2h′

3 + ξ3h′
2h3)h1

(ξ3h′
1h3 + ξ1h1h′

3)h2 (ξ3h′
2h3 + ξ2h2h′

3)h1 2ξ3h1h2h′
3

]

+ (ξ1x1 + ξ2x2 + ξ3x3)

⎡
⎣

h′′
1h2h3 h′

1h′
2h3 h′

1h2h′
3

h′
1h′

2h3 h1h′′
2h3 h1h′

2h′
3

h′
1h2h′

3 h1h′
2h′

3 h1h2h′′
3

⎤
⎦.

(15b)

A.2 Sparse convolution noise

As with gradient noise, a regular lattice placed at inte-
ger positions is used. Inside each cell in this lattice, K
node points are uniformly distributed. This simple scheme
generates an infinite Poisson distribution of node points.

The value of n at each location x depends on the node
points of the cell that contains x plus the node points in
the twenty six surrounding cells. The set S(x), therefore,
always contains 27K node points. The kernel φ depends
only on the distance r = ‖x‖ and on a single random vari-
able ξ:

φ(x) = ξh(r). (16)

For the function h, we have used the same degree five
polynomial that was used for gradient noise, now evalu-
ated only for positive arguments. Any other function can
be used for h provided that it is C2 continuous and with
compact support in the interval [0, 1]. The gradient vector
and Hessian matrix are given by:

∇φ(x) = ξ
h′(r)

r
x, (17a)

H{φ}(x) = ξ

(
h′′(r)

r2 − h′(r)
r3

)
(x · xT)+ ξ

h′(r)
r

I. (17b)

The matrix I is a 3 ×3 identity matrix. The Hessian
matrix is symmetric because the matrix x · xT is also sym-
metric.

References
1. Cook, R.L.: Shade trees. In:

Christiansen, H. (ed.) Computer Graphics
(SIGGRAPH ’84 Proceedings), vol. 18,
pp. 223–231. ACM, Boston (1984)

2. de Figueiredo, L.H., Stolfi, J.: Affine arith-
metic: Concepts and applications. Numer.
Algorithms 37(1–4), 147–158 (2004)

3. Friedman, J.H., Bentley, J.L., Finkel, R.A.:
An algorithm for finding best matches in
logarithmic expected time. ACM Trans.
Math. Softw. 3(3), 209–226 (1977)

4. Gamito, M.N., Maddock, S.C.: Ray casting
implicit fractal surfaces with reduced affine
arithmetic. Vis. Comput. 23(3), 155–165
(2007). A correction has been made to this
paper, which is available at
http://www.dcs.shef.ac.uk/∼mag/

raycast.html
5. Hart, J.C.: Sphere tracing: A geometric

method for the antialiased ray tracing of
implicit surfaces. Vis. Comput. 12(9),
527–545 (1996)

6. Hart, J.C.: Morse theory for implicit
surface modeling. In: Hege, H.C.,
Polthier, K. (eds.) Mathematical
Visualization, pp. 257–268. Springer, Berlin
Heidelberg New York (1998)

7. Hart, J.C.: Using the CW-complex to
represent the topological structure of
implicit surfaces and solids. In:
Proceedings of Implicit Surfaces ’99,
pp. 107–112. Eurographics/SIGGRAPH,
Aire-la-Ville, Switzerland (1999)

8. Hart, J.C., Durr, A., Arsch, D.: Critical
points of polynomial metaballs. In:
Proceedings of Implicit Surfaces ’98,
pp. 69–76. Eurographics/SIGGRAPH,
Aire-la-Ville, Switzerland (1998)

9. Heidrich, W., Seidel, H.P.: Ray-tracing
procedural displacement shaders. In:
Davis, W., Booth, K., Fournier, A. (eds.)
In: Proceedings of Graphics Interface ’98,
pp. 8–16. Canadian Information Processing
Society, Kaufmann, San Francisco
(1998)

10. Helman, J.L., Hesselink, L.: Visualizing
vector field topology in fluid flows. IEEE
Comput. Graph. Appl. 11(3), 36–46
(1991)

11. Hindmarsh, A.C.: ODEPACK:
A systematized collection of ODE solvers.
In: Stepleman, R.S. (ed.) Scientific
Computing, pp. 55–64. North-Holland,
Amsterdam (1983)

12. Lewis, J.P.: Algorithms for solid noise
synthesis. In: Lane, J. (ed.) Comput. Graph.
(SIGGRAPH ’89 Proceedings) 23, 263–270
(1989)

13. Milnor, J.: Morse Theory. Annals of
Mathematics Studies, vol. 51. Princeton
University Press, Princeton (1963)

14. Moore, R.: Interval Arithmetic.
Prentice-Hall, New York (1966)

15. Musgrave, F.K.: Mojoworld: Building
procedural planets. In: Ebert, D.S.,
Musgrave, F.K. (eds.) Texturing &

Modeling: A Procedural Approach, 3rd
edn., chap. 20, pp. 565–615. Morgan
Kaufmann, San Francisco
(2003)

16. Perlin, K.: An image synthesizer. In:
Barsky, B.A. (ed.) Comput. Graph.
(SIGGRAPH ’85 Proceedings) 19, 287–296
(1985)

17. Perlin, K.: Improving noise. ACM Trans.
Graph. (SIGGRAPH ’02 Proceedings)
21(3), 681–682 (2002)

18. Perlin, K., Hoffert, E.M.: Hypertexture.
Comput. Graph. (SIGGRAPH ’89
Proceedings) 23, 253–262 (1989)

19. Saupe, D.: Point evaluation of
multi-variable random fractals. In:
Jüergens, H., Saupe, D. (eds.)
Visualisierung in Mathematik und
Naturissenschaften – Bremer
Computergraphik Tage, pp. 114–126.
Springer, Berlin Heidelberg New York
(1989)

20. Sclaroff, S., Pentland, A.: Generalized
implicit functions for computer graphics.
Comput. Graph. (SIGGRAPH ’91
Proceedings) 25, 247–250 (1991)

21. Shinagawa, Y., Kunii, T.L.,
Kergosien, Y.L.: Surface coding based on
morse theory. IEEE Comput. Graph. Appl.
11(5), 66–78 (1991)

22. Snyder, J.M.: Interval analysis for computer
graphics. Comput. Graph. (SIGGRAPH ’92
Proceedings) 26, 121–130 (1992)

Topological correction of hypertextured implicit surfaces 409

23. Sproull, R.F.: Refinements to
nearest-neighbor searching in k-dimensional
trees. Algorithmica 6, 579–589 (1991)

24. Stander, B.T., Hart, J.C.: Guaranteeing the
topology of an implicit surface

polygonization for interactive modeling.
Comput. Graph. (SIGGRAPH ’97
Proceedings) 31, 279–286 (1997)

25. Wu, S.T., de Gomensoro Malheiros, M.: On
improving the search for critical points of

implicit functions. In: Proceedings of
Implicit Surfaces ’99, pp. 73–80.
Eurographics/SIGGRAPH, Aire-la-Ville,
Switzerland (1999)

MANUEL N. GAMITO is currently a Ph.D.
student at the University of Sheffield. He re-
ceived a M.Sc. in Electrotechnical Engineering
from Lisbon Technical University in 1996. His
research interests are in procedural modelling,
landscape modelling and the visual simulation
of natural phenomena. He is a member of ACM
SIGGRAPH and Eurographics.

STEVE C. MADDOCK is a senior lecturer in
computer science at the University of Sheffield.
His research interests are in computer facial
modelling and animation, human figure an-
imation, procedural modelling, and surface
deformation techniques. He received a Ph.D.
in computer science from the University of
Sheffield in 1999. He is a member of ACM
SIGGRAPH and Eurographics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

